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Abstract. We set up a two-stage game with sequential moves by one altruistic agent and

n selfish agents. The rotten kid theorem states that the altruist can only reach her first

best when the selfish agents move before the altruist. The Samaritan’s dilemma, on the

other hand, states that the altruist can only reach her first best when she moves before

the selfish agents. We find that in general, the altruist can reach her first best when she

moves first, if and only if a selfish agent’s action marginally only affects his own payoff.

The altruist can reach her first best when she moves last if and only if there is just one

commodity involved. When the altruist cannot reach her first best when she moves last,

the outcome is not Pareto efficient either.
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1 Introduction

However much we care about other people, we do not wish to invite them to take advantage

of our charity. The economic theory of altruism offers two conflicting pieces of strategic

advice: the rotten kid theorem (Becker [1] [2]) and the Samaritan’s dilemma (Buchanan

[7]). In a single-round model with sequential moves by an altruistic agent (the Samaritan

or the parent) and a selfish agent (the parasite or the kid), the contradiction between the

two can be stated as follows.

The rotten kid theorem states that the parent can only reach her first best when she

moves after the kid. The intuition is that the kid will only act unselfishly if the parent

can reward him afterward. The Samaritan’s dilemma, on the other hand, states that

the Samaritan can only reach his first best when he moves before the parasite. Here,

the intuition is that only when the Samaritan moves first will his actions be immune to

manipulation by the parasite.

In this paper, we shall identify the restrictions on the agents’ payoff functions for either

result to hold. For the altruist to reach her first best when she moves first, a selfish agent’s

actions should only affect his own payoff on the margin. Then there are no externalities to

his actions. For the altruist to reach her first best when she moves last, there should only

be one commodity, which we might call income. Then a selfish agent cannot manipulate

the altruist’s trade-off between her own and the selfish agents’ payoffs. The selfish agents

will maximize aggregate income. They benefit from this themselves, because their payoffs

are normal goods to the altruist.

As we interpret Samaritan’s dilemma and rotten kid theorem, they have a positive as

well as a negative side. The positive side is that the altruist can reach her first best under

one sequence of moves. The negative side is that she cannot reach her first best under

the other sequence. Many authors have used the terms Samaritan’s dilemma and rotten

kid theorem in the positive sense only. We shall refer to these versions as the positive

Samaritan’s dilemma and the positive rotten kid theorem.

Our result for the positive Samaritan’s dilemma is new. For the positive rotten kid

theorem, Bergstrom [3] has performed a similar analysis. His model can be seen as a
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special version of our more general setup. Whereas we do not restrict the nature of the

altruist’s actions, Bergstrom [3] assumes she distributes a certain amount of money among

the selfish agents. Removing this restriction results in a slightly more general condition

for the positive rotten kid theorem.

The focus of this paper is on the simple one-shot game with complete information with

which the theory started 25 year ago. Since then, more complex games between altruists

and selfish agents have been studied.1 It would be worthwhile to expand the general

analysis to encompass multi-period models and asymmetric or incomplete information.

However peripheral to economics the study of altruism may seem, there is in fact an

application that takes us to the very heart of the discipline (Munger [22]). Regarding

the welfare-maximizing government as an altruist and the private agents as selfish agents,

we have a framework for a policy game. This framework allows us to study how the

government can shape incentives such that private actions maximize social welfare.

The rest of this paper is organized as follows. In Section 2, we introduce and discuss

the Samaritan’s dilemma and the rotten kid theorem in simple two-agent setups where

they are known to hold. In Section 3, we set up a single-round game with n selfish agents,

deriving the conditions for the Samaritan’s dilemma and the rotten kid theorem to hold.

In Section 4, we discuss Samaritan’s dilemma and rotten kid theorem in terms of Pareto

efficiency. In Section 5, we discuss Bergstrom’s [3] game as well as Bergstrom’s [3] own

and Cornes and Silva’s [11] conditions for the rotten kid theorem. We conclude with

Section 6.

2 Introductory examples

2.1 Samaritan’s dilemma

The Samaritan’s dilemma is due to Buchanan [7] who discusses a game between an altru-

istic Samaritan and a selfish parasite.2 He shows that the Samaritan can reach his first

1Bruce and Waldman [5] [6] and Lindbeck and Weibull [19] have analyzed two-period lifetime models.
Chami [9] [10] and Lagerlöf [18] assume asymmetric information. Coate [8], Lord and Raganzas [20] and
Wigger [26] include uncertainty.

2Buchanan [7] distinguishes between the active and the passive Samaritan’s dilemma. We shall only
discuss the passive Samaritan’s dilemma here. The passive Samaritan’s preferences are reconcilable with
a payoff function that only depends on his donation. The active Samaritan’s payoff, on the other hand,
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best when he moves before the parasite, but not when he moves after the parasite. In

this subsection, we shall present a continuous version of the game.3

The Samaritan maximizes his objective function W (U0, U1), increasing in his own

payoff U0 and the parasite’s payoff U1: Wk ≡ ∂W/∂Uk > 0, k = 0, 1. The parasite

maximizes his own payoff U1. The Samaritan’s own payoff U0 only depends on his donation

y to the parasite, so that we can simply set U0 = −y. The parasite’s payoff depends on his
work effort x and on the Samaritan’s donation y. The parasite’s payoff function U1(y, x)

has the following properties:

• ∂U1/dy > 0, ∂
2U1/∂y

2 ≤ 0. The parasite’s marginal payoff of money is positive and
decreasing.

• ∂U1/∂x > [<]0 for x < [>]x∗(y), x∗(y) > 0; ∂2U1/∂x2 ≤ 0. Given the Samaritan’s
donation y, there is an optimal work effort x∗(y) for the parasite, where the marginal

payoff of extra money earned equals the marginal payoff of leisure.

• ∂2U1/∂y∂x < 0. An increase in the parasite’s effort decreases his marginal payoff of

money. This is because the parasite earns more money when he works harder and

his marginal payoff of money is decreasing.

The first order conditions for the Samaritan’s first best are, with respect to y and x,

respectively:

W0 = W1
∂U1
∂y

(1)

∂U1
∂x

= 0 (2)

We shall now see that the Samaritan can always reach his first best when he moves

first, but he can never reach his first best when he moves last.

must also depend on the parasite’s action. This follows from the fact that, given that the Samaritan
donates, the active Samaritan prefers the parasite to go to work although the parasite prefers to stay in
bed. Schmidtchen [24] provides an analysis of the active Samaritan’s dilemma.

3Jürges [16] also analyzes this game. Bergstrom ([3], 1140-1) analyzes a similar game, where a parent
distributes money after his “lazy rotten kids” have set their work efforts. Neither Bergstrom [3] nor
Jürges [16] identify the game with the Samaritan’s dilemma.
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When the Samaritan moves first, the parasite sets x in stage two to maximize his own

payoff:

∂U1
∂x

= 0

This condition is identical to the first order condition (2) for the Samaritan’s first best

with respect to x. Thus, in stage one, the Samaritan can set y according to his first best

condition (1). This means that the Samaritan can always reach his first best when he

moves first.

The intuition is that the parasite sets the work effort that maximizes his own payoff,

taking the Samaritan’s donation as given. Since the parasite’s work effort only affects

his own payoff, the parasite takes the full effect of his decision into account. There is no

externality, and the Samaritan’s first best is implemented.

When the parasite moves first, the Samaritan sets y according to (1) in stage two. In

stage one, the parasite sets the x that maximizes his own payoff, taking into account that

his choice of x affects the Samaritan’s choice of y in stage two:

dU1
dx
≡ ∂U1

∂x
+

∂U1
∂y

dy

dx
= 0

This only corresponds to the Samaritan’s first order condition (2) for x when dy/dx =

0, i.e. the donation reaches its maximum, in the optimum. In order to find the expression

for dy/dx in the optimum, we totally differentiate the Samaritan’s first order condition

for y (1) with respect to x and substitute (2):

dy

dx
=

W1

³
∂2U1
∂y∂x

´
−W00 + (W10 +W01)

∂U1
∂y
−W11

³
∂U1
∂y

´2
−W1

∂2U1
∂y2

< 0 (3)

The numerator in (3) is negative, because W1 > 0 and ∂2U1/∂y∂x < 0. The denomi-

nator is positive, because this is the second order condition ∂2W/∂y2 < 0.

Thus, the parasite gets more money from the Samaritan, the less he works. As a

result, the parasite will work less than the Samaritan would like him to. The Samaritan

cannot reach his first best when he moves after the parasite. Intuitively, the less money

the parasite earns, the needier he is and the more money he will get from the Samaritan.
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When the parasite moves first, he can extort more money from the Samaritan by working

less. We can also say that the parasite gets the Samaritan to buy more of his payoff U1

by lowering its price.

2.2 Rotten kid theorem

In order to introduce the rotten kid theorem, we analyze the simple game discussed by

Becker [1] [2] and commented upon by Hirshleifer [15]. The game is between an altruistic

parent and a selfish kid. The kid can undertake an action that affects his own as well as

the parent’s income. The parent can give money to the kid. We shall see that in general,

the parent cannot reach her first best when she moves first, but she can always reach her

first best when she moves after the kid.

In fact, Becker [1] [2] himself does not discuss the order of moves. Citing Shake-

speare’s King Lear, Hirshleifer [15] was the first to point out that the parent’s first best

is implemented only when the kid moves first.4

Denote the kid’s action by x and the parent’s transfer by y. Since the only commodity

involved is income, we can equate the parent’s and kid’s payoffs, U0 and U1 respectively,

with income and write them in the additively separable form:

U0 = −y + b0(x) U1 = y + b1(x) (4)

Here, bk(x), k = 0, 1, is the effect of the kid’s action on the income of the parent and

the kid, respectively.

The selfish kid maximizes his own payoff U1. The parent maximizes her objective

function W (U0, U1) with Wk ≡ ∂W/∂Uk > 0, k = 0, 1.

The first order conditions for the parent’s first best are, with respect to y and x

4Pollak [23] offers an alternative qualification: The parent can reach her first best only if she makes
a take-it-or-leave-it offer to the kid. The offer specifies the kid’s action and the parent’s transfer. Cox
[12] elaborates on this point. He argues that the parent can only reach her first best if the kid is better
off accepting the offer to implement the first best than rejecting it. Cox [12] calls this “altruism”. If
the kid’s participation constraint is binding, the parent will offer a different contract which gives the
kid his reservation payoff. Cox calls this “exchange”. In our model, we assume that the selfish agent’s
participation constraint never binds.
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respectively:

W0 = W1 (5)

W0b
0
0 +W1b

0
1 = 0 (6)

Substituting (5) into (6):

b00 + b
0
1 = 0 (7)

This implies that in the parent’s first best, family income U0+U1 = b0+b1 is maximized.

When the parent moves before the kid, the kid will set b01 = 0. In general, this does

not correspond to the parent’s first order condition (7). When the kid moves last, he will

maximize his own income instead of family income.

Now we shall see what happens when the kid moves before the parent. In stage two,

the parent will set the transfer y that maximizes W , according to (5). In stage one, the

kid sets the x that maximizes his income, taking into account that his action affects the

parent’s transfer:

dU1
dx
≡ dy
dx
+ b01 = 0 (8)

The value of dy/dx follows from the total differentiation of the parent’s first order

condition (5) with respect to x:

(W00 −W10)

µ
−dy
dx
+ b00

¶
= (W11 −W01)

µ
dy

dx
+ b01

¶
(9)

By the kid’s first order condition (8), the second term between brackets on the RHS

of (9) is zero. Thus, the second term between brackets on the LHS of (9) must be zero:

dy

dx
= b00

Substituting this into the kid’s first order condition (8), we see that it is equivalent to

the parent’s first best condition (7): the kid effectively maximizes family income.

Thus, the parent always reaches her first best when she moves after the kid. As Bern-

heim et al. [4] and Bergstrom [3] already noted, this result follows from the assumption

that there is only one commodity, namely income. The intuition, due to Bergstrom [3],
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is that when there is only one commodity, say income, we can identify payoff with in-

come. The kid cannot manipulate the price of his income in terms of the parent’s income,

because it is always unity. Then the parent and the kid agree that it is a good thing

to maximize aggregate income. It is clear that the parent will want to maximize family

income. However, as Becker [1] already notes, the kid will only want to maximize family

income if he benefits from that himself, i.e. if his payoff is a normal good to the parent.5

3 A general analysis

3.1 The model

In this section, we analyze a model with one altruistic agent and n selfish agents. We shall

see under which conditions the Samaritan’s dilemma and the rotten kid theorem hold.

There are n + 1 agents, indexed by k = 0, · · · , n. Agent 0 is the altruist and agents
i, i = 1, · · · , n, are the selfish agents. Agent i controls the variable xi. Agent 0 can
contribute to each agent i’s payoff Ui. This contribution is denoted by yi. Therefore,

∂Ui/∂yi > 0 for i = 1, · · · , n, and ∂Ui/∂yj = 0 for all j = 1, · · · , n, j 6= i, by definition.
There will be an upper and a lower bound to y = (y1, · · · , yn). The lower bound is

y = 0: agent 0 can only give to the other agents, she cannot improve her own payoff at

the expense of the others. The upper bound follows from the restriction that agent 0 only

has a limited amount of time, money, or whatever the nature of y, to give to the others.

The exact formulation of the upper bound depends on the nature of y. We shall assume

that neither the upper nor the lower bound are binding constraints on the equilibria.

Agent 0’s payoff has the form U0(y,x), which is continuous and twice differentiable,

with x = (x1, · · · , xn). Agent i’s payoff has the form Ui(yi,x), which is continuous and

twice differentiable with ∂2Ui/∂x
2
i ≤ 0. Each agent i, i = 1, · · · , n, maximizes his own

payoff. Agent 0, however, does not only care about her own payoff, but also about the

payoffs of all other n agents. Her objective function is W (U), continuous and twice

differentiable with U ≡ (U0, · · · , Un), Wk ≡ ∂W/∂Uk > 0, k = 0, · · · , n.
Let us now determine the first-best outcome for agent 0. We assume that the first

best is characterized by an interior solution. Thus, W should be concave in (y,x). Dif-

5A formal proof of this point in the general setup of Section 3 is available from the author.
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ferentiating W (U) with respect to yi, i = 1, · · · , n, we find the following n first order
conditions:

W0
∂U0
∂yi

+Wi
∂Ui
∂yi

= 0 (10)

Note that since W0,Wi > 0 and ∂Ui/∂yi > 0, we must have ∂U0/∂yi < 0 in the

optimum. Differentiating W (U) with respect to xi, i = 1, · · · , n, we find the following n
first order conditions:

nX
k=0

Wk
∂Uk
∂xi

= 0 (11)

Whatever agent 0’s precise preferences, her first best will always be on the payoff

possibility frontier PPF. Every element U∗ of the PPF is defined as:

U∗i (U
∗
−i) ≡ max

x,y
Ui s.t. U−i = U∗−i, i = 1, · · · , n (12)

where U−i ≡ (U0, · · · , Ui−1, Ui+1, · · · , Un). Let x∗ be an x vector that is associated with
a U∗, and X∗ the set of all x∗:

x∗(U∗) = argmax
x

Ui s.t. U−i = U∗−i (13)

X∗ ≡ {x∗(U∗)}

In the following, we shall study the effect of sequential moves. The agents i, i =

1, · · · , n, will always move simultaneously. In subsection 3.2, we see what happens when
agent 0 moves before agents i. In subsection 3.3, we analyze the case where the agents i

move before agent 0. We will derive the conditions for these sequences of moves to result

in agent 0’s first best for all W (U). The conditions will thus be on the payoff functions

U. We are looking for the necessary and sufficient local restrictions on U under which

the first order conditions of the subgame perfect equilibrium are equal to the first order

conditions (10) and (11) of agent 0’s first best. We shall assume that the second order

conditions, which involve a combination of restrictions on W (U) and U, are satisfied.

In our interpretation of the Samaritan’s dilemma and the rotten kid theorem, they do

not only have a positive side to them (agent 0 can reach her first best under one sequence

of moves), but also a negative side: Agent 0 cannot reach her first best under the other

sequence. In subsection 3.4, we give the formal definitions and state the conditions for

the Samaritan’s dilemma to apply and for the rotten kid theorem to hold.
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3.2 Agent 0 moves first

In this subsection, we derive the equilibrium for the game where agent 0 moves before

agents i, and we see when this equilibrium corresponds to the first best for agent 0. Thus,

we shall derive the condition for the positive Samaritan’s dilemma to hold:

Definition 1 The positive Samaritan’s dilemma states that agent 0 can reach her first

best when she moves in stage one and agents i, i = 1, · · · , n, move in stage two.

We assume an interior solution. The game is solved by backwards induction. In stage

two, each agent i, i = 1, · · · , n, sets the xi that maximizes his own payoff, taking yi and
all other xl, l = 1, · · · , i− 1, i+ 1, · · · , n, as given:

∂Ui
∂xi

= 0 (14)

In stage one, agent 0 sets the yi that maximize her objective function W (U), taking

into account that the agents i’s choices of xi depend upon her choice of yi:

W0
∂U0
∂yi

+Wi
∂Ui
∂yi

+
nX
k=0

Wk
∂Uk
∂xi

dxi
dyi

= 0

Substituting (14) and differentiating the ith condition (14) totally with respect to yi,

this can be rewritten as:

W0
∂U0
∂yi

+Wi
∂Ui
∂yi
−

nX
l=0
l 6=i

Wl
∂Ul
∂xi

∂2Ui/∂yi∂xi
∂2Ui/∂x2i

= 0 (15)

In general, the outcome will not be agent 0’s first best. We shall now see under which

condition agent 0 can reach her first best when she moves first.6

Condition 1 For all x ∈ X∗, all j = 1, · · · , n and all l = 0, · · · , n, l 6= j:
∂Ul
∂xj

= 0

Proposition 1 Given that all agents’ second order conditions are satisfied, the positive

Samaritan’s dilemma holds for all W (U) if and only if Condition 1 holds.

6All proofs are in the Appendix.

10



The intuition behind the result is straightforward. When selfish agent i moves last, he

does not take into account the effect of his action on any of the other agents’ payoffs. In

general, this can only result in the first best for agent 0 if agent i’s action does not affect

any other agent’s payoff,7 at least not on the margin. Then agent i takes the full effect of

his actions into account. There is no externality, and agent 0’s first best is implemented.

3.3 Agents i move first

In this subsection, we derive the equilibrium for the game where agents i move before

agent 0, and we see when this equilibrium corresponds to the first best for agent 0. Thus,

we shall derive the conditions for the positive rotten kid theorem to hold:

Definition 2 The positive rotten kid theorem states that agent 0 can reach her first best

when agents i, i = 1, · · · , n, move in stage one and agent 0 moves in stage two.

We solve the game by backwards induction, assuming an interior solution. In stage two,

agent 0 sets the yj that maximize her objective functionW (U), taking all xj, j = 1, · · · , n,
as given:

W0
∂U0
∂yj

+Wj
∂Uj
∂yj

= 0 (16)

Of course these conditions are identical to the first order conditions (10) for agent 0’s

first best with respect to yj.

In stage one, each agent i, i = 1, · · · , n, sets the xi that maximizes his own payoff,
taking the xl, l = 1, · · · , i− 1, i + 1, · · · , n, from the other n− 1 agents moving in stage
one as given, but realizing that his choice of xi affects agent 0’s choice of yi in stage two:

dUi
dxi
≡ ∂Ui

∂yi

dyi
dxi

+
∂Ui
∂xi

= 0 (17)

The values for dyj/dxi, j = 1, · · · , n, follow from the total differentiation of the n

conditions (16) with respect to xi. We shall write the total differential of (16) with

respect to xi in a compact manner that will prove useful later:

∂U0
∂yj

nX
k=0

W0k
dUk
dxi

+W0
d(∂U0/∂yj)

dxi
+

∂Uj
∂yj

nX
k=0

Wjk
dUk
dxi

+Wj
d(∂Uj/∂yj)

dxi
= 0 (18)

7This is the condition we already encountered in subsection 2.1.
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In general, the equilibrium conditions (17) and (18) for xi, i = 1, · · · , n, are not iden-
tical to the corresponding first order conditions (11) for agent 0’s first best. We shall now

see when they are. Let us first state an intermediate result.

Condition 2 Consider a marginal change in xi after which y is adjusted optimally ac-

cording to (16). Define

dU0
dxi

≡ ∂U0
∂xi

+
nX
j=1

∂U0
∂yj

dyj
dxi

(19)

dUj
dxi

≡ ∂Uj
∂xi

+
∂Uj
∂yj

dyj
dxi

(20)

for all i, j = 1, · · · , n. Then dUl/dxi = 0 when dUi/dxi = 0 for all x ∈ X∗ and for all
l = 0, · · · , n, i = 1, · · · , n, l 6= i.

Lemma 1 Given that the second order conditions are satisfied, the positive rotten kid

theorem holds for all W (U) if and only if Condition 2 holds.

Note the analogy with Proposition 1 from subsection 3.2. When agents i move last,

they set ∂Ui/∂xi = 0. This will result in agent 0’s first best for all W (U) if and only if

∂Ul/∂xi = 0 for all l 6= i. When agents i move first, they set dUi/dxi = 0. This will result
in agent 0’s first best for all W (U) if and only if dUl/dxi = 0 for all l 6= i.
Condition 2 is not a condition on the payoff functions yet. It requires agent 0 to set

all dUl/dxi = 0 and thus depends on agent 0’s behaviour.

Condition 3 X∗ consists of a single vector x̃.

Proposition 2 Given that the second order conditions are satisfied, the positive rotten

kid theorem holds for all W (U) if and only if Condition 3 holds.

We can say that the price of an agent i’s payoff along the PPF should be constant

and beyond manipulation by agent i. Then we can aggregate all payoffs using these

prices and refer to aggregate payoff as income I(x), as defined in (??). The agents i will

maximize income and agent 0 will redistribute income. In the terminology of Monderer

and Shapley [21], Condition 3 turns the game into a potential game, where all agents

i = 1, · · · , n maximize the ordinal potential function I(x).
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Figure 1: Intersecting Utility Possibility Curves

Figure 1 illustrates what goes wrong when a selfish agent can influence the price of his

payoff or equivalently, when the PPF consists of multiple UPCs. Point A is agent 0’s first

best. It is reached when the single selfish agent 1 selects the action xA that implements

UPCA. Let UPCA be the anchor according to Definition ??, so that it is a straight line.

Now suppose agent 1 can decrease the price of his own payoff, either by increasing or

decreasing his x. For instance, when agent 1 chooses xB, the resulting UPCB is flatter

than UPCA, lies everywhere below agent 0’s first-best indifference curve IA and intersects

UPCA so that the PPF does not consist of UPCA alone. At the point where UPCB

comes closest to IA, U1 is higher and U0 is lower than in A, because UPCB is flatter than

UPCA. Then U1 will also be higher in point B, where agent 0’s indifference curve IB

is tangent to UPCB. Agent 1 will prefer implementing UPCB to UPCA, because U1 is

higher in point B on UPCB than in point A on UPCA.
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3.4 Conditions for Samaritan’s dilemma and rotten kid theorem

There are two alternative definitions for the Samaritan’s dilemma and the rotten kid

theorem, applied to agent 0’s first best. The positive definition of the Samaritan’s dilemma

(the rotten kid theorem) is: agent 0 can reach her first best when she moves first (last).

In subsections 3.2 and 3.3, we have already defined the positive versions of Samaritan’s

dilemma and rotten kid theorem and derived the conditions for them to hold.

The second definition of the Samaritan’s dilemma (the rotten kid theorem) also in-

cludes a negative side: agent 0 can reach her first best when she moves first (last), but

not when she moves last (first). This is the definition we adhere to in this paper. We

shall now formally define the Samaritan’s dilemma and the rotten kid theorem:

Definition 3 The Samaritan’s dilemma states that agent 0 can reach her first best when

she moves in stage one and agents i, i = 1, · · · , n, move in stage two, but not when agents
i move in stage one and agent 0 moves in stage two.

Definition 4 The rotten kid theorem states that agent 0 can reach her first best when

agents i move in stage one and agent 0 moves in stage two, but not when agent 0 moves

in stage one and agents i, i = 1, · · · , n, move in stage two.

For the Samaritan’s dilemma, we can simply take our Conditions 1 and 3:

Proposition 3 Given that all agents’ second order conditions are satisfied, the Samari-

tan’s dilemma holds for all W (U) if and only if Condition 1 holds and Condition 3 does

not hold.

For the rotten kid theorem, the analysis is somewhat more complicated. Agent 0

can reach her first best when she moves first for any Wk > 0 if all ∂Ul/∂xj = 0, j =

1, · · · , n, l = 0, · · · , n, l 6= j (Condition 1). But under Condition 3, which ensures that
agent 0 can reach her fist best when she moves last, substituting (??) into (10) reveals

that all Wk are equal in the first best. Then agent 0 can reach her first best when she

moves first if all
P

l ∂Ul/∂xj = 0. We don’t need ∂Ul/∂xj = 0 for all l, as long as the sum

is zero.8

8Obviously, Conditions 1 and 4 only differ for n > 1.
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Condition 4 Given that Condition 3 holds:

nX
l=0
l 6=i

∂Ul
∂xi

= 0

for x = x∗ and all i = 1, · · · , n.

Proposition 4 Given that all agents’ second order conditions are satisfied, the rotten kid

theorem holds for all W (U) if and only if Condition 3 holds and Condition 4 does not

hold.

4 Pareto efficiency

Whereas we have stated the Samaritan’s dilemma and the rotten kid theorem in terms

of agent 0’s first best, an alternative and often used formulation is in terms of Pareto

efficiency.9 In this section we shall examine the links between the two formulations.

It is clear that agent 0’s first best is a Pareto optimum, since any other allocation

would make her worse off. The interesting question is: When agent 0 cannot reach her

first best when she moves last (first), does this imply that the outcome is not Pareto

efficient either?

Let us first establish the relation between agent 0’s first best and Pareto efficiency

in general. With equation (12) in subsection 3.1, we have already defined the payoff

possibility frontier PPF . This definition implies:

Lemma 2 For each allocation U∗ on the Payoff Possibility Frontier (PPF), dU∗k/dxi = 0

is feasible for all k = 0, · · · , n, and all i = 1, · · · , n, where dU0/dxi and dUj/dxi, j =
1, · · · , n, are defined by (19) and (20) respectively.

The idea behind this lemma is the following. Consider a marginal change in xi, after

which agent 0 adjusts y to compensate all agents j: dUj/dxi = 0 for all j = 1, · · · , n. After
this compensation, U0 should also be back at its original level: dU0/dxi = 0. Otherwise,

U0 can be increased while all Uj, j = 1, · · · , n, remain the same.
9Bergstrom ([3], p. 1146) identifies the altruist’s first best with “the” Pareto optimum, neglecting the

fact that there is a whole range of Pareto optima.

15



If agent 0 were selfish, then all allocations on the PPF would be Pareto efficient.

However, when agent 0 is an altruist, a Pareto improvement from some allocations on the

PPF may be possible. This would be the case if an increase in yi, which obviously raises

Ui, would also increase the value of agent 0’s objective functionW . Let us now define the

Altruistic Payoff Possibility Frontier APPF as that part of the PPF from which Pareto

improvements are impossible:

Definition 5 UA∗ is an element of agent 0’s Altruistic Payoff Possibility Frontier (APPF)

if and only if it is an element of the PPF and dW (UA∗)/dyi ≤ 0 for all i = 1, · · · , n.

Lemma 3 All allocations and only the allocations UA∗ are Pareto efficient.

In our continuous version of the Samaritan’s dilemma in subsection 2.1, the sequence

where the parasite moves first does not lead to a Pareto optimum. The parasite does not

work hard enough, because a higher work effort would decrease the Samaritan’s donation.

Given the Samaritan’s donation, however, the parasite could increase his own payoff and

the Samaritan’s objective function by working harder. We will now see that this result

holds in general. Intuitively, the reason why a Pareto-efficient allocation is not agent 0’s

first best is that agent 0 does not like the payoff distribution. However, when agent 0

moves last, she determines the payoff distribution. Then, when the allocation is Pareto-

efficient, it must be agent 0’s first best.

Proposition 5 In the game where agents i, i = 1, · · · , n, move in stage one and agent 0
moves in stage two, the outcome is Pareto efficient if and only if it is agent 0’s first best.

In our continuous version of the rotten kid theorem (subsection 2.2), when the parent

cannot reach her first best when she moves first, the outcome is not Pareto efficient either.

Pareto efficiency requires the kid to maximize family income, but the kid will maximize

his own income instead. We shall now see that this result can only be generalized partially.

Proposition 6 Consider the game where agent 0 moves in stage one and agents i, i =

1, · · · , n, move in stage two. The outcome is Pareto efficient if and only if it is agent 0’s
first best when:
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1. n = 1, and/or:

2. agent 0 can reach her first best for all W (U) when agents i, i = 1, · · · , n, move in
stage one and agent 0 moves in stage two.

Otherwise, the resulting allocation U is a Pareto optimum if and only if it is on agent

0’s APPF according to Definition 5.

5 Bergstrom’s rotten kid game

5.1 Introduction

The present paper is not the first to have derived conditions for the rotten kid theorem to

hold. Bergstrom [3] and Cornes and Silva [11] have previously derived a condition from

a more specific model than ours. In this model, the altruist distributes a certain sum of

money among the selfish agents. The total amount of money available may depend on

the selfish agents’ actions. In this setup, it would be somewhat contrived to study the

sequence where the altruist moves first. Accordingly, Bergstrom [3] (at least in his formal

model) and Cornes and Silva [11] limit their attention to the positive rotten kid theorem

as defined in our Definition 2.

In subsection 5.2, we shall present Bergstrom’s [3] solution for the positive rotten kid

theorem. We shall see that as his maximization problem for the altruist is a special case

of our more general problem, his payoff condition is an accordingly special version of our

payoff condition. In subsection 5.3, we shall discuss Cornes and Silva’s [11] condition for

the positive rotten kid theorem to hold in Bergstrom’s [3] model. We shall see that this

condition does not carry over to our own more general model and that there are no further

solutions to our or Bergstrom’s [3] model.

5.2 Bergstrom’s solution

In this subsection, we shall discuss Bergstrom’s [3] conditions for the positive rotten kid

theorem. His condition on the payoff functions is slightly different from our Condition 3.

The difference can be traced to differences in the altruist’s maximization problem. We

shall also discuss the differences in the additional conditions and their derivation.
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In Bergstrom’s [3] model,.the role of the altruist is limited to the distribution of a

certain amount of money. We shall move from our model to Bergstrom’s [3] in two steps.

First, let us derive the condition for the positive rotten kid theorem in case agent 0’s

objective function includes U0, but y is restricted to “money”. The relevant property of

money in this context is the following:

Definition 6 When y is money, agent 0’s payoff depends on how much she does on

aggregate for all other agents, but not on the distribution of this total amount among the

agents. Then the altruist’s payoff U0(y,x) is given by U0(y0,x) with y0 ≡ −
Pn

i=1 yi.

Applying Definition 6 of money to our payoff condition (??), we find ∂U0/∂y0 =

∂Ui/∂yi, which results in payoff functions of the form:

Uk = A(x)yk +Bk(x) (21)

The second and final step from our framework to Bergstrom’s [3] is to exclude U0

from agent 0’s objective function and to introduce a budget constraint for y0. Agent 0’s

maximization problem is now:

max W (U1(y1,x), · · · , Un(yn,x)) s.t.
nX
i=1

yi = y(x) (22)

This restriction does not result in a further restriction on the payoff functions. Thus,

the positive rotten kid theorem holds for all W (U) and all y(x) if and only if Uk has the

form (21) for k = 1, · · · , n. This is exactly the condition that Bergstrom [3] derives for

the positive rotten kid theorem.

It should be noted that the difference between Bergstrom’s condition (21) and our

Condition 3 is irrelevant when agent 0 moves last. This is the sequence that we are

primarily interested in. In fact, as we have argued above, this is the only sequence one

can meaningfully study in Bergstrom’s maximization problem (22).

The intuition behind the equivalence of conditions (21) and 3 when agent 0 moves last

is the following. The positive rotten kid theorem holds if there is only one good, which

we might call money. Bergstrom [3] assumes from the outset that y is money, whereas

we have not restricted the nature of y. However, when the positive rotten kid theorem

holds, y must be money. Thus, the a priori restriction of y to money does not bind.
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Figure 2: The importance of money

Let us now look at the additional conditions for the positive rotten kid theorem.

Bergstrom’s [3] Proposition 3 states that when the positive rotten kid theorem holds,

all Ui are normal goods and money is important enough, then payoff functions have the

form (21). The assumption of normal goods is necessary for the second order conditions

to hold in our framework as well, but we have not encountered anything resembling

the condition that money is important enough. The rationale behind this condition is

illustrated in Figure 2. Consider parallel UPCs with UPCA the outermost curve. The

highest attainable value of U0 on UPCA is UA0 . On UPCB however, U0 can rise above U
A
0 .

Money is not important enough to raise U0 above UA0 on UPCA. In this case, the PPF

consists of more than one UPC, although the UPCs are parallel. This creates a problem

for the altruist with indifference curve IB whose first best is point B on UPCB. Agent

1 will not implement UPCB, because when he sets UPCA, agent 0 will choose point A

with higher U1 than point B. We have implicitly excluded this problem by assuming that

equilibria are always characterized by internal solutions. In Figure 2, the equilibrium A
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of the game is a corner solution, because the altruist’s indifference curve is not tangent

to UPCA.

Finally, there is a difference in approach. Bergstrom [3] mentions the trade-off between

restricting W and restricting U, suggesting that the normal good assumption is a very

mild restriction on W . Unlike Bergstrom, we formally derive the payoff condition from

the requirement that the first order conditions for the game and the altruist’s first best

should coincide.10

5.3 Cornes and Silva’s solution

In subsection 5.2, we have seen that Bergstrom’s [3] own condition (21) for the positive

rotten kid theorem in his game is a special case of our Condition 3. Cornes and Silva [11]

recently found another and completely different condition for the positive rotten kid the-

orem to hold in Bergstrom’s [3] framework. Under this condition, all kids contribute to a

pure public good. The reason why Cornes and Silva [11] could find an additional condition

is that they, unlike Bergstrom [3], have put a restriction on the budget constraint.

In this subsection we discuss Cornes and Silva’s [11] result in the light of our own

analysis, demonstrating why it does not carry over to our more general framework. We

shall also argue that there are no additional conditions under which the rotten kid theorem

holds for all W (U), neither in Bergstrom’s [3] framework, nor in our more general setup.

In the notation of this paper, Cornes and Silva’s [11] model can be described as follows.

Agent i, i = 1, · · · , n, only affects the others through his contribution xi to a pure public
goodX ≡Pn

i=1 xi. Agent i has to decide how much xi of his initial exogenous endowment

mi to contribute to the pure public good. The rest of the endowment plus the transfer ti

from agent 0 is available for consumption yi of the private good. Agent 0’s budget is zero:Pn
i=1 ti = 0, so that she will also take away from some agents: ti < 0 is feasible. Agent

0’s budget constraint can also be written as
Pn

i=1 yi =M −X, with M ≡
Pn

i=1mi.

The difference between Bergstrom’s [3] and Cornes and Silva’s [11] condition is that

Bergstrom’s [3] condition works for all W (U) and all y(x), whereas Cornes and Silva’s
10Bergstrom [3] restricts the proof of his Proposition 3 to the case of two kids “where the geometry

allows an easy, intuitive proof. Extension to higher dimensions is not difficult, but the exposition is
tedious.” ( [3], p. 1153) We hope our formal exposition is less tedious than the one that Bergstrom [3]
had in mind.
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[11] condition works for allW (U), but with a restriction y(x) = y(
Pn

i=1 xi) on the budget

constraint. Intuitively, for the rotten kid theorem to hold, agent 0 must react in the same

way to any change in x, setting dUk/dxi = 0 for all k = [0, 1] , · · · , n and all i = 1, · · · , n.
The Cornes and Silva [11] solution achieves this standardization by defining xi as agent

i’s contribution to the pure public good X. In our solution, the standardization follows

from the fact that all agents i contribute to aggregate income I as defined by (??).11

Cornes and Silva [11] only show that the pure public good case is sufficient for the

positive rotten kid theorem to hold in Bergstrom’s [3] framework. They do not address

the issue whether there might still be more solutions. We shall now see that there are no

additional solutions to Bergstrom’s [3] problem.

First, let us briefly present the derivation of Bergstrom’s [3] own solution with our

method from subsection 3.3. Analogous to Lemma 1, dUj/dxi = 0 must hold for all

i, j = 1, · · · , n for the rotten kid theorem to apply for all W (U). The agents i set

dUi/dxi = 0 themselves. We need conditions on U to make sure that agent 0 will set

dUl/dxi = 0 for all other l, i = 1, · · · , n, l 6= i. These conditions are (21).
How can we possibly find an additional payoff condition for all W (U)? Obviously,

this condition should also yield dUl/dxi = 0 for all l, i = 1, · · · , n, l 6= i. In deriving

condition (21), we have assumed that agent 0 would have to set all dUl/dxi = 0 herself.

Alternatively, we could impose some restrictions R on the payoff functions Ui(yi,x) so

that dUi/dxi = 0 automatically implies dUl/dxi = 0 for some (but not all) l, i = 1, · · · , n,
l 6= i. However, it can be shown that as long as agent 0 still has to set some dUl/dxi = 0
herself, the payoff condition will simply be (21) with restrictions R.

The only option left is then to impose that when agent i sets dUi/dxi = 0, this should

automatically imply dUi/dxl = 0 for all l, i = 1, · · · , n, l 6= i. This will be the case if and
only if we can defineX ≡Pn

i=1 xi. Then the payoff functions become Ui(yi,x) = Ui(yi, X)

and the resource constraint turns into y(x) = y(X). The n2 conditions dUi/dxj = 0, i, j =

1, · · · , n, for implementation of agent 0’s first best reduce to n conditions dUi/dX = 0.

Agents i’s first order conditions are also dUi/dX = 0.

Without loss of generality, we can specify y(X) =M −X. Then we have reproduced
11One could also argue that aggregate income is a public good: All agents k, k = 0, · · · , n, benefit from

an increase in aggregate income, since all agents i’s, i = 1, · · · , n, payoffs are normal goods to agent 0.
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Cornes and Silva’s [11] pure public good case.

Following the above reasoning, it is clear why Cornes and Silva’s [11] condition does

not carry over to our more general framework. In the pure public good case where

X ≡ Pn
i=1 xi, the agents i, i = 1, · · · , n, will set dUi/dX = 0. However, this is not

sufficient. We still have to make sure that agent 0 will set dU0/dX = 0. She will do this if

and only if the payoff functions satisfy Condition 3 with x replaced byX ≡Pn
i=1 xi. Thus,

it is impossible to find any solution other than Condition 3 in the general framework.

We conclude that an additional solution for the positive rotten kid theorem can only

exist when agent 0 does not have to set any dUk/dxi = 0 herself. In our general framework

this is not feasible, but in Bergstrom’s [3] more restricted setup, it is. The additional

solution in Bergstrom’s [3] setup is exactly Cornes and Silva’s [11] pure public good case.

6 Conclusion

For twenty-five years, the Samaritan’s dilemma (Buchanan [7]) and the rotten kid theorem

(Becker [1] [2]), with their mutually exclusive claims, have coexisted in the economic

theory of altruism. This paper has been the first to analyze the conditions on the payoff

functions under which either result holds for any altruistic objective function. We have

seen that the altruist can reach her first best when she moves first if and only if a selfish

agent’s action does not affect any other agent’s payoff in the optimum. Then there are no

externalities to the selfish agents’ actions. The altruist can reach her first best when she

moves last if and only if there is just one commodity involved. Then the selfish agents

cannot manipulate the altruist’s trade-off between her own and the selfish agents’ payoffs.

The selfish agents will maximize the aggregate amount of the single commodity and the

altruist will redistribute the commodity.

The theory of altruism can also be applied to government policy. The link between

these two fields of research is that the government can be regarded as an altruist, when

it maximizes social welfare or any other objective function that depends positively on

the payoff of some other player. Thus, the theory of altruism can contribute to our

understanding of when collective and individual interests coincide (Shapiro and Petchey

[25], Munger [22]). Under the conditions of the Samaritan’s dilemma, the government can
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reach the optimum if and only if it can commit to a certain policy. If the Samaritan’s

dilemma does not apply, commitment does not result in the first best. The government

may then be better offwith a time-consistent policy. Under the conditions of the rotten kid

theorem, the time-consistent policy even results in the first best. Starting with Kydland

and Prescott [17], most analyses of time consistency have used a more complicated setup

than ours.12 However, a general framework for the study of time consistency issues is still

lacking. Our simple model of altruism would be a useful starting point for the development

of such a framework (Dijkstra [14]).

7 Appendix

Proof of Lemma 1. Since agent 0 moves last, the first order conditions (10) for agent 0’s

first best with respect to y are satisfied. Substituting (10) into the first best conditions

(11) for x, we can rewrite them as:

nX
k=0

Wk
dUk
dxi

= 0 (23)

for all i = 1, · · · , n, where dUk/dxi, k = 0, · · · , n, is defined by (19) and (20).
In the equilibrium of the game, agent i, i = 1, · · · , n, sets dUi/dxi = 0. This will result

in the first best condition (23) for all Wk > 0, k = 0, · · · , n, if and only if dUi/dxi = 0
implies dUl/dxi = 0 for all i = 1, · · · , n, l = 0, · · · , n, l 6= i in agent 0’s first best,

characterized by x ∈ X∗. This is Condition 2.
Proof of Proposition 1. Combining Condition 1 with agents i’s first order conditions

for the maximization of Ui (14), we obtain the first best conditions for x (11). Substituting

Condition 1 into agent 0’s first order conditions for the maximization ofW (15), we obtain

the first best conditions for y (10). This proves the “if” part. The “only if” part follows

from the requirement that (14) and (15) should turn into (11) and (10) for all values of

Wk > 0. This is only possible when Condition 1 holds.

Proof of Proposition 2. By Lemma 1, dUk/dxi = 0, k = 0, · · · , n, i = 1, · · · , n, must
hold in agent 0’s first best. Substituting this into the derivative of agent 0’s reaction

12Dijkstra [13] offers a straightforward application of the Samaritan’s dilemma to time consistency.
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function (18), the first and third term on the LHS of (18) drop out. This leaves:

W0
d(∂U0/∂yj)

dxi
+Wj

d(∂Uj/∂yj)

dxi
= 0

Substituting agent 0’s first order conditions (16) for y, this becomes:

d
³
∂U0
∂yj

´
/dxi

∂U0/∂yj
=
d
³
∂Uj
∂yj

´
/dxi

∂Uj/∂yj
(24)

Agent 0 can reach her first best for all W (U) when she moves after agents i if and

only if (24) holds for all i, j = 1, · · · , n in agent 0’s first best. For a given x ∈ X∗, define

the Utility Possibility Contour as the set of all feasible U. The slope of the UPC in

dimension j represents the tradeoff between U0 and Uj:

dU0
dUj
≡ ∂U0/∂yj

∂Uj/∂yj

Condition (24) implies that a marginal change in xi, which leads to a different UPC,

produces a UPC with the same slope:

d (dU0/dUj)

dxi
= 0

Since all UPCs on the PPF are parallel, UPCs on the PPF do not intersect, and

there can only be one UPC implementing the whole PPF.

Proof of Proposition 5. The “if” part is obvious. With respect to the “only if” part,

note that agent 0 maximizes W with respect to y according to (10) in stage two:

W0
∂U0
∂yj

+Wj
∂Uj
∂yj

= 0

By Lemmas 2 and 3, there exist dyj/dxi for all i = 1, · · · , n such that a Pareto
optimum satisfies:

W0

Ã
∂U0
∂xi

+
nX
j=1

∂U0
∂yj

dyj
dxi

!
+

nX
j=1

Wj

µ
∂Uj
∂xi

+
∂Uj
∂yj

dyj
dxi

¶
= 0

Substituting (10), this becomes:

nX
k=0

Wk
∂Uk
∂xi

= 0
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These are (11), the first order conditions for W with respect to x. Thus, all first best

conditions are satisfied and the allocation is agent 0’s first best.

Proof of Proposition 6. In Case 1, by Lemmas 2 and 3, U can only be Pareto efficient

if dU0/dx = dU1/dx = 0 is feasible. For dU1/dx, we find:

dU1
dx

=
∂U1
∂x

+
∂U1
∂y

dy

dx
=

∂U1
∂y

dy

dx

The second equality follows from the fact that agent 1 sets ∂U1/∂x = 0 in stage two.

Thus, dU1/dx = 0 implies dy/dx = 0. Then for dU0/dx:

dU0
dx

=
∂U0
∂x

+
∂U0
∂y

dy

dx
=

∂U0
∂x

Thus, dU0/dx = dU1/dx = 0 is feasible if and only if ∂U0/∂x = 0. But then Condition

1 is satisfied and U is agent 0’s first best.

In Case 2, Condition 3 holds by Proposition 2. This means that the x∗ that implements

agent 0’s first best implements the whole PPF . When agent 0 moves first, x 6= x∗, because
she cannot reach her first best. Then the allocation is not on the PPF . By Lemma 3,

when an allocation is not on the PPF , it is not Pareto efficient either.
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