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1 Introduction

Recently the `timeless-perspective' optimality concept proposed by Michael

Woodford (see Woodford 1999a, Woodford 1999b) has received a great deal

of attention in the in
ation targeting literature. Whilst it involves no new so-

lution concepts, the `timelessly optimal' control rule emphasises the stochas-

tic equilibrium to the monetary policy problem. This solution has been

used by, e.g., King and Wolman (1999), Clarida, Gal��, and Gertler (1999),

Steinsson (2000), McCallum and Nelson (2000) and Walsh (2001) as well as

further papers by these authors and others.1 The policy proposal is simple

to outline. What makes an optimal policy time-inconsistent is the separate

treatment of initial conditions and policy in the longer term. By ignoring

those initial conditions and sticking to a constant policy, a policy can be

implemented that has desirable long-run stabilisation properties|for exam-

ple the absence of in
ationary bias|which monetary policy makers may be

able to sustain as a consistent policy. This is the `rules versus discretion'

debate revisited with the well known result that a rule to which a policy-

maker can commit may outperform the discretionary equilibrium, except

that the particular proposed rule is the one associated with the optimal but

time inconsistent policy at a `mature' stage.

The many proponents of this as a solution to the optimal monetary pol-

icy problem argue that it corresponds to the policy which the monetary

authorities would have wished to implement given the opportunity to make

a binding choice in the distant past to current behaviour. They argue fur-

ther that this conforms to the notion of time consistency implicit in much of

the early literature. The popularity of this solution as a viable description

of policy is enhanced by its analytical tractability, particularly for the model

considered in this paper where troublesome `pre-determined' Lagrange mul-

tipliers can be eliminated to yield a readily interpretable policy rule.

However there is a signi�cant weakness to this proposition as a descrip-

tion of equilibrium monetary policy. In this paper we argue that the consis-

tency argument is generally false. There exist superior policies in stochastic

equilibrium that the policymaker will necessarily prefer in the absence of

enforced discretion. If, in the long run, a policy which is at least as good

as the usual `timelessly optimal' one exists then policymakers will seek to

adopt this as the rule they would have wished to commit themselves to in

the distant past. In order to demonstrate the contrary one only needs to

�nd an alternative policy which is better. This motivates the investigation

undertaken by McCallum and Nelson (2000).

However, we can go further. If a policy could be found that is optimal

in the metric usually used to evaluate the `timelessly optimal' policy then

1In particular, the stochastic problem is treated in Svensson and Woodford (2000) and

Svensson and Woodford (2001). We return to their analysis below.
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this may ful�l the criteria for time consistency. We derive a policy which

directly minimises the asymptotic loss function and discuss its properties.

It can be derived in a similar fashion to the timeless-perspective optimal

policy although, of course, the actual objective function is rather di�erent.

Because of this inherent superiority it is necessarily more supportable as

a time consistent policy. However the method of derivation indicates very

clearly that a short-term incentive to depart from the announced rule exists

as it is not the solution to the originally posited objective function. The key

to sustaining any `timelessly optimal' policy as time consistent rests with

convincing agents that the long-term is the true objective of policy.

The analysis of these issues and attempts to resolve the time inconsis-

tency problem go back a long way. The time inconsistency of the optimal

policy was recognised by Kydland and Prescott (1977). Barro and Gordon

(1983) emphasised a static concept of time inconsistency, where the inability

of the policymaker to commit to a particular monetary policy induces an

in
ationary bias. In a repeated game this bias is mitigated although not

altogether eliminated. The dynamic rational expectations optimal policy

problem was thoroughly investigated by a number of authors in the 1980s.

See, e.g., the collected articles in Buiter and Marston (1985) and Currie

and Levine (1993).2 This literature emphasised a second form of time in-

consistency, nicely illustrated with the temptation to re-optimise captured

by a co-state vector, which we discuss further below.3 This dynamic aspect

is critical to our analysis of the inconsistency problem. It turns out that

introducing commitment technologies to the optimal but time inconsistent

policy may in the long run be counter-productive. Any short-run gains from

commitment may become longer term losses where it would be preferable

to `renege' and adopt some alternative policy rule. As the timeless optimal-

ity solution re
ects the solution in equilibrium it is these longer-term costs

which are relevant in assessing the sustainability of the policy regime. It may

therefore be that the long-run associated with the discretionary equilibrium

is to be preferred to the commitment solution.

The recent papers which analyse the timeless perspective policy mostly

adopt a simple forward-looking Phillips curve. A graph of the trade-o� be-

tween the unconditional variance of in
ation and the output gap (in this

paper �2
�
and �

2
y
) or a table of the weighted variances are often used to

illustrate the impact of the concern given to anti-in
ation priorities by the

central bank for the policy regimes under consideration (see, e.g., Clarida,

Gal��, and Gertler 1999). This would seem to be a relevant comparison, given

that for stochastic initial conditions (which, we note below, is equivalent to

2More recently, S�oderlind (1999) has presented some more general solutions to these

problems and provided software solutions for other investigators, often used in the recent

literature.
3An important link between these two sources of time inconsistency was Cohen and

Michel (1988), a good example of a paper which analyses both.
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the timeless-perspective optimality concept) the expected value of a usual

discounted quadratic welfare loss function is proportional to a weighted av-

erage of these quantities. In this paper we argue strongly that potential

policy rules and stochastic equilibria should be compared across the correct

metric. Once this is adopted a fully optimal policy for that problem can be

derived.

Initially two questions are addressed in this paper. Firstly, and as in-

vestigated by McCallum and Nelson (2000), is it necessarily the case that

the `timelessly optimal' policy is better than a consistent alternative on the

basis of their stochastic equilibria? We �nd that it is not. Secondly, is

there an optimal policy on the basis of this metric? We �nd that there

is. In answering both of these questions we are able to o�er a number of

important insights into the nature of time inconsistency in a stochastic equi-

librium. In particular, it becomes clear that the social discount factor plays

an important role in determining the best policy.

The paper is organised as follows. In Section 2 we describe the model and

characterise the policy problem. In Section 3 we derive the two candidate

policies already discussed in the literature in the context of an asymptotic

loss function. In Section 4 an alternative timelessly optimal policy is derived

and all three equilibria are compared and a number of important aspects of

the solutions discussed. Conclusions are drawn in Section 5. Three appen-

dices give additional �rst-order conditions for the fully optimal solution for

the model considered in the main text, a discussion of the form of the policy

rules implemented and a brief treatment of the general LQG problem.

2 Model, policy description and solution

We consider the model analysed by (amongst others) Clarida, Gal��, and

Gertler (1999) and McCallum and Nelson (2000). The model is a very

simple one. A forward-looking Phillips curve is given by:

�t = ��
e

t+1 + �yt + "t (1)

where �t is in
ation at time t, yt is the output gap, and "t is an i.i.d.

shock process with variance �2. � and � are positive parameters, with the

latter also the social discount factor. This particular model can be derived

from optimising behaviour (we refer to Clarida, Gal��, and Gertler (1999) for

details) and is often described as New Keynesian.4 In anticipation of the

results derived below, we assume that monetary policy is set using:

�t = �0yt + �1yt�1 (2)

4A second dynamic IS relationship is sometimes added, but makes no material di�er-

ence to the results because the Lagrange multiplier is always zero.
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so that in
ation is related to the output gap and its lag.5

We assume that the model can be solved using an undetermined coeÆ-

cient method.6 Write:

�t = s11yt�1 + s12"t (3)

yt = s21yt�1 + s22"t (4)

Lead (3) and take expectations to give �e
t+1 = s11yt. Using this and (4), the

undetermined coeÆcient equation for yt, in (1) gives:

�t = (�s11 + �)s21yt�1 + ((�s11 + �)s22 + 1)"t (5)

and substituting (4) in (2) gives:

�t = (�0s21 + �1)yt�1 + �0s22"t: (6)

To solve for the rational expectations equilibrium we can equate coeÆ-

cients across equations. Doing so between (3) and (6) gives:

s12 = �0s22 (7)

and:

s11 = �0s21 + �1 (8)

and between (3) and (5), using the solution for s12 just derived, gives:

s22 =
1

�0 � �� �s11

(9)

and:

s21 =

 +

p

2 + 4��0�1

2��0
(10)

where 
 = �0 � �� ��1.

For what follows we need to derive the unconditional variances of y and

� so that we can compare them across policy regimes. Note that from (4):

E(y2
t
) = s

2
21E(y

2
t�1) + s

2
22E("

2
t
) (11)

5It is perhaps more natural to treat the output gap as the policy instrument rather

than the in
ation rate, as is the case in Steinsson (2000). However, it is more convenient to

preserve the in
ation rate as the policy variable in common with the rest of the literature,

in particular the static, Barro-Gordon approach. In Appendix B we discuss the form of

implied `simple rule' involved in each policy equilibrium and compare with the results

derived by Levine and Currie (1987).
6In the numerical examples given below we use the Blanchard and Kahn (1980) method

to calculate the expectational equilibria. This yields the same result as the undetermined

coeÆcients solution.

5



as E(yt�1"t) = 0. Let:

p =
s
2
22

1� s
2
21

(12)

which allows us to write �2
y
as:

�
2
y
= p�

2. (13)

Using this and (3) we can write �2
�
as:

�
2
�
= (ps211 + s

2
12)�

2. (14)

If we consider a weight ! which indicates the degree of concern with

output stabilisation, then a weighted average of the two asymptotic variances

is:

c = !�
2
y
+ �

2
�
= ((! + s

2
11)p+ s

2
12)�

2 =

 
(! + s

2
11)s

2
22

1� s
2
21

+ s
2
12

!
�
2. (15)

This could, of course, be interpreted as an appropriate asymptotic cost func-

tion. Indeed, it is often used as a comparison in the literature, either by the

use of a `trade-o�' diagram, where �2
�
is plotted against �2

y
, or as a direct

report of the value of c for a given policy. For example, candidate pol-

icy regimes can be compared where `. . . the asymptotic social loss function

is evaluated under both precommitment and discretion. As Jensen (1999)

and McCallum and Nelson (2000) have previously shown, precommitment

achieves a lower value of the loss function than does discretion' (Walsh 2001,

p. 4). It is the second part of this quote that we take as the starting point

for the current paper and we turn to in the next section. We discuss whether

this method of comparing equilibria is appropriate further once we derive

the standard equilibria.

3 `Timeless perspective' and `time consistent' op-

timal policies

In this section we derive the fully optimal and time consistent optimal poli-

cies for the model and discuss the timeless perspective modi�cation. Such

policies are usually derived by considering a discounted in�nite horizon loss

function that represents the social welfare function.

Compare (15) with the usual discounted quadratic loss function:

V0 = min
�

E0

1X
t=0

�
t

�
�
2
t
+ !y

2
t

�
. (16)
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This is often taken as a representative social welfare loss function. See the

discussion in, e.g., Steinsson (2000). Optimisation proceeds usually by the

method of Lagrange multipliers. De�ne:

Hk = �
2
k
+ !y

2
k
+ �k(��k+1 + �yk + "k � �k) (17)

so that:

V̂0 = min
�

E0

1X
t=0

�
t
Ht (18)

is the objective function (15) subject to the constraint (1).

First-order conditions for (18) are:

E0(2!yt + ��t) = 0; for t � 1; (19)

E0(2�t � �t + �t�1) = 0; for t � 1; (20)

E0(2�0 � �0) = 0: (21)

Given that (19) is a static relationship between �t and yt, so � can be

eliminated from (20) and (21).7 Thus we can write the `timelessly optimal'

(TP) policy as:

�t = �
!

�
yt +

!

�
yt�1 (22)

for t � 1. In the initial period, notice from (21) that:

�0 = �
!

�
y0 (23)

so that a di�erent policy rule is implemented when the policy is announced.

The time inconsistency argument is nicely illustrated by the two-part policy

rule. There is a clear incentive to renege in each period: It is better to

announce a new regime is in place, and that in the current period (23) will

be implemented and (22) will be followed for all subsequent periods. For this

to be optimal it must be believed; agents recognise this is not the only time

the policymaker will face such an incentive; the policy is time inconsistent.

By contrast a time consistent (TC) policy can be obtained by always

setting the Lagrange multiplier associated with the forecast to zero, which

gives:

�t = �
!

�
yt (24)

for all t which is a policy which simply minimises the intra-period cost

without regard to the dynamics of the problem. Note that this is simply

(23) implemented in every period.

7The elimination of the Lagrange multiplier in this way is possible because of the lack of

structural dynamics except through expectations. More generally the elimination requires

a discounted feedback on each lag of the predetermined state. This was shown by Levine

and Currie (1987), and more recently by Svensson and Woodford (2000).
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We now turn to the stochastic implications of potential policy rules.

Pearlman (1992) showed that the optimal but time inconsistent policy for a

class of linear rational expectations models with quadratic objective function

is ex ante certainty equivalent.8 We need to be careful about the interpre-

tation of this statement. At time t the optimal time inconsistent policy

expressed as a feedback rule is certainty equivalent. Thus in the face of

shocks unknown at time t there is no policy that can be implemented that

is expected to be better given a feedback representation of the policy rule.

However, as we have just shown, such a policy from the perspective of time

t+ 1 cannot be optimal as it is time inconsistent.

By contrast, the timeless perspective (TP) policy as suggested by Wood-

ford (1999a) ignores the constraint on the initial condition and implements

(22) in every period. There is therefore a symmetry about the TP and TC

policies. One ignores the �rst-order condition (21), the TP policy, and one

ignores (20), the TC policy.

We need to motivate why `timelessness' is an attractive equilibrium con-

cept in a stochastic context. A possible description of the intention of a TP

policy is that it is set to minimise:

V = min
�

E

1X
t=0

�
t

�
�
2
t
+ !y

2
t

�
(25)

where the unconditional expectation of the loss function is considered. Note

that some authors have described it as the policy that minimises Vt+k for

some k such that the state is in stochastic equilibrium. This treatment of ini-

tial conditions is described by King and Wolman (1999), who `. . . consider

the behavior of an economy after the e�ects of an initial \start-up" pe-

riod have worn away.' (King and Wolman 1999, p. 376).9 This, of course,

amounts to assuming not that the initial conditions are ignored, but rather

that they are treated as stochastic.10

This has the implication that the initial state cannot be relevant to any

cost comparison and so the stochastic equilibrium must be compared. Note

that:

V0; k = E0Vk =
1X
t=k

�
t
c =

�
k

1� �
c (26)

for k large enough that the initial conditions have indeed `worn away'. Thus

the relevant costs are proportional to c and we can compare the value of

8Similar results are derived in Aoki (1998), Svensson and Woodford (2000) and Svens-

son and Woodford (2001).
9Of course, in a deterministic context any policy rule that stabilises the target variables

at their target values is as good as any other, given the de�nition of timelessness.
10This distinction is much more obvious for a more general control problem where not

just one lag appears in the policy rule. See Appendix C for details.
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c obtained for each policy regime directly. We note below the important

implications of discounting on the optimal policy.11

An immediate consequence of this is that the policy derived by ignoring

the �rst-order condition associated with the very �rst period is not neces-

sarily the policy that minimises (15). It is, after all, time inconsistent, and

is necessarily suboptimal in subsequent periods, particularly in a stochastic

equilibrium where continuing shocks mean that the minimum of the objec-

tive function is never reached, despite being certainty equivalent at t = 0.

It may be that the TC policy could dominate. This is the same argument

as whether the time inconsistent policy is sustainable. After some time has

passed, if the `cost-to-go' for the time inconsistent policy is greater than for a

candidate time consistent one, then the time inconsistent policy is obviously

unsustainable from then onwards. Indeed, it is unclear why a policymaker

would try to sustain it: Switching to the TC policy at that point would

improve welfare. Such e�ects are particularly bad news for the TP policy,

which is by de�nition the time inconsistent policy after `suÆcient' time has

elapsed.

Table 1: Values of c� 105 for � = 0:975

!

� Policy 0.01 0.10 0.25 0.50 1.00

0.005 TP 2.433 2.512 2.522 2.527 2.529

TC 2.494 2.499 2.500 2.500 2.500

0.010 TP 2.315 2.477 2.503 2.515 2.522

TC 2.475 2.498 2.499 2.500 2.500

0.020 TP 2.094 2.402 2.457 2.485 2.503

TC 2.404 2.490 2.496 2.498 2.499

0.030 TP 1.894 2.327 2.409 2.451 2.481

TC 2.294 2.478 2.491 2.496 2.498

It turns out that it is not possible to show that the TP policy is always

better than the TC policy for the simple reason that it is not. We give

some representative numbers in Table 1 for � = 0:005 and � = 0:975. In

Figure 1 we plot points where c is equal for the TP and TC policies, as

functions of the three parameters, �, ! and �. Points above the surface

are where the TP policy is superior and below the TC is superior. The

range and scale are carefully chosen to include points where each policy

dominates. If we consider an arbitrary value for �, then a greater concern

11For example, Walsh (2001) reports c=(1 � �) as his measure of asymptotic cost. In-

terestingly, this is never a feasible value of the expected cost. We discuss this further in

Appendix C.
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Figure 1: Points of equal `cost' for TP and TC policies

with output stabilisation (greater !) or a lower discount factor favours the

TC policy. The points of equality on the graph are close to what might be

regarded as empirically relevant, as they are only slightly outside experience,

in particular requiring fairly low values of � for reasonable �.12

4 Timelessness and optimality

If neither the TP or TC policies are globally dominant, a logical question

to ask is what constitutes the truly optimal policy? The optimal policy to

minimise (15) turns out to be very simple and intuitive. However, to �nd

the minimum to (15) directly|even for this simple model|turns out to be

very unwieldy analytically. For example, we can substitute in to rewrite

12By contrast McCallum and Nelson (2000) do not �nd any points where the TC policy

dominates. However, they do not choose a value for � that is small enough or, crucially,

vary the discount factor.
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(15) as:

c =

2
664 ! + �

2
0 + �

2
1 +

�1

��

 � �

2

�2 �
1� 1

�
2

0

�
�

2�

�2�
3
775 �2 (27)

where:

� = 
 +
q

2 + 4��0�1

with 
 as before. First-order conditions with respect to �0 and �1 can be

derived. However, even a computer algebra tool such as Maple (see, e.g.,

Heck 1996) is of more use for checking a solution rather than deriving it.

This we do in Appendix A. In what follows we �nd the solution to a related

problem and argue that it solves the original one and establish it in the

appendix. We, of course, use numerical examples to illustrate the solution.

Remember that the timeless perspective policy is analytically straight-

forward and certainty equivalent from the perspective of t = 0 (although, of

course, not optimal). If the approach is to �nd an alternative policy that

solves the original problem more tractably then it is sensible to start with

a timelessly optimal one. Consider the undiscounted constrained control

problem:

~V0 = min
�

E0

1X
t=0

Ht (28)

where Ht is de�ned as before. What if we consider this from a `timeless'

perspective? Clearly, the value of any loss function for a stochastic control

problem is usually in�nity without discounting. However, if we consider

a �nite horizon T -period problem with arbitrary initial and terminal peri-

ods and seek to minimise the expected value in each period we will obtain

the required optimal policy that minimises (15). Note that minimising the

quadratic loss function is then equivalent to minimising T�c over that inter-
val for stochastic initial conditions and so must minimise c. The TP-based

welfare loss is (by de�nition) proportional to the weighted steady-state vari-

ances but it is not necessarily the optimal policy that minimises the weighted

steady state variance. Neither is the TC policy. However, under the com-

parison made above (really the only meaningful comparison that we can

make) the undiscounted policy must dominate both. Notice that a policy

calculated with discounting necessarily concentrates the action of that policy

to the immediate future at the expense of the stochastic equilibrium. Re-

member, we are essentially trying to solve (26) for arbitrary k and therefore

eliminating the short-run policy e�ects.

First-order conditions for (28) are (19) and (21) but instead of (20) we

obtain:

E0(2�t � �t + ��t�1) = 0 (29)
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for t � 1. That � appears in the undiscounted problem and not in the

discounted one re
ects its role as a parameter in the model (1). From a

`timeless' perspective, we would again ignore (21) and assume that policy is

set the same way in every period. This yields the optimal (OP) policy rule:

�t = �
!

�
yt + �

!

�
yt�1. (30)

In Appendix A we show how Maple can be used to check that this is

indeed the minimum. Having derived three possible policies to be imple-

mented we compare them on the basis of their asymptotic welfare losses in

Table 2. Notice that the OP, TP, and TC feedback rules in the form of (2)

can be written:

�0 = �
!

�
(31)

and:

�1 = �
!

�
(32)

where � = 1, for the TP policy, � = 0 for the TC policy and � = � for the

OP policy. Given this parameterisation it is apparent that a lower discount

factor should favour the TC policy over the TP as the superior OP policy

has less lagged feedback. Note that for � = 1 the OP policy and the TP

policy coincide. Equally, for � = 0 the problem is static and all three

solutions coincide. Note that this re
ects the role of the discount factor as

a parameter of the model.

We illustrate the three policies with numerical examples. In Table 2 we

give the values for the OP, TP and TC policies for several values of � and !

with � = 0:98 and � = 0:005, di�ering from Table 1 by the larger discount

factor which gives a greater relative advantage to the timelessly optimal

policy. For this model and the reported parameterisation the gains for OP

over TP are modest and are certainly smaller than the proportionate gains

available for the TP policy over the TC policy, e.g. for � = 0:1, ! = 0:1. Of

course, the OP policy re
ects this advantage, having at least as much gain.

The existence of this policy raises a number of important issues. Wood-

ford (1999a, p. 294) argues that any policymaker using a `timeless' perspec-

tive `. . . chooses to act as one would have wished to commit oneself to act

at a date far in the past, not as one actually did commit oneself to act

at any such distant past date'. Taken together with the constraint of an

expectational equilibrium, this is a perfect description of time consistency.

Woodford suggests that the TP policy ful�ls these criteria. However, we

have found a policy which dominates it in stochastic equilibrium. Thus the

TP policy rule cannot be the policy `one would have wished to commit one-

self to': The OP policy is. Only this policy is the one to which a central

bank would still choose to commit after recomputing an optimal strategy

from a timeless perspective (see Woodford 1999a, pp. 293{294).
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Table 2: Values of c� 105 for � = 0:98

!

� Policy 0.01 0.10 0.25 0.50 1.00

OP 2.416 2.486 2.494 2.497 2.498

0.005 TP 2.423 2.503 2.515 2.519 2.522

TC 2.494 2.499 2.500 2.500 2.500

OP 2.301 2.456 2.479 2.489 2.494

0.010 TP 2.305 2.467 2.494 2.507 2.515

TC 2.475 2.498 2.499 2.500 2.500

OP 1.547 2.172 2.301 2.369 2.416

0.050 TP 1.547 2.174 2.305 2.373 2.423

TC 2.000 2.439 2.475 2.488 2.494

OP 0.965 1.855 2.083 2.209 2.301

0.100 TP 0.966 1.856 2.084 2.211 2.305

TC 1.250 2.273 2.404 2.451 2.475

Of course, the policy (30) is very speci�c to this problem and alternative

`timeless perspective' optimal policies need to be computed for a wider range

of models. It may be that the gap between the equivalent TP and OP policies

might be much greater, or indeed the frequency that it is bettered by a time-

consistent alternative may be much greater. The main point to emphasise

is this: The TP policy is not necessarily even a good policy, let alone the

best.

It also must be noted that this policy does not altogether convincingly

solve the time inconsistency problem. At any given time an incentive exists

to implement the optimal time inconsistent policy to minimise (16) from

the perspective of that time. We require agents to support the OP policy

as much as the TP policy, in the same way that Barro and Gordon (1983)

argue that an almost optimal policy can be supported. They argue that

both agents and the policymaker recognise that agents will punish time

inconsistent actions. The mechanism assumed is that agents impose the

requirement that an inferior time consistent policy is followed for a period

once a policymaker is observed to renege on a prior promised policy. Of

course, greater support exists for the OP policy than for the TP policy,

as there is more to lose because the OP policy derived here is the global

optimum to the policy problem. If the social welfare function is represented

by the stochastic equilibrium, then the incentive to renege is absent. This

is the support that agents need to give to the OP policy to sustain it as

an equilibrium: They need to believe that the monetary policymaker will

eschew all short-run gains on the basis of (16) and instead will always act

to minimise (15).
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5 Conclusions

In this paper we have evaluated a policy proposal for monetary policy that

has gained considerable popularity recently in the context of a simple dy-

namic rational expectations model.

We have established two results for our simple model, both of which

generalise. Firstly, it is clear that neither the TP or TC policy necessarily

dominates on the basis of the asymptotic cost function, with the points at

which they are equal shown in Figure 1. Secondly, there is an alternative

`timeless perspective' optimal policy, not one of the standard equilibria, that

is better. As it must be that the time inconsistent policy dominates both

from the perspective of the origin of that policy (i.e. t = 0) it may also be

that there is a policy that dominates them from the same perspective used

to derive the TP rule. This turns out to be the solution to the undiscounted

`timeless' control problem.

Two sets of constraints ensure that a policy is time consistent. Firstly,

that the policy is optimal subject to the rational expectation implied by

that policy13 and, secondly, that it is the best policy taking into account

the reactions of agents. This second constraint often corresponds to taking

bygones as bygones, so that a continuing policy is required to be indepen-

dent of what went before. Thus the dynamic programming principle that

minimises the `cost-to-go' stage-wise is adhered to.14 This would seem to

rule out the timeless perspective equilibrium as a potentially time consistent

policy: No such constraint is imposed.

However, by concentrating on the asymptotic loss function the policy

problem is translated to something akin to a static one. The same (i.e.

single set of) �rst order conditions are required to be satis�ed in all periods

by the `timeless perspective' constraint. As demonstrated above, there is a

best policy that satis�es this constraint that is not necessarily derived from

the optimal time inconsistent policy. Nevertheless, it is time inconsistent

in exactly the same way as the static Barro and Gordon (1983) problem.

If the monetary policymaker treats the expected in
ation rate next period

as parametric, then in the current period reoptimisation can yield a better

outcome with a lower expected welfare loss achieved. For the model in the

text, because the problem reduces to a static one for exogenous expectations,

the best time consistent and timeless perspective optimal policy is simply

the TC policy.

13This, incidentally, is what rules out the policy often describes as `perfect cheating'

where the policymaker plans to renege each period and implement the optimal time in-

consistent policy afresh each period and is believed by agents. This violates the rational

expectations assumption and is exactly what makes the policy time inconsistent in the

�rst place.
14We should be careful about our de�nition of time consistency. As Fershtman (1989)

showed, dynamic programming is not required to ensure time consistency, but the stronger

condition of subgame perfection. For present purposes we take these to be equivalent.
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Ultimately the importance of time inconsistency is an empirical question.

That we can �nd a superior policy to the TP policy may only of marginal

importance relative to the overall improvement in comparison with a time

consistent policy. The ability to commit to a rule|almost any rule|might

be the most important element. However, the fact that the OP policy dom-

inates both standard equilibria may indicate that richer models could admit

wider classes of potentially good rules that improve on discretion whilst

retaining simplicity and transparency.
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A First-order conditions

In this appendix we outline �rst-order conditions for the direct optimisation

of (15) using Maple. These are included for completeness. Given the OP

solution derived above we can parameterise either �0 or �1 and di�erenti-

ate with respect to the other and evaluate the resulting expressions at the

assumed optimum. AMaple worksheet that does this is available on request.

As we have two policy parameters, and they are functions of each other,

we can set �1 = ���0, and then check the optimality conditions with respect
to � and �0 to verify the solution. If we initially assume that �1 = ���0,
we can di�erentiate c with respect to �0 and verify that at �0 = �!

�
the

�rst order condition is zero. The following output from a Maple session

illustrates this.

Firstly, we need to set up the model. We �rst set up equations 8, 9, 7

and 10 for an arbitrary policy rule:

> s[11] := theta[0]*s[21] + theta[1];

s11 := �0s21 + �1

> s[22] := 1/(theta[0]-alpha-beta*s[11]);

s22 :=
1

�0 � �� �(�0s21 + �1)

> s[12] := theta[0]*s[22];

s12 :=
�0

�0 � �� �(�0s21 + �1)

> g := theta[0]-alpha-beta*theta[1];

g := �0 � �� ��1

> s[21] := (g+(g^2+4*beta*theta[0]*theta[1])^(1/2))/(2*beta*theta[0]);

s21 :=
1

2

�0 � �� ��1 +
p
(�0 � �� ��1)2 + 4��0�1

��0

The value of p in (12) is then:

> p := s[22]^2/(1-s[21]^2);

p := 1
.   

�0 � �

��

 
1

2

�0 � �� ��1 +
p
(�0 � �� ��1)2 + 4��0�1

�
+ �1

! !2

0
B@1� 1

4

�
�0 � �� ��1 +

p
(�0 � �� ��1)2 + 4��0�1

�2
�2�

2
0

1
CA
!
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and the cost function (15) is:

> c := (omega + s[11]^2)*p + s[12]^2;

c :=
! +

�
1

2

%1

�
+ �1

�2
�
�0 � �� �

�
1

2

%1

�
+ �1

��2 �
1� 1

4

%1
2

�2�
2

0

�

+
�
2
0�

�0 � �� �

�
1

2

%1

�
+ �1

��2
%1 := �0 � �� ��1 +

q
(�0 � �� ��1)

2 + 4��0�1

Notice that c should really be multiplied by �2, but we can drop this as it

is exogenously given. Set �1 to be related to �0 by our assumed solution:

> theta[1] := -beta*theta[0];

�1 := ���0

and evaluate the �rst order condition with respect to �0:

> dct0 := diff(c, theta[0]);

dct0 := 2
%5

�
1

2

%3

�
� �

�
%62

�
1� 1

4

%4
2

�2�
2

0

� � 2
(! +%52)

�
1� �

�
1

2

%3

�
� �

��
%63

�
1� 1

4

%4
2

�2�
2

0

�

�
(! +%52)

�
�1

2

%4%3

�2�
2

0

+ 1

2

%4
2

�2�
3

0

�
%62

�
1� 1

4

%4
2

�2�
2

0

�2 + 2
�0

%62

�2
�
2
0

�
1� �

�
1

2

%3

�
� �

��
%63

%1 := �0 � �+ �
2
�0

%2 := %12 � 4�2�20

%3 := 1 + �
2 +

1

2

2%1(1 + �
2)� 8�2�0p
%2

%4 := �0 � �+ �
2
�0 +

p
%2

%5 :=
1

2

%4

�
� ��0

%6 := �0 � �� �%5

and substitute in the hypothesised solution:
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> theta[0] := -omega/alpha;

�0 := �
!

�

which simpli�es to:

> simplify(dct0);

0

con�rming the optimum if �0 = �!

�
.

Similarly, if we assume that �1 = ���0, we can di�erentiate c with

respect to � and verify that at � = � the �rst order condition is zero. The

following Maple session does this:

> s[11] := theta[0]*s[21] + theta[1];

> s[22] := 1/(theta[0]-alpha-beta*s[11]);

> s[12] := theta[0]*s[22];

> g := theta[0]-alpha-beta*theta[1];

> s[21] := (g+(g^2+4*beta*theta[0]*theta[1])^(1/2))/(2*beta*theta[0]);

> p := s[22]^2/(1-s[21]^2);

> c := (omega + s[11]^2)*p + s[12]^2;

This gives the same output as above. Now instead we set:

> theta[0] := -omega/alpha;

�0 := �
!

�

and set the parameter on the lagged output value as:

> theta[1] := -mu*theta[0];

�1 :=
�!

�

18



where � is a dummy parameter which we expect to be equal to � at the

optimum. Taking the derivative with respect to the `dummy' parameter

gives:

> dcmu := diff(c, mu);

dcmu := 2
%5

�
1

2

%3

�
+ !

�

�
%62

�
1� 1

4

%4
2
�2

�2!2

� + 2
(! +%52)�

�
1

2

%3

�
+ !

�

�
%63

�
1� 1

4

%4
2
�2

�2!2

�

+
1

2

(! +%52)%4�2%3

%62
�
1� 1

4

%4
2
�2

�2!2

�2
�2!2

+ 2
!
2
�

�
1

2

%3

�
+ !

�

�
�2%63

%1 := �
!

�
� ��

��!

�

%2 := %12 � 4
�!

2
�

�2

%3 := �
�!

�
+
�%1�!

�
� 2�!

2

�2p
%2

%4 := �
!

�
� ��

��!

�
+
p
%2

%5 :=
1

2

%4

�
+
�!

�

%6 := �
!

�
� �� �%5

Now set � equal to the hypothesised optimum:

> mu := beta;

� := �

with the �nal simpli�cation again returned as:

> simplify(dcmu);

0

con�rming the optimum.

B An optimal simple rule interpretation

As a brief digression, which resolves a number of con
icts in the literature,

we discuss various simple rule interpretations of the optimal policies. Simple

rules have over the years been proposed by a many authors for many reasons.
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However, we speci�cally have in mind here the literature on Taylor rules (see,

e.g., Taylor 1999, Svensson 2001). This literature often considers only simple

proportional rules. We consider more general proportional-plus-integral-

plus-derivative (PID) control rules of the form:

ut = �P et + �I

1X
i=0

et�i + �D�et (33)

or in di�erenced form as:

�ut = �P�et + �Iet + �D�
2
et (34)

where u is the control instrument, e the deviation of the target variable

from target value, �P is the so-called proportional control coeÆcient, �I is

the integral control coeÆcient and �D is the derivative control coeÆcient.

These are needed to encompass the rules derived in this paper. Integral

control is typically included to ensure that the target is met and derivative

control to improve the stability properties of a rule. See Franklin, Powell,

and Emami-Naeini (1994) for a typical treatment of feedback control.

As the model has one or two states, depending on the policy rule, we can

interpret the optimal rules in the PID framework. The time consistent rule

(24) is straightforwardly a purely proportional rule control rule, so that, in

terms of (33):

�t = �P yt = �
!

�
yt (35)

where there is no lagged state dependence. This re
ects the usual require-

ment of time consistency that at any time t optimality is calculated condi-

tional on past behaviour being independent of policies implemented in the

future. By contrast, the timeless perspective rule (22) is a purely derivative

control rule:

�t = �D�yt = �
!

�
�yt (36)

where the value of output lagged appears explicitly in the optimal policy.

This has rightly been interpreted as an output growth rule, and inspired

the analysis in Walsh (2001), for example. Our optimal rule (30) is a

proportional-plus-derivative control rule:

�t = �(1� �)
!

�
yt � �

!

�
�yt: (37)

Immediately there is an important departure here from previous litera-

ture, as this contrasts with the result in Levine and Currie (1987). They

note that time inconsistent policies have a form of state-dependence which

can be described as a form of integral control rule. Our time-inconsistent
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policies are by contrast described best as including derivative control ele-

ments. This still has a state-dependent aspect, but only through the path

of the target rather than the control variable.

The resolution to this is the interpretation of the control instrument as

� whereas it should properly be y. We can simply invert (35) and (36) to

yield the equivalent pure proportional and pure integral rules. (37) inverted

does not yield an exact PID equivalent, but rather like (34):

(1� �L)yt = �
�

!
�t (38)

where L is the lag operator. This is a modi�ed integral control rule, very

similar to the one found in Levine and Currie (1987).

C The general LQG problem with stochastic ini-

tial conditions

In this appendix we discuss a more general stochastic linear rational expec-

tations control problem. First we show how the asymptotic welfare loss can

be described as an in�nite sum. Write a general quadratic loss function as:

V0 = E0

1X
t=0

�
t
s
0

t
Wst (39)

= E0

1X
t=0

�
ttr(sts

0

t
W ) (40)

=
1X
t=0

�
ttr(PtW ) (41)

where st is an n-vector of state variables, W is a positive semi-de�nite

weighting matrix, � is the discount factor, Pt = E0[sts
0

t
] is the forecast state

variance, and we have used the result that tr(ABC) = tr(BCA) = tr(CAB)

for conformable matrices. Now assume that we take expectations at the

same date but start the cost calculation later, say k > 0. Write this:

V0; k = E0

1X
t=k

�
t
s
0

t
Wst (42)

=
1X
t=k

�
ttr(PtW ). (43)

Couple this with a model:

st+1 = Ast + C"t+1 (44)

where "t � N(0; 
). We return to parameterising the model later. Note

that when k is large enough, say �k, the state variance of st for all t � �k is

such that:

�P = A �PA0 + C
C 0 (45)
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its asymptotic value, so we can write:

V0; �k =
1X
t=�k

�
ttr( �PW ) (46)

=
�
�k

1� �
tr( �PW ). (47)

This is necessarily where initial conditions have `worn away'. The `cost-to-

go' from �k onwards is therefore proportional to tr( �PW ) with the proportion

depending on the discount factor, �. Compare this with:

V =
1

1� �
tr( �PW )

which is equivalent to the value reported by Walsh (2001). For this to be a

feasible value of the loss function to report it would require that the inherited

state was the minimum cost in future periods. If there is discounting this

cannot be the case. The future stochastic equilibrium is less costly than

current state-disequilibrium so this is reduced at the cost of greater potential

variation in the state in the long term.

We turn to the derivation of the optimal policies described in the text.

The problem is to �nd the optimal policy to minimise V0; �k subject to:"
zt+1

x
e

t+1

#
=

"
A11 A12

A21 A22

# "
zt

xt

#
+

"
B1

B2

#
ut +

"
"t+1

0

#
(48)

where:

st =
h
C1 C2

i "
zt

xt

#
+Dut. (49)

In Pearlman (1992) and Svensson and Woodford (2000) it is demonstrated

how the (time inconsistent) commitment solution is certainty equivalent. We

can therefore solve the deterministic problem to �nd the optimal stochastic

problem.

Write:

Ct = y
0

t
C
0
WCyt + 2y0

t
C
0
WDut + u

0

t
D
0
WDut

= y
0

t
Qyt + 2y0

t
Uut + u

0

t
Rut

and de�ne the Hamiltonian:

Ht = �
t
Ct + 2�0

t+1(Ayt +But � yt+1) (50)

so that:

V̂0 =
1X
t=0

Ht. (51)
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First-order conditions are:

1

2

�
@Ht

@yt

+
@Ht�1

@yt

�
= �

t(Qyt + Uut) +A
0
�t+1 � �t = 0 (52)

1

2

@Ht

@ut

= �
t(U 0

yt +Rut) +B
0
�t+1 = 0 (53)

and the model (48).

The Hamiltonian for the undiscounted control problem is, of course:

~Ht = Ct + 2~�0
t+1(Ayt +But � yt+1) (54)

with necessary �rst-order conditions are:

1

2

 
@ ~Ht

@yt

+
@ ~Ht�1

@yt

!
= Qyt + Uut +A

0~�t+1 � ~�t = 0 (55)

1

2

@Ht

@ut

= U
0
yt +Rut +B

0~�t+1 = 0 (56)

and the model (48).

For either control problem, the solution can be expressed as:

ut = �Fzzt � F��
2
t

(57)

xt = �Nzzt �N��
2
t

(58)

�
2
t+1 = �zzt + ���

2
t

(59)

see Currie and Levine (1993). The predetermined states and co-states under

control can then be written:

zt+1 = �zzt +���
2
t

(60)

�
2
t+1 = �zzt + ���

2
t

(61)

where �z = A11�A12Nz�B1Fz and �� = �B1N��B1F�. Equations (60)

and (61) are equivalent to (44).

In Levine and Currie (1987) it was pointed out that � could be solved

out as a function of the predetermined state given that �20 = 0 to give:

�
2
t
=

1X
j=0

�j
�
�zzt�j�1

so that:

ut = �Fzzt � F�

1X
j=0

�j
�
�zzt�j�1: (62)

This is similar to (33) and for the scalar case can be written as a generali-

sation of the representative policy (38).
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Note that the cost of the optimal control can be written as:

C0 = s
0

0Ss0 = tr(�0S)

where S is the value function and �0 = s0s
0

0. The value function works by

evaluating the `cost-to-go' associated with a given set of initial conditions. If

the stochastic problem is certainty equivalent then the same control can be

used. If the shocks appear additively as disturbances to the future state then

their discounted expected value in each period is the expected disturbance

to the state, and so the cost is written:

C0 = tr((�0 +
�

1� �

̂)S)

where 
̂ = C
C 0. Note that similar to V0; �k above we can write:

C0; �k =
�
�k

1� �
tr(
̂S) (63)

where, of course, initial conditions have been ignored.

We can compare (47) and (63) for a given control problem. W is a

sparse matrix of weights which has nothing to do with the speci�cation of

the model (other than the location of the weights) and �P re
ects both the

model under control and the covariance structure of the shocks. 
̂ mainly

re
ects the covariance structure of the shocks and static parts of the model

under control and S re
ects all the non-stochastic parts|the model, control

and loss function. The latter re
ects the certainty equivalence of the control

problem.

It should be clear now why (63) based on the discounted control prob-

lem is inferior to it based on the undiscounted one when applied to the

asymptotic loss function. This is entirely due to the nature of the timeless

optimality problem. The inherited state turns out to be important. It re-


ects a policy (that will be continued to be pursued in the future) where the

asymptotic variance is is steady state. Because of this, a discounted control

problem necessarily makes the focus of policy a rejection of disturbances at

a faster rate than the non-discounted one|discounting means that disequi-

libria in the near future is more costly than further away. This is therefore

likely to implement a control rule which minimises the short-term impacts

of shocks at the cost of greater future variability. (63) for an ex ante optimal

policy and the policy which minimises (47) need not coincide as this is not

what certainty equivalence implies.

Practically, of course, the introduction of any timeless-perspective op-

timal rule, however calculated, is hugely problematic. Whilst the optimal

policy rule for the simple model (1) can be seen as a straightforward growth

targeting rule, that implied by (62) is a discounted lag function of the cur-

rent state, the past values of which have evolved under a variety of di�erent
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policy regimes. It is impossible to determine ahead of time what impact this

would have|such a policy could be disastrous, depending on what policies

had been followed in the past. However, implementing the time inconsistent

policy initially, perhaps on the grounds that it would have predictable ef-

fects, is impossible. It is, after all, time inconsistent and we are back where

we started.
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