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Abstract

This paper proposes a structural break threshold model (SBT) to the dynamic relation-

ship between US output growth and the spread between long- and short-term interest rates.

This model is able to account for non-linearities, parameter changes and the reduction of

the variability of output growth. The SBT model gives better in-sample predictions of

the probability of US recessions during 1955-1999 than models with only non-linearity or

structural breaks. The presence of a structural break affects the timing and the size of the

predictions of the probability of recession for 2001.

Key words: predictions of event probabilities, threshold models, structural breaks, reces-

sions;

1 Introduction

Economic forecasters do not enjoy a good reputation when the prediction of US recessions is

concerned: “the dismal scientists have a dismal record in predicting recessions”(Don’t Mention

the R-word, 2001). The problem is that recessions are relatively rare events with large potential

consequences for individuals and companies. Better predictions of recessions can help monetary

authorities and the private sector to take economic decisions not only in the US but also in

countries that are likely to suffer the effects of the US recession. The main contribution of

this paper is to propose a model for predicting the probability of recession that accounts for

non-linearity and structural breaks when the spread between long- and short-term interest rates

is the leading indicator.

The literature presents evidence that the spread, which represents the term structure of

interest rates, is a good predictor of output growth (Estrella and Hardouvelis, 1991; Hamilton

and Kim, 2000; and the surveys of Berk (1998) and Stock and Watson (2001)). The information

∗The results of this paper are based on my doctoral research at University of Warwick. I would like to thank
Mike Clements and Bill Russell for useful suggestions and Capes-Brazil for their financial support.
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contained in the spread reflects not only monetary policy but future expected short rates and

changes in the risk premium (Hamilton and Kim, 2000). In fact, the spread keeps its predictive

power when other indicators of monetary policy (Anderson and Vahid, 2000) and oil prices

(Hamilton and Kim, 2000) are included in a regression to explain output growth. The spread

is also a good predictor of the probability of recession (Lahiri and Wang, 1996; Estrella and

Mishkin, 1998).

However, Haubrich and Dombrosky (1996), Dotsey (1998) and Stock and Watson (2001)

report that the predictive power of the spread between long- and short-term interest rates

has decreased after 1985. The failure of the Stock and Watson (1989) indicator index to

predict the 1990-91 recession has been attributed to the fact that the index gave too large

weight to the spread (Dotsey, 1998). In contrast, employing Markov-switching models to obtain

the probability of recession, Lahiri and Wang (1996) show that the spread predicted the last

recession. Likewise, Dueker (1997) and Estrella and Mishkin (1998), using probit, demonstrate

that the spread is still better than other leading indicators at predicting recessions in the US.

The tests presented by Estrella et al. (2000) support the view that while there is no instability in

the ability of the spread to predict recessions, the ability of the spread to predict the economic

growth is unstable. Recently, Chauvet and Potter (2001) contest these results with findings of

parameter instability in probit models.

The literature also presents evidence of non-linearities in models that use the spread to

predict output growth (Galbraith and Tkacz, 2000; Anderson and Vahid, 2000). The inclusion

of non-linearities improves the accuracy of predicting the probability of recession (Anderson and

Vahid, 2000), while large spreads do not predict strong growth (Galbraith and Tkacz, 2000).

Regarding changes in the output growth series, an important stylized fact is that the vari-

ability of output growth decreased after 1984 (Kim and Nelson, 1999; McConnell and Perez-

Quiros, 2000). Regarding interest rates, Watson (1999) suggests that the variability of the US

long-term interest rate has been increasing while the short-term interest rate is smoothed by the

monetary authority. However, the results of the tests applied by Sensier and Van Dijk (2001)

indicate that while there is evidence of structural break in short- and long-term interest rates,

the evidence of a structural break in their spread is not strong.

Therefore, the literature suggests that a linear model between output growth and spread is

not a good representation of the dynamic responses between these variables because of param-

eter instability (Estrella et al., 2000; Stock and Watson, 2001), non-linearities (Galbraith and

Tkacz, 2000; Anderson and Vahid, 2000) and changes in the variability of the output growth

(Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000). We show in this paper that a

structural break threshold model can account for these characteristics and can be employed to

generate better predictions of the probability of recession.

Section 2 reviews and estimates threshold and structural break models. Testing, modelling

and estimation of structural break threshold models are presented in section 3. Section 4 shows

how stochastic simulation can be employed to obtain probability of recessions from bivariate
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Figure 1 Spread (between the interests rates of a 10-year T-bond and a 3-month T-bill) and
the growth rate of the real GDP.

systems, using two rules to define recessions. The evaluation of the in-sample probability

forecasts is also presented in section 4. Section 5 presents the forecast of the probability of

recession for 2001, compared with similar predictions from the Stock and Watson leading index,

the Survey of Professional Forecasters and the probit models of Chauvet and Potter (2001).

Section 6 summarizes the main findings of this paper and concludes.

2 Modelling Structural Breaks and Thresholds

Before proposing a structural break threshold model, we review threshold and structural break

models, including results of their application to bivariate systems of spread and output growth.

All the calculations of this paper are based on data taken from the Federal Reserve Bank at

St Louis (http://www.stls.frb.org /fred/index.html). The spread is the difference between the

interest rate of a 10-year T-bond and a 3-month T-bill, averaging to transform monthly into

quarterly interest rates. The output growth is the first difference of the log of quarterly real

GDP (seasonally adjusted) in chained 1996 prices (*100). The data set presented in Figure 1

regards the full sample from 1953:2 to 2000:4. For the models and tests discussed in this section,

only data until 1999:4 are employed. Using information criteria and LR tests, we define the

autoregressive order of each endogenous variable. The chosen autoregressive order of the VAR

described in the Appendix is kept for the other models discussed in this paper.

Threshold non-linearity or structural breaks can be included in a bivariate VAR of the

spread St and the output growth yt as follows:

yt = xt−1β1(1− I1(.)) + xt−1β2(I1(.)) + u1t
St = xt−1β3(1− I2(.)) + xt−1β4(I2(.)) + u2t,
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where t = 1, ..., T ; xt−1 = (1, yt−1, ..., yt−p1, St−1, ..., St−p2)0; and Ii(.) is a transition function,

which is an indicator function. If the non-linear functions I1(.) and I2(.) are the same for each

equation of the model, we suppose that cov(u1t, u2t) 6= 0. Given that the explanatory variables

of each equation are the same (xt−1), the model is a generalization of a VAR model. However,

to predict output growth using spread, and specifically recessions, we can relax the assumption

that I1(st−d1) = I2(st−d2), given that cov(u1t, u2t) = 0. In this case, each equation can be seen

as a non-linear regression.

2.1 Threshold Models

In the case of threshold models, the indicator function depends on the transition variable

s, the delay di and the threshold ri, i.e., Ii(st−di) = 1 when st−di > ri and Ii(st−di) = 0

when st−di ≤ ri. The threshold is estimated by grid search over all possible threshold values

r ∈ [rL, rU ]. The upper and the lower values of this interval are calculated as follows. The

values (t = 1, ..., T ) of the transition variable are sorted and a proportion π of the observations

is trimmed in each end with 0 < π < 1. The delay is jointly estimated with the thresholds

(by grid search) given that dL = 1 and dU = dmax. Conditional on the threshold value, the

delay and the autoregressive order, the threshold regressions are estimated by OLS, assuming

that the residuals are not contemporaneously correlated. In the case that each equation has

the same transition function, the model is estimated by multivariate least squares, conditional

on the threshold value, using the grid search procedure described to estimate the threshold and

the delay.

The test for linearity against the alternative hypothesis of a threshold regression does not

have a conventional asymptotic distribution (Hansen, 1996) and the statistic is defined as the

maximum of a set of F statistics which are calculated for comparison between the linear model

and the threshold model for each possible value of the threshold1. The supF statistic is the

maximum F statistic obtained in a search over possible thresholds and delays. The p-value of

this test is calculated using the asymptotic results of Hansen (1996). Hansen (2000a) argues

that a bootstrap is a better approximation for finite samples, but his bootstrap approach implies

being able to simulate values of yt and St, which is not possible when we test each equation

separately even though it is possible when a VAR is considered.

The threshold non-linearity test is also conducted in the VAR, applying a LR test. This

test has been proposed by Clements and Galvão (2001) in the context of non-linear cointe-

grated systems and it is a multivariate extension of Hansen (1996; 2000a). Given the estimated

variance-covariance matrices (Ω̂j) of the residuals (u1t, u2t)0, the supLR for testing non-linearity

1Averages and exponentials, instead of the maximum have also been proposed by Hansen (1996). The results
of the tests of this section do not change when other transformations of the F statistic are employed.
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with a two-regime threshold model under alternative is

supLR12 = max
rL≤r≤rU
dL≤d≤dU

(T (det(Ω̂1)− det(Ω̂2))), (1)

where j = 1 is the index for the linear model, j = 2 is the index for a two-regime threshold

model. A test of a two-regime against a three-regime threshold model is also performed using

this same type of test (LR23). The p-value of the LR test is calculated using heteroscedasticity

corrected bootstrap2.

The results of the non-linearity tests are presented in Table 1, panel 1. Only the statistics

correspondent to the transition variable that minimizes the sum of squared residuals (or the

log of the determinant of the contemporaneous covariance matrix in the case of the TVAR)

are presented, even though they are calculated for all the variables of the vector of explanatory

variables xt−1 = (1, yt−1, yt−2, St−1, St−2, S−3)0 for the regressions and for dU = 5 with the

spread as transition variable for the system. The results support non-linearity, although the

robust statistic for the output equation does not reject the null of non-linearity at 5% significance

level but it does at 10%. We also use the LR23 for verifying the possibility of a third regime and

the test cannot reject the null hypothesis (p-value of .22). Therefore, two different specifications

are suggested by these tests: a two-regime threshold model (T) with different transition function

for each equation and a two-regime threshold VAR model with the same transition function for

each regimes (TVAR), which are described in the Appendix.

2.2 Structural Break Models

Structural break models have t as transition variable and the threshold is the change-point τ ,

so Ii(t) = 1 when t > τ and equal to zero otherwise. Even though the change-point can be

employed to calculate the variance (and covariance) of the residuals σuit conditional on the sub-

samples, models with structural breaks that arise in the variance equation can be also defined.

For example, assuming that the equation of the mean is linear, structural break in the equation

of the variance can be written as:

σ2uit = σ2BI(t) + σ2A(1− I(t)), (2)

where i = 1 indicates the yt equation and i = 2, the St equation, so u1t are the residuals of the

equation of the output growth.

Testing structural breaks in the mean and the variance for unknown break points implies

the presence of a nuisance parameter under the null hypothesis. Hansen (2001) presents an

up-to-date literature review on the advances in this area. The standard test for one structural

2For the LR12 test, the residuals of the linear model are standardized by the fitted values of a regression of
the squared of the errors on x2t−1. For the LR23 test, the bootstrap assume that the errors of the two-regime
model are regime-dependent.
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Table 1 Tests for structural breaks and non-linearities.
Alternative Hypothesis output spread both

1
Threshold

non-linearities

22.28

(0.021)

[0.086]

46.53

(0.000)

[0.042]

61.35

{0.002}

Transition variable St−1 St−1 St−4

2 SB in mean

26.12

(0.006)

[0.011]

{0.024}

25.88

(0.007)

[0.011]

{0.150}

28.33

{0.153}

Break Date 1959:2 1981:1 1980:4

3 SB in variance

23.47

(0.001)

[0.001]

{0.005}

12.40

(0.007)

[0.013]

{0.158}

Break Date 1983:2 1966:1

4
SB in mean

in threshold model

33.402

(0.025)

[0.043]

{0.038}

45.869

(0.000)

84.440

(0.000)

Break Date 1960:1 1980:4 1980:4

5
SB in variance

in threshold model

19.194

(0.000)

[0.020]

{0.051}

13.513

(0.004)

[0.066]

{0.331}

Break Date 1984:1 1966:3

Note: The statistics are supF when regressions and supLR for the system.

Test in panel (1) uses homoscedastic ( ) and heteroscedastic [ ]

asymptotic p-values. Tests in panels (2), (3), (4), (5) have p-values

calculated by an asymptotic distribution ( ) and by fixed

regressors bootstrap assuming homoscedasticity[ ] and

heteroscedasticity { } of the residuals under the null.

π=.1. Number of bootstrap.: 1000.
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break is the supLR, proposed by Andrews (1993). The idea is to calculate the LR statistic for

all possible structural breaks, given that τ ∈ [τL, τU ], where τL = πT and τL = (1−π)T 3. Then

the maximum LR value over [τL, τU ] is the test statistic4 and the associated τ̂ is the estimated

change-point. The test is equivalent to the test for threshold non-linearity with the difference

that xt−1 is ordered chronologically rather than ranked by the threshold value.

The p-values can be calculated numerically by the Hansen (1997) procedure, given the

number of restrictions and the trimming factor π. Hansen (2000b) shows that a fixed regres-

sor bootstrap works better than the asymptotic values in small samples. The residuals can

be corrected for heteroscedasticity before they are bootstrapped to generate values of the en-

dogenous variable. Therefore, in addition to the asymptotic p-values, fixed regressor bootstrap

(Hansen, 2000b) is also employed to calculate p-values and heteroscedastic corrected p-values5.

In the case of testing for structural breaks jointly in both equations (I1(t) = I2(t)), we

apply the supLR12 (eq. 1), employed to test non-linearity, using a time trend as the transition

variable. Using this same approach, a test for a model with two structural breaks against one

structural break is also applied (supLR23), which is similar to the test for multiple breaks

proposed by Bai (1999). The p-values, as in the previous section, are calculated by bootstrap

with a correction for heteroscedasticity.

The results of tests for parameter instability are presented in Table 1, panel 2. They suggest

the presence of strongly dissimilar changing points depending whether either the spread or the

output growth is treated as endogenous variable. The evidence of a structural break in the

spread equation is weaker than in the output equation when the heteroscedasticity corrected

bootstrap p-values are considered.

A similar procedure can be employed to test and to estimate a model with a structural

break only in the variance equation (eq.2). Instead of seeking a break in a regression of, say,

output growth against lagged values of spread and output growth, the break has to be located in

regressions of the square of the residuals of each equation of the linear model against a constant.

Therefore, the supF is employed to test for a structural break in the variance: as above, p-

values are calculated using the asymptotic distribution and homoscedastic and heteroscedastic

fixed regressor bootstraps.

The tests for a structural break in the variance, shown in Table 1, panel 3, strongly support

the existence of a break in the variance of the output growth equation. The same test when

it is assumed that there is a structural break in the mean does not change this result (not

3Note that this may be necessary to adjust the values of πT and (1− π)T to the next integer to get feasible
numbers for τ .

4Average and exponential test statistics have been proposed by Andrews and Ploberger (1994). The results
of the structural break tests applied to the models of this work do not change when these transformations are
employed instead of the sup.

5 In the homoscedastic bootstrap, values are drawn from a normal distribution and regressed against the
regressors under the null hypothesis and the regressors under the alternative hypothesis. The residual variances
are calculated for both regressions and the F statistic is calculated. In the heteroscedastic bootstrap, the values
are drawn from a normal distribution multiplied by the errors of the model under the alternative hypothesis.
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shown). The break point estimated for the variance (1983:2) of the output equation is similar

to the value (1984:1) of univariate models of output growth (Kim and Nelson, 1999; McConnell

and Perez-Quiros, 2000). In the case of the spread equation, the heteroscedastic fixed regressor

bootstrap suggests again that 1966:1 break in the variance is not statistically significant. This

could be result of a poor estimated break point when changes are detected in the conditional

mean and in the conditional variance. Therefore, we search for a joint structural break in mean

and in variance. The structural break in mean and in variance model (SBMV) is defined as

zit = β1xt−1I(t) + β2xt−1(1− I(t)) + uit
σ2uit = σ2BI(t) + σ2A(1− I(t)).

Conditional on the break point τ , this regression is estimated by maximum likelihood. The

break point is estimated by grid search, using π = 0.20. The point that gives the maximum

value of the maximum likelihood for the spread is at 1981:1 and for the output at 1980:4.

Although each equation was estimated separately, the break point is essentially the same,

occurring in the period whereas a new monetary policy regime created strong interest rate

volatility (Watson, 1999). Therefore, we suggest a structural break model with changes in

the mean and the variance equations as good data representation (SBMV, described in the

Appendix).

3 Structural Break Threshold Models

Although non-linear models can capture some characteristics of structural break models

(Clements and Smith, 1999; Koop and Potter, 2000; Koop and Potter, 2001), it may be the

case that the break also implies changes in the non-linear parameters. Univariate time-varying

smooth transition models have been proposed by Lundbergh et al. (2000) and these have been

applied to capture changes in seasonality in industrial production by Van Dijk et al. (2001).

In contrast to time-varying smooth transition models, the model proposed in this section char-

acterizes a discrete change in the parameters, including the transition function, that is, the

threshold, the delay, the transition variable and the autoregressive order may change at a point

in time.

Non-linearities and structural breaks in a bivariate system to predict output growth yt using

the spread St can be written as:

yt = xt−1β1[(1− I1(st−d1))(1− I1(t))] + xt−1β2[I1(st−d1)(1− I1(t))]
+xt−1β3[(1− I2(st−d2))I1(t)] + xt−1β4[I2(st−d2)I1(t)] + u1t

St = xt−1β5[(1− I3(st−d3))(1− I2(t))] + xt−1β6[I3(st−d3)(1− I2(t))]
+xt−1β7[(1− I4(st−d4))I2(t)] + xt−1β8[I4(st−d4)I2(t)] + u2t,
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where Ii(st−di) is a transition (indicator) function which is equal to 1 when st−di > ri and equal

to 0 when st−di ≤ ri; Ii(t) is also a transition (indicator) function but it is equal to 1 when

t > τ i. As before when cov(u1t, u2t) = 0, each equation is considered as a regression.

Three different specifications of thresholds models with a structural break can be estimated.

The first one assumes the threshold and the delay are known and a change-point is estimated.

Let S(.) be the sum of square residuals of one of the threshold regressions, the change point is

estimated by minimizing this criterion function:

τ̂ = min
τL≤τ≤τU

S(τ , r̂, d̂).

In this case, the possibility of parameter instability in threshold models is tested using Hansen

(2000b). Specifically, one equation (zit could be output growth or spread) can be represented

as the following regression under the null hypothesis:

zit = β1xt−1(1− I(st−d)) + β2xt−1(I(st−d)) + uit,

where I(st−d) = 0 when st−d ≤ r and I(st−d) = 1 when st−d > r. The model under the

alternative hypothesis is:

zit = [β1xt−1(1− I(st−d)) + β2xt−1(I(st−d))](1− I(t)) (3)

+[β3xt−1(1− I(st−d)) + β4xt−1(I(st−d))](I(t)) + ũit,

where I(t) = 0 when t ≤ τ and I(t) = 1 when t > τ . Grid search is employed to estimate τ ,

given that st−d and r in I(st−d) are known. These values are employed to calculate a supF

statistics with p-values calculated using the asymptotic distribution and fixed regressor boot-

strap (homoscedastic and heteroscedastic)6. Using the residuals of each threshold regression,

we also test for a structural break in the variance. Equivalently, in the case of a vector autore-

gressive system, the criterion function is the log of the determinant of the variance-covariance

matrix of the residuals and supLR tests for structural breaks can be calculated as described

in the last section. The evidence of structural break does not change by the inclusion of non-

linearity, except for the structural break in the variance of the spread equation that is weaker,

as the statistics in panels 4 and 5 of Table 1 indicate.

A second specification is to estimate r, d and τ jointly, assuming the same threshold and

delay for each sub-sample determined by the change point:

τ̂ , r̂, d̂ = min
rL≤r≤rU
dU≤d≤dL
τL≤τ≤τU

S(r, d, τ).

6For the spread equation and the TVAR, the sequential algorithm employed to calculate the p-values based
on bootstrap does not work due to collinearity. Then, we report only asymptotic p-values.
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Figure 2 Comparing break-point estimation for different specifications of threshold structural
break models of each equation.

Finally, the third specification relaxes the assumption that the transition function is the

same before and after the changing-point by using a grid search to estimate the following

model:

zit = [β1xt−1(1− I1(st−d1)) + β2xt−1(I1(st−d1))](1− I(t))
+[β3xt−1(1− I2(st−d2)) + β4xt−1(I2(st−d2))](I(t)) + uit,

where I1(st−d1) = 0 when st−d1 ≤ r1 and I1(st−d1) = 1 when st−d1 > r1; and I2(st−d2) = 0 when

st−d2 ≤ r2 and I2(st−d2) = 1 when st−d2 > r2. Conditional on the break-point τ , one threshold

model is estimated in each sub-sample. The squares of the residuals in each sub-sample are

summed and τ̂ is the value that minimizes this criterion. Specifically,

τ̂ , r̂1,d̂1, r̂2, d̂2 = min
τL≤t≤τU

( min
r1L≤r1≤r1U
d1L≤d1≤d1U

S1(τ , r1, d1) + min
r2L≤r2≤r2U
d2L≤d2≤d2U

S2(τ , r2, d2)), (4)

where S1 is the sum of squared residuals of the threshold model estimated using a grid search

over the delay and the threshold value for the first sub-sample and S2 is the same for the

second sub-sample. When the residuals of each equation are assumed to be contemporaneously

correlated, these specifications can be estimated by grid search using the covariance of the

residuals as criterion function.

The last two approaches cannot be formally tested using the available asymptotic theory.

However, we can observe the sharpness of each type of model to estimate the change-point by
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verifying the likelihood for each possible change-point assuming that π = .3, which is presented

in Figure 2. All the specifications have the same number of autoregressive coefficients, while

the SBT has additional transition function. The results show: (1) the break-point in the

output equation depend on the specification, while in the case of the spread the break-point

only changes when changing non-linearity is allowed; (2) the break-points estimated by the

SBT regressions are sharper estimated than the other specifications, specially for the output

equation in which the evidence of parameter instability is stronger. Therefore, we suggest a

structural break threshold model (SBT) and a structural break threshold VAR (SBTVAR),

which are described in the Appendix, as a good data representation.

Given the evidence of a structural break in the variance even when a threshold regression

describes the mean equation, we analyze the ability of regime-dependent variances of structural

break threshold models to describe changing variances over time in the output growth equation.

In the case of the SBT model, for example, the standard deviations of the errors of the first

sub-sample are twice the ones of the second sub-sample and the break point is 1983:4. As a

result, the SBT model accounts for a structural break in the variance similar to the described

in the univariate models of Kim and Nelson (1999) and McConnell and Perez-Quiros (2000).

The dynamics of the SBTVAR can explain the result of Stock and Watson (2001) that the

spread does help to predict output growth in the period 1984-1999. The assumption of linearity

does not allow to observe that the spread only helps to predict output growth when is St−5 ≤ 1.
Therefore, for 77% of observations of the period 1981-1999, the inference that the spread lost

its power to predict output growth is true, but not for the 23% of the observations in which

the inequality St−5 ≤ 1 is valid. The dynamics of the structural break threshold model also

explain why there is no instability in predicting recessions using spread but the relation output

growth-spread is unstable (Estrella et al., 2000): the spread is a good predictor when it is a

small or negative value, implying small or negative growth (recession), but not when the value

is high, meaning that large spreads do not predict strong output growth. The latter dynamics

is stronger in the more recent period (after 1981).

4 Evaluation of Probability Forecast

4.1 Extracting information on event probability

The majority of the models suggested by literature to predict the probability of recession con-

sider recessions as unobserved components or a binary variable, implying that the model is a

filter to extract recession probabilities from the data (see, e.g., the comparisons of Filardo, 1999

and Camacho and Perez-Quiros, 2000). However, the concept that predicting recession is noth-

ing more than predicting a specific event implies that event probabilities are derived from density

forecasts. Stock and Watson (1989) show how to obtain the probabilities of recession from a

dynamic factor model of leading indicators using stochastic simulation. Stochastic simulation
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Table 2 Comparing definitions of recession.
NBER recessions Event A Event B

1957:3-1958:1 1957:1-1957:4 1955:3-1957:4
1960:2-1960:4 – 1959:2-1960:2
1970:1-1970:4 1969:1-1969:4 1969:1-1970:1
1973:4-1975:1 1973:4-1974:4 1973:1-1974:1
1980:1-1980:2 1979:3-1980:2 1979:3-1982:1
1981:3-1982:4 1981:1-1981:4 –
1990:3-1991:1 1989:4-1990:4 1989:4-1990:4

Note: Event A: at least two consecutive quarters of

negative growth in real GDP over next five quarters;

Event B: at least two quarters of negative growth in

real GDP over next five quarters;

has been used to extract the probability of an event from macroeconometric models (Fair, 1993;

Garratt et al., 2000) and non-linear models (Anderson and Vahid, 2000). Specifically in the

case of non-linear models, the evaluation of probabilities or density forecasts does not add any

computation burden over conditional expectations because non-linear models required these

to be generated by stochastic simulation (Monte Carlo or Bootstrap, see, e.g., Granger and

Teräsvirta (1993)). The analysis of the ability of a model to predict an event can be used for

both out-of-sample ( Garratt et al., 2000) or in-sample (Fair, 1993; Anderson and Vahid, 2000)

evaluation.

In this work, the models estimated in the last sections will be evaluated according to their

ability to predict in sample the probability of two events:

A. “At least two consecutive quarters of negative growth in real GDP over the next five

quarters”;

B. “At least two quarters of negative growth in real GDP over the next five

quarters”(Anderson and Vahid, 2000, p. 6).

The first event is a popular simple rule to define recessions without employing NBER turning

points. It does not need to coincide with the NBER recessions for three reasons: the rule is

based on a single series at a quarterly frequency, no censoring is applied, and the event is

forward-looking. Because event A leads NBER recessions, models that predict event A with

good performance can be employed to calculate leading recession probabilities indexes for the

US economy, such as the experimental leading recession index (XRI) of Stock and Watson

(1989). Observing Table 2, which includes NBER recessions and Event A, the forward-looking

characteristic of the rule compared with the NBER turning points is evident. The rule to obtain

event A fails to account for the recession in 1960, but the rule employed in event B can capture

the 1960 recession. The evident drawback of the rule that calculates event B is that it does

not differentiate the two recessions at the beginning of 1980’s. Therefore, these characteristics

support the application of both events to evaluate the models.

The procedure to extract the probabilities of event A and B from the models is the same
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as the one described by Anderson and Vahid (2000). Define xt as the vector of endogenous

variables (yt, St)0, Xt−1 = {xt−1,xt−2, ..x1} as the history of xt and xt = f(Xt−1;β) + ²t as

the forecasting model where β is the matrix of parameters and ²t are iid with V ar(²t) = Ω.

²t is assumed to have a multivariate normal distribution. Given β̂ and Ω̂, the trial sequence

of forecasts for {xt,xt+1,xt+2,xt+3,xt+4} conditional on Xt−1 is built as follows. A random

vector ²t is drawn from the distribution ² ∼N(0, Ω̂) and it is used to calculate x̂t, given Xt−1

and β̂. x̂t is added to “history” to form X̂t. Then a new draw (²t+1) is made from N(0, Ω̂)

and it is employed to calculate x̂t+1, given X̂t and β̂ and to form X̂t+1. This procedure is

continued until the sequence of forecasts is complete {x̂t, x̂t+1, x̂t+2, x̂t+3, x̂t+4}. This sequence

of forecasts can be called S1, and the same trial is repeated to obtain a set of 2000 forecast

sequences. The probability of event A (B) is the proportion of these 2000 sequences in which

the event A (B) occurs (Pt). Given the effective sample size T (1954:3-1999:4), a series of event

probabilities Pt for t = 1, ..., T can be obtained.

In the case of threshold models, the forecasting model can be also written as xjt =

f j(Xt−1;βj) + ²jt, where j = 1, 2 for models with two regimes and j = 1, 2, 3, 4 for structural

threshold models. Therefore, V ar(²jt) depends on the regime (defined by the threshold and the

transition variable), so for each regime with different number of observations nj (T =
Ps
i=1 ni),

there is a different Ωj and ²jt is supposed to be multivariate normal with variance Ω̂j. In this

framework, for each step to obtain the forecast sequences (h = 0, ..., 4) for, say, a two-regime

threshold model, either vector ²1t+h is drawn from ²1 ∼ N(0, Ω̂1) or vector ²2t+h is drawn from

²2 ∼ N(0, Ω̂2) depending on ŝT+h−1−d < r or ŝT+h−1−d > r. The vector ²jt+h is employed to

compute x̂t+h that includes the transition variable that defines the regimes ŝT+h−1−d.

4.2 Accuracy Measures for Probability Forecasts

The probabilities of event A and B for each point in-sample for 1954:3 to 1999:4 are presented

in Figures 3 and 4. To evaluate these probabilities, we employ the quadratic probability score

(QPS), the log probability score (LPS) (Diebold and Rudebusch, 1989) and the Kuipers Score

(Granger and Pesaran, 2000). The first one ranges from 0 to 2, with 0 being perfect accuracy.

The second one ranges from 0 to ∞. LPS and QPS imply different loss functions with large

mistakes more heavily penalized under LPS. Let Pt be the prediction probability of the event

A or B by the model for the next five periods starting at t and Rt is binary variable that is

equal to 1 if the event occurs in the actual data and equal to 0 otherwise, then the Briers score

(QPS) and the logarithm score (LPS) are written as:

QPS =
1

T

TX
t=1

2(Pt −Rt)2 and (5)
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Table 3 Scores for the Prediction of Event Probabilities.
1954:3-1999:4 1983:1-1999:4

Event A Event B Event A Event B
QPS LPS KS QPS LPS KS QPS LPS KS QPS LPS KS

VAR 0.178 0.310 0.078 0.268 0.426 0.318 0.117 0.225 0.000 0.135 0.262 0.000
T 0.152 0.274 0.430 0.240 0.386 0.333 0.118 0.222 0.000 0.123 0.242 0.000
TVAR 0.154 0.281 0.513 0.258 0.412 0.434 0.125 0.236 0.000 0.135 0.265 0.000
SBMV 0.184 0.317 0.352 0.272 0.430 0.504 0.123 0.236 0.000 0.157 0.297 0.034
SBT 0.149 0.243 0.419 0.230 0.347 0.530 0.112 0.151 0.494 0.111 0.156 0.494
SBTVAR 0.146 0.245 0.405 0.239 0.361 0.434 0.094 0.144 0.016 0.094 0.152 0.016

Note: The scores are calculated based on the probabilities of event A or B for each time in the period indicated.

For each t, the event probabilities are calculated using 5-step-ahead forecasts generated assuming that the

coefficients are known and equal to the one estimated for the full sample, but with data available until t-1.

The forecasts are computed using Monte Carlo and regime-dependent variances. For LPS, see eq. 6;

for QPS, see eq. 5; for KS,see eq. 7. The estimates of the models are in the Appendix.

LPS = − 1
T

TX
t=1

[(1−Rt) ln(1− Pt) +Rt ln(Pt)]. (6)

The Kuipers score is based on the definition of two states as two different indications given

by the model: the economy will be in recession or the economy will be in expansion. Suppose

that the recession is imminent when the predicted probability is larger than 1/2. So one can

calculate event forecasts (Et): Et = 1 when Pt > 1/2 and Et = 0 when Pt ≤ 1/2. Comparing

these events forecasts with the actual outcomes (Rt), the following contingency matrix can be

written:
Actual Outcomes

recession (Rt = 1) expansion (Rt = 0)

forecasts recession (Et = 1) Hits False Alarms

expansion (Et = 0) Misses Correct rejections

The Kuipers score is defined as the difference between the proportion of recessions that were

correctly forecasted (H = hits
(hits+misses) ) and the proportion of expansions that were incorrectly

forecasted (FA = false alarms
(false alarms+correct rejections)

):

KS = H − FA. (7)

Large Kuipers scores mean that the model generates proportionally more hits than false alarms.

4.3 Evaluating Predictions

The scores are calculated for the whole in-sample period and also for the 1983-1999 sub-sample

and are presented in Table 3. The inclusion of non-linearities improves the overall calibration

of the probability forecasts for both events and dramatically improves the Kuipers score for

the event A in the full sample. The inclusion discrete parameter changes (SBMV) also makes
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Figure 3 Predictive Probabilities for Event A.
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better the predictions of the system but they are inferior to the ones derived from the threshold

models. The models with a structural break and non-linearities have the best fit of the predictive

probabilities for both events. None of the models can account for the events in the beginning

of the sample, which is a potential drawback of the models evaluated.

Figures 3 and 4 and Table 3 show that the recession of 1990/91 can be only predicted when

structural breaks and non-linearities are both present in the model. An important characteristic

of the structural break threshold models that may have helped to predict the event A is that

they allow for regime-dependent variance. The plots of the predicted probabilities of the SBT

and the SBTVAR models (Figures 3 and 4) are generated with regime-dependent variances

and without (hom). The presence of this type of heteroscedasticity improves significantly the

probability fit after 1983.

However, employing the SBT may not be done without a cost: the model generates a strong

false alarm in the end of 1999. This occurs because the spread during 1998 was smaller than

0.8 that is the threshold for the recession regime of the second sub-sample, which has a large

negative constant and large impact of the spread on the output growth. This effect is milder in

the SBTVAR because this model has coefficients with smaller size in similar regime although

the threshold (1) is larger. This false alarm is derived from a monetary tightening by the Fed to

control inflation at the beginning of 1998 that was followed by a financial crisis generated by the

Russian default in August 1998. As described by Marshall (2001), the crisis was characterized

by rapid increases in uncertainty, which implies decreasing values of the spread. The inclusion of

this information in the SBT model implies that the predictions are based on the recession regime

because that is the type of regularity found previously in the historical data and incorporated

into the model. However, the Fed policy action of cutting interest rates, switching the policy

from controlling inflation to fighting against an imminent financial crisis, was enough to calm

the markets after a couple of months and to lead the US economy to the longest period of

expansion in history (Marshall, 2001). Thus, the recession predicted for 1999 by model SBT

did not materialize, because of a credible action by the Fed.

Allowing for different non-linear behaviors for the periods before and after the break, the

structural break threshold models have scored better after 1983 (Table 3). The fact that the

power of the spread to predict the events is asymmetric over the cycle does not override the

characteristic that the standard deviations of the shocks after the break (around 1981) are half

that of the previous period.

5 Predicting the Probability of Recession for 2001

The values of the spread in the last quarter of 2000 are negative, suggesting a future recession,

when one take into account the regularity described by Estrella and Hardouvelis (1991). In this

section we evaluate how this information is translated into probability of recessions by some of

the models evaluated in the last section compared with other sources of predictions for recession
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Table 4 Comparing 2001 probability forecasts (per cent).
XRI SPF T SBT SBTVAR

Pr(A2001:1) 56 55 81
Pr(B2001:1) 67 56 85
Pr(y2001:1 < 0 and y2001:2 < 0) 7 34 0 7
Risk of negative 2001:1 37 50 1 7
growth 2001:2 32 59 1.5 75

2001:3 23 47 47 86
2001:4 18 34 56 73
2002:1 13 24 59 72

Notes: ST, T, SBT and SBTVAR are described in the Appendix; SPF is the

Survey of Professional Forecasters, with information until Jan 2001; XRI is the

Stock and Watson experimental leading recession index, with information until

Dec 2001

probabilities presented in the literature. Specifically, probability forecasts are generated from

the T, SBT and SBTVAR models.

5.1 Forecasts of the probability of events A and B for 2001

The probability that two quarters of negative growth will occur in the next five quarters (event

A) is 56% using the T model and 81% using the SBTVAR, as presented in Table 4. The

different probabilities among models depend on how the negative spreads of the last quarters of

2000 affect the non-linearity of the model. The SBT model has the strongest negative growth

reaction which generates a false alarm in 1999. The average probability in predicting event A is

62%, which means that is quite likely that a recession will happen by 2002:1, while the average

probability of event B is slightly higher (71%), as expected.

5.2 Comparing with Stock and Watson Recession Index

Table 4 also shows the probabilities of negative growth in the first two quarters of 2001. These

probabilities are calculated to compare with the (monthly) Stock and Watson XRI index. The

Stock and Watson experimental leading recession index (XRI)7 extracts the probability of

recession using eight components (after the 1997 revision) in a dynamic factor model (Stock

and Watson, 1989, 1993). Using different series such as interest rates and manufacturers’

unfilled orders, the authors try to explore comovement between economic variables and to

detect recession when a downturn is signaled by different sectors of the economy. A monthly

period is said to be in recession if that month is either in a sequence of six consecutive declines of

the composite index below some boundary or in a sequence of nine declines below the boundary

with no more than one increase during the middle seven months (Stock and Watson, 1989,

7Definition of the index and historical values are at http://ksghome.harvard.edu/~.JStock.Academic.Ksg
/xri/INDEX.HTM.
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p. 357). This recession definition is employed to identify recession periods in the observed data

and also to calculate the leading recession index. To compare with the probabilities extracted

from the models presented in this work, we suppose that this recession definition is equivalent

to obtaining two negative output growth predictions in a two-quarter horizon. Given that the

last calculation of the experimental leading index was still above the boundary of the recession

period, the second definition of recession can be neglected.

The experimental leading recession index calculated with information until 2000:12 is pre-

sented in Table 4. The probability that a recession would happen in the first two quarters of

2001 is larger (11 and 34%) than the Stock and Watson XRI (7%) when it is not assumed a

structural break in the model. Because the effect of the negative spread is more delayed in the

SBT, this model is still predicting growth, while the threshold model indicates a probability of

34% for this definition of recession. This is an evidence that the presence of structural breaks

in non-linear models affects the timing of the predictions of recession.

5.3 Comparing with the Survey of Professional Forecasters

The Survey of Professional Forecasters (SPF) collects information on forecasts of eco-

nomic series, such as output, unemployment, interest rates and inflation, made by pri-

vate sector forecasters (34 of them), organized by the Federal Reserve Bank of Philadelphia

(Croushore, 1993). The information is collected every three months and the results are pub-

lished on http://www.phil.frb.org/econ/spf. The SPF publishes the mean (over forecasters) of

the estimated probability of negative output growth for each one of the next 5 quarters. The

mean of the risk of negative growth for the period 2001:1 to 2002:1, published by the SPF in

February 2001, using information until January 2001, is in the lower panel of Table 4. By way

of comparison, we compute the probability of negative output growth for the 2001:1-2002:1

period from our models. The models are more optimistic than the SPF predictions for the first

quarter of 2001 and more pessimistic for the last two quarters of 2001, when the probability of

negative growth is on average greater than 50% for both quarters. The results of the threshold

model, however, are an exception because they predict negative growth for 2001:2 but give a

small probability for 2002:1, showing differences in the dynamics of the evaluated models.

5.4 Comparing with the Probit Models of Chauvet and Potter (2001)

Chauvet and Potter (2001) show that depending on the supposition on serial correlation of the

residuals or variance changes, the predictions for 2001 from a probit model using the spread

change. The authors, however, employ a definition of recession that cannot be extracted directly

from the autoregressive models described in this work, because it implies predictions for a binary

variable. Therefore, we can only compare our results in terms of the timing and strength of

a possible recession. As discussed before, the models with a structural break and thresholds

predict a recession for the second semester of 2001, whereas the chosen model by Chauvet and
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Potter (2001) (model 4) gives a predictive probability of 18%. Both the SBT and the model 4

of Chauvet and Potter (2001) take into account possible parameter instability and use the same

leading indicator. Then, the main reason for these dissimilar predictions is the strong serial

correlation included in the probit predictions. This serial correlation implies high persistence

of the actual state of the binary variable because it takes into account the long expansion that

follows the 1990/91 recession. This is seen as an advantage of the probit model because this

imply that the model does not give a false alarm in 1999, as the SBT.

6 Conclusions

The presence of structural breaks and non-linearities is needed for the prediction of the 1990-

91 recession. Koop and Potter (2000) suggest that non-linearity tests may indicate threshold

models when the data is generated from a structural break model. Our results suggest that non-

linearity and structural breaks are both necessary for a model be able to capture the dynamics

between spread and output growth in the period 1955-1999. We show how a structural break

threshold model may account for two reported characteristics of the output growth-spread

relationship: it is non-linear (Galbraith and Tkacz, 2000; Anderson and Vahid, 2000) and it is

unstable over time (Haubrich and Dombrosky, 1996; Stock and Watson, 2001). The structural

break threshold model can also account for further feature of the output growth series: its

variability has decreased after 1984 (McConnell and Perez-Quiros, 2000).

The predictions of the models with a structural break and threshold non-linearity agree with

the Stock and Watson (1989) experimental leading recession index but they are too pessimistic

when compared to the predictions of the Survey of Professional Forecasters and Chauvet and

Potter (2001). While the threshold model predicts that a recession is more likely to occur

in 2001:2-2001:3, the structural break threshold model predicts a recession in 2001:4-2002:1.

Therefore, the presence of structural break changes the timing of the recession.
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A Appendix: Description of Models

The effective sample employed to estimated the following models is from 1954:3 to 1999:4. yt is

the output growth and St is the spread between a 10-year T-bond and a 3-month T-Bill. SSE

is the sum of squared errors and σui is the standard error of the residuals uit.

1. Vector Autoregressive model (VAR):

yt=0.305
[0.13]

+0.245
[0.08]

yt−1+0.081
[0.08]

yt−2−0.013
[0.12]

St−1+0.322
[0.15]

St−2−0.108
[0.13]

St−3

SSE1 = 137.23,σu1 = 0.88

St = 0.280
[0.09]

− 0.076
[0.04]

yt−1 − 0.103
[0.06]

yt−2 + 1.034
[0.09]

St−1 − 0.351
[0.13]

St−2 + 0.215
[0.13]

St−3

SSE2 = 49.65, σu2 = 0.53

2. Threshold Model (T)

yt = (−0.045
[0.18]

+ 0.255
[0.14]

yt−1 + 0.409
[0.15]

yt−2 − 0.187
[0.27]

St−1 + 1.001
[0.31]

St−2 − 0.523
[0.26]

St−3)(I1(St−1))

+(0.851
[0.19]

+ 0.278
[0.08]

yt−1 − 0.033
[0.07]

yt−2 − 0.121
[0.15]

St−1 + 0.024
[0.19]

St−2 − 0.085
[0.13]

St−3)(1− I1(St−1))

I1(St−1) = 1(St−1 ≤ 0.667)
σu1 = 0.916I1(St−1) + 0.807(1− I1(St−1)) SSE1 = 121.98
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St = (−0.411
[0.07]

− 0.025
[0.04]

yt−1 − 0.211
[0.05]

yt−2 + 1.233
[0.09]

St−1 − 0.494
[0.11]

St−2 +0.103
[0.08]

St−3)(I1(St−1))

+(−0.522
[0.42]

+ 0.022
[0.09]

yt−1 + 0.048
[0.08]

yt−2 + 0.961
[0.17]

St−1 − 0.072
[0.17]

St−2 + 0.233
[0.12]

St−3)(1− I1(St−1))

I1(St−1) = 1(St−1 ≤ 1.79)
σu2 = 0.445I1(St−1) + 0.360(1− I1(St−1)) SSE = 39.63

3. Threshold Vector Autoregressive model (TVAR):

yt = (−0.016
[0.23]

− 0.006
[0.25]

yt−1 + 0.295
[0.26]

yt−2 + 0.032
[0.24]

St−1 + 0.829
[0.34]

St−2 − 0.004
[0.33]

St−3)I1(St−4)

+(0.515
[0.14]

− 0.253
[0.07]

yt−1 + 0.040
[0.07]

yt−2 + 0.076
[0.16]

St−1 + 0.127
[0.21]

St−2 − 0.095
[0.14]

St−3)(1− I1(St−4))

σu1 = 1.313I1(St−4) + 0.841(1− I1(St−4)) SSE1 = 125.54

St = (0.798
[0.19]

− 0.149
[0.20]

yt−1 − 0.424
[0.21]

yt−2 + 0.882
[0.20]

St−1 − 1.027
[0.28]

St−2 + 1.021
[0.27]

St−3)I1(St−4)

+(0.162
[0.07]

− 0.081
[0.04]

yt−1 − 0.049
[0.04]

yt−2 + 1.098
[0.07]

St−1 − 0.186
[0.07]

St−2 + 0.023
[0.06]

St−3)(1− I1(St−4))

I1(St−4) = 1(St−4 ≤ 0.1933)
σu2 = 1.076I1(St−4) + 0.391(1− I1(St−4)) SSE2 = 37.33

σu1σu2 = −0.637(St−4) + 0.024(1− I1(St−4))

4. Structural Break in Mean and in Variance model (SBMV)

yt = (0.186
[0.16]

+ 0.197
[0.11]

yt−1 + 0.043
[0.09]

yt−2 + 0.497
[0.20]

St−1 − 0.206
[0.34]

St−2 + 0.211
[0.25]

St−3)I(t)

+(0.192
[0.18]

+ 0.290
[0.12]

yt−1 + 0.247
[0.12]

yt−2 − 0.305
[0.10]

St−1 + 0.593
[0.14]

St−2 − 0.189
[0.14]

St−3)(1− I(t))

I(t) = 1(t ≤ 1980 : 4) σu1 = 0.950
[0.13]

I(t) + 0.574
[0.05]

(1− I(t)) SSE1 = 122.42

St = (0.195
[0.10]

− 0.096
[0.04]

yt−1 − 0.075
[0.04]

yt−2 + 1.097
[0.09]

St−1 − 0.622
[0.24]

St−2 + 0.449
[0.24]

St−3)I(t)

+(0.553
[0.17]

− 0.179
[0.12]

yt−1 − 0.314
[0.15]

yt−2 + 0.934
[0.94]

St−1 − 0.075
[0.17]

St−2 − 0.078
[0.12]

St−3)(1− I(t))

I(t) = (t ≤ 1981 : 1) σu2 = 0.473
[0.06]

I(t) + 0.501
[0.04]

(1− I(t)) SSE2 = 43.16
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5. Structural Break Threshold Model (SBT)

yt = (0.088
[0.15]

+ 0.148
[0.11]

yt−1 + 0.218
[0.11]

yt−2 + 0.113
[0.21]

St−1 + 0.452
[0.26]

St−2 − 0.076
[0.21]

St−3)(1− I1(St−1))I(t)

+(2.266
[0.68]

+ 0.057
[0.14]

yt−1 − 0.332
[0.13]

yt−2 − 0.662
[0.30]

St−1 − 0.003
[0.29]

St−2 + 0.507
[0.21]

St−3)I1(St−1)I(t)

+(−2.530
[0.90]

+ 1.187
[0.24]

yt−1 + 0.565
[0.43]

yt−2 + 2.684
[1.03]

St−1 − 1.307
[1.21]

St−2 + 0.481
[0.86]

St−3)(1− I2(St−5))(1− I(t))

+(0.918
[0.21]

− 0.135
[0.14]

yt−1 + 0.225
[0.13]

yt−2 + 0.036
[0.15]

St−1 + 0.047
[0.23]

St−2 − 0.137
[0.14]

St−3)I2(St−5)(1− I(t))

σu1 = 0.98(1− I1(St−1))I(t) + 0.84I1(St−1)I(t) + 0.61(1− I2(St−5))(1− I(t)) + 0.40I2(St−5)(1− I(t))
I1(St−1) = 1(St−1 > 1.58) I2(St−5) = 1(St−5 > 0.817) I(t) = 1(t ≤ 1983 : 4) SSE1 = 107.67

St = (0.527
[0.29]

− 0.333
[0.16]

yt−1 + 0.219
[0.28]

yt−2 + 0.335
[0.34]

St−1 + 0.047
[0.50]

St−2 − 0.156
[0.46]

St−3)(1− I1(St−4))I(t)

+(0.057
[0.07]

+ 0.002
[0.03]

yt−1 − 0.083
[0.03]

yt−2 + 1.260
[0.11]

St−1 − 0.819
[0.15]

St−2 + 0.516
[0.11]

St−3)I1(St−4)I(t)

+(0.556
[0.09]

− 0.076
[0.09]

yt−1 − 0.379
[0.08]

yt−2 + 1.254
[0.11]

St−1 − 0.506
[0.14]

St−2 + 0.142
[0.11]

St−3)(1− I2(St−1))(1− I(t))

+(−0.599
[0.44]

+ 0.033
[0.09]

yt−1 + 0.091
[0.09]

yt−2 + 0.968
[0.17]

St−1 − 0.062
[0.17]

St−2 + 0.222
[0.12]

St−3)I2(St−1)(1− I(t))

σu2 = 0.62(1− I1(St−4))I(t) + 0.19I1(St−4)I(t) + 0.52(1− I2(St−1))(1− I(t)) + 0.56I2(St−1)(1− I(t))
I1(St−4) = 1(St−4 > 0.313) I2(St−1) = 1(St−1 > 1.79) I(t) = 1(t ≤ 1968 : 3) SSE2 = 34.40

6. Structural Break Threshold VAR (SBTVAR)

yt = (−0.191
[0.18]

− 0.121
[0.19]

yt−1 + 0.841
[0.19]

yt−2 + 0.123
[0.23]

St−1 + 1.567
[0.37]

St−2 − 1.216
[0.34]

St−3)(1− I1(St−3))(1− I(t))

+(0.501
[0.22]

+ 0.144
[0.11]

yt−1 − 0.037
[0.11]

yt−2 +0.180
[0.22]

St−1 + 0.159
[0.31]

St−2 + 0.044
[0.24]

St−3)I1(St−3)(1− I(t))

(−0.641
[0.38]

+ 0.791
[0.25]

yt−1 + 0.211
[0.20]

yt−2 − 0.092
[0.22]

St−1 + 1.063
[0.28]

St−2 − 0.386
[0.28]

St−3)(1− I2(St−5))I(t)

+(0.678
[0.21]

+0.204
[0.14]

yt−1 + 0.146
[0.13]

yt−2 − 0.054
[0.16]

St−1 + 0.158
[0.20]

St−2 − 0.119
[0.13]

St−3)I2(St−5)I(t)

σu1 = 0.61(1− I1(St−3))I(t) + 1.02I1(St−3)I(t) + 0.63(1− I2(St−5))(1− I(t)) + 0.50I2(St−5)(1− I(t))
St = (0.416

[0.25]
+ 0.340

[0.26]
yt−1 − 0.361

[0.26]
yt−2 + 1.604

[0.31]
St−1 − 2.436

[0.50]
St−2 + 1.470

[0.47]
St−3)(1− I1(St−3))(1− I(t))

+(0.126
[0.07]

− 0.097
[0.04]

yt−1 − 0.070
[0.04]

yt−2 + 1.071
[0.07]

St−1 − 0.248
[0.10]

St−2 + 0.147
[0.08]

St−3)I1(St−3)(1− I(t))

(1.216
[0.18]

− 0.252
[0.12]

yt−1 − 0.377
[0.09]

yt−2 + 0.386
[0.11]

St−1 − 0.405
[0.14]

St−2 − 0.676
[0.14]

St−3)(1− I2(St−5))I(t)

+(0.295
[0.18]

− 0.058
[0.12]

yt−1 − 0.014
[0.10]

yt−2 + 1.224
[0.13]

St−1 − 0.202
[0.17]

St−2 − 0.143
[0.11]

St−3)I2(St−5)I(t)
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σu2 = 0.83(1− I1(St−3))I(t) + 0.33I1(St−3)I(t) + 0.31(1− I2(St−5))(1− I(t)) + 0.42I2(St−5)(1− I(t))
I1(St−3) = 1(St−3 > 0.1566) I2(St−5) = 1(St−5 > 0.98) I(t) = 1(t < 1981 : 1)

σu1σu2 = −0.24(1− I1(St−3))I(t)− 0.02I1(St−3)I(t)
−0.04(1− I2(St−5))(1− I(t)) + 0.07I2(St−5)(1− I(t))

SSE1 = 110.31 SSE2 = 28.21


