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Abstract

This paper argues that probability forecasts convey information on the uncertainties
that surround macro-economic forecasts in a straightforward manner which is prefer-
able to other alternatives, including the use of confidence intervals. Point and prob-
ability forecasts obtained using a small macro-econometric model are presented and
evaluated using recursive forecasts generated from the model over the period 1999q1-
2000g1. Out of sample probability forecasts of inflation and output growth are also
provided over the period 2001q2-2003ql, and their implications discussed in relation
to the Bank of England’s inflation target and the need to avoid recessions, both as
separate events and jointly. It is also shown how the probability forecasts can be used
to provide insights on the inter-relationship of output growth and inflation at different
horizons.
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1 Introduction

With few exceptions, macroeconomic forecasts are presented in the form of point forecasts
and their uncertainty is characterized (if at all) by forecast confidence intervals.! Focusing
on point forecasts is justified when the underlying decision problems faced by agents and
the government are linear in constraints and quadratic in the loss function; the so-called LQ
problem. But for most decision problems, reliance on point forecasts will not be sufficient and
event probability forecasts will be needed (see, for example, Granger and Pesaran, 2000a,b).
It is also important that statements about economic policy are made in probabilistic terms,
since the public’s perception of the credibility of the policy has important implications for
its success or failure, irrespective of whether the underlying decision problem is of the LQ
type or not. A prominent example, discussed in Peel and Nobay (1998), is the choice of an
optimal monetary policy in an economy where the government loss function is asymmetric
around the inflation target. In this context, a stochastic approach to the credibility of the
monetary policy will be required, and policy announcements should be made with reference
to probabilistic statements, such as “the probability that inflation will fall in the range
(m,my) is at least a per cent”. Policy targets expressed in terms of a fixed range only
partially account for the uncertainty that surrounds policy making.?

One of the main advantages of the use of probability forecasts as a means of conveying the
uncertainties surrounding forecasts is their straightforward use in decision theoretic contexts.
In a macroeconomic context, the motivation for the current monetary policy arrangements in
the UK is that it provides for transparency in policy-making and an economic environment in
which firms and individuals are better able to make investment and consumption decisions.
The range of possible decisions that a firm can make regarding an investment plan, for
example, represents the firm’s action space. The ‘states of nature’ in this case are defined
by all of the possible future out-turns for the macro-economy. For example, the investment
decision might rely on output growth in the next period, or the average output growth
over some longer period, remaining positive; or interest might focus on the future path of
inflation and output growth considered together. In making a decision, the firm should define
a loss function which evaluates the profits or losses associated with each point in the action
space and given any ‘state of nature’. Except for LQ decision problems, decisions rules by
individual households and firms will generally require probability forecasts with respect to
different threshold values reflecting their specific cost-benefit ratios. For this purpose, we
need to provide estimates of the totality of the probability distribution function of the events
of interest, rather than particular forecast intervals which are likely to be relevant only to
the decision problem of a few.

The need for probability forecasts is acknowledged by a variety of researchers and in-
stitutions. In the statistics literature, for example, Dawid (1984) has been advocating the
use of probability forecasting in a sequential approach to the statistical analysis of data; the
so-called “prequential approach”.? In the econometric modelling literature, Fair (1980, 1993)

'For a recent articulation of this point see Chris Giles, “Bamboozled by Statistics”, Financial Times,
December 18, 2001, London.

2For example, see the discussion on the design of inflation targets in Yates (1995).

3The name prequential is derived by combining probability forecasting with sequential prediction. See
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was one of the first to compute probability forecasts using a macroeconometric model of the
US economy. The Bank of England routinely publishes a range of outcomes for its inflation
and output growth forecasts (see Britton, Fisher and Whitley, 1998 or Wallis, 1999); the
National Institute use their model to produce probability statements alongside their central
forecasts (their methods are described in Blake, 1996, and Poulizac et al., 1996); and in
the financial sector, J.P. Morgan presents ‘Event Risk Indicators’ in its analysis of foreign
exchange markets.* However, it remains rare for forecasters to provide probability forecasts
in a systematic manner. One explanation may be due to the difficulty in measuring the
uncertainties associated with forecasts in the large-scale macroeconometric models typically
employed. Another explanation relates to the various types of uncertainty that are involved
in forecasting. For example, probability forecasts typically provided in the literature deal
with future uncertainty only, assuming that the parameters of the underlying model are
known with certainty. This is true of the probability forecasts published by the National
Institute, for example. Further complications arises if parameter and model uncertainties
are also to be allowed for in the computation of probability forecasts.

This paper considers event probability forecasting in the context of a small long-run struc-
tural vector error correcting autoregressive model (VECM) of the UK economy. Particular
events of interest include inflation falling within a pre-specified target range and/or output
growth remaining positive over two subsequent quarters. Other events or combinations of
events can also be considered over a sequence of time periods, or different time intervals in
the future. For this purpose, we provide a general simulation framework for the computa-
tion of probability forecasts and the characterizations of different forms of uncertainty that
surrounds them. The probability forecasts presented in this paper are based on a revised
and updated version of the model developed by Garratt et al. (2001). This version, specifi-
cally updated for forecasting purposes, employs the long-run relations estimated over a long
sample period starting in 1965q1, but bases the estimation of the short-run coefficients on
a shorter sample period starting 1985q1. We use the model both in a probability forecast
evaluation exercise over the period 1999q1-2001ql, as well as for generating out-of-sample
point and probability forecasts of inflation and output growth over the period 2001q2-2003q1.
The forecast evaluation exercise is carried out recursively and provides significant statisti-
cal evidence of improved forecasting ability when the theory-based long-run restrictions are
imposed.

In generating out-of-sample probability forecasts, amongst the many possible macroeco-
nomic events of interest, we focus on the possibility of a “recession” and the likelihood of the
inflation rate falling within the range 1.5%-3.5%, the target range currently considered by
the Monetary Policy Committee (MPC) of the Bank of England. We consider these and a
number of related events both singly and jointly. In particular, based on information avail-
able at the end of 2001q1, we estimate the probability of inflation falling within the Bank of
England’s target range to be relatively high, with only a small probability of a recession.

The probability estimates reported in this paper illustrate the clarity with which event
probability statements can convey some of the uncertainties that are associated with forecasts
and demonstrate their potential value in policy debates. The predictive distribution functions

Dawid (1984, pp.278-279).
4For an academic reference see for example, Berkowitz (1999).
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clearly exhibit both the range of potential outcomes and how these will evolve at different
forecast horizons. The use of event probabilities can also yield important insights into the
properties of the underlying data generating process, as well as providing us with invaluable
tools in decision-making.

The lay-out of the rest of the paper is as follows. Section 2 considers the alternative
approaches that are available for characterizing forecast uncertainty and notes the advan-
tages of probability forecasts particularly in decision making contexts. Section 3 considers
probability forecasts in more detail, discussing the concept and estimation of probability
forecasts in general terms both in the presence and absence of parameter uncertainty. The
remainder of the paper is concerned with an application of the probability forecasting ap-
proach to the UK economy. Section 4 describes the model, provides estimates of the model’s
parameters, and discusses the results of the forecast evaluation exercise where alternative
approaches to the evaluation of probability forecasts are reviewed and applied to our model’s
forecasts. Macroeconomic events of interest and the associated probability forecasts are dis-
cussed in Section 5. This section provides a brief account of inflation targeting in the UK,
comments on the relationship between the fan charts published by the Bank of England and
probability forecasting, and presents single and joint event probability forecasts involving
output growth and inflation objectives at different forecast horizons. Section 6 offers some
concluding remarks.

2 Alternative Approaches to Characterising Forecast
Uncertainty

All model-based forecasts are subject to four types of uncertainties:
e Measurement uncertainty (data inadequacies and measurement errors);
e Model uncertainty (including policy uncertainty);
e Parameter uncertainty (for a given model);
e Future uncertainty.

This paper focuses on future and parameter uncertainties and how to allow for them in the
computation of probability forecasts. Measurement and model uncertainties pose special
problems of their own and will not be addressed in this paper.® Future uncertainty refers
to the effects of unobserved future shocks on forecasts, while parameter uncertainty is con-
cerned with the robustness of forecasts to the choice of parameter values, assuming a given
forecasting model.

The standard textbook approach to taking account of future and parameter uncertainties
is through the construction of forecast intervals. For the purpose of exposition, initially
we abstract from parameter uncertainty and consider the following simple linear regression
model:

U = X108+ uy, t=1,2,..,T,

°For a discussion on the problem of model uncertainty, see Draper (1990) and Chatfield (1995).
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where x; 7 is a k X 1 vector of pre-determined regressors, 3 is a k x 1 vector of fixed but
unknown coefficients, and u; ~ N(0,0%). The optimal forecast of yr.; at time T (in the
mean squared error sense) is given by x7.(3. In the absence of parameter uncertainty, the
calculation of a probability forecast for a specified event is closely related to the more familiar
concept of forecast confidence interval. For example, suppose that we are interested in the
probability that the value of yr,; lies below a specified threshold, say a, conditional on
Qr = (yr, X1, Yr-1,X1_1, --..), the information available at time 7. For given values of (3
and o2, we have

a— X/
PI‘(yT+1 <a | QT) = (TTIB),

where ®(o) is the standard Normal cumulative distribution function while the (1 — )%
forecast interval for yr 1 (conditional on Q) is given by x;8 £ c®~! (1 — 2).

The two approaches, although related, are motivated by different considerations. The
point forecast provides the threshold value a = x/,3 for which Pr(yr.; <a|Qr) = 0.5,
while forecast interval provides the threshold values c; = x43 — c®~! (1 — %), and cy =
xipB + @' (1 — %) for which Pr(yry <cr | Qr) = £ and Pr(yr <cy | Qr) =1 - 2.
Clearly, the thresholds values, ¢, and ¢y, associated with the (1 —a)% forecast interval may
or may not be of interest.® Only by chance will the forecast interval calculations provide
information in a way which is directly useful in specific decision making contexts.

The relationship between probability forecasts and interval forecasts becomes even more
obscure when parameter uncertainty is also taken into account. In the context of the above

regression model, the point estimate of the forecast is given by yr.; = X}BT, where
IBT - Q;iquv

is the Ordinary Least Squares (OLS) estimate of 3, with

T T
_ / d _
Qr_1 = Xi—1X;_q, ANA qr = Xt—1Yt-
t=1 t=1

The relationship between the actual value of yr.; and its time T predictor can be written
as

Yyri1 = XpB+ urg
= X’/T/BT + X/T(/B — Br) +ury1, (1)

so that the forecast error, 7.4, is given by
§ri1 = yri1 — Yre1 = Xp(B = Br) + urir

This example shows that the point forecasts, X’TBT, are subject to two types of uncertainties,
namely that relating to 3 and that relating to the distribution of uy,;. For any given

6The association between probability forecasts and interval forecasts are even weaker when one considers
joint events. For example, it would be impossible to infer the probability of the joint event of a positive
output growth and an inflation rate falling within a pre-specified range from individual, variable-specific
forecast intervals. Many different such intervals will be needed for this purpose.
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sample of data, Qr, BT is known and can be treated as fixed. On the other hand, although
3 is assumed fixed at the estimation stage, it is unknown to the forecaster and, from this
perspective, it is best viewed as a random variable at the forecasting stage. Hence, in order
to compute probability forecasts which account for future as well as parameter uncertainties,
we need to specify the joint probability distribution of B8 and w1, conditional on Q7. As
far as ury; is concerned, we continue to assume that

UT+1|QT ~ N(0702)7

and to keep the exposition simple, for the time being we shall assume that o2 is known and
that ur,; is distributed independently of 3. For 3, noting that

(Br - B) I ~ N (0,0°Q71,) 2)
we assume that
810z ~ N (Br,o*Qry) (3)
which is akin to a Bayesian approach with non-informative priors for 3. Hence

&ra | Qr ~ N [0,0° (14 x7Q7 1 x7)] -

The (1 — a)% forecast interval in this case is given by

~ B B a
crr =xpBr— 0 {1 + X'TQTile}I/2 ot <1 - 5) , (4)
and
~ o}
cur =xpBr + o {14+%:Q7t xr} P07t (1-5). (5)

When o2 is unknown, under the standard non-informative Bayesian priors on (3,02), the
appropriate forecast interval can be obtained by replacing o2 by its unbiased estimate, 6 =
(T—k) "0 (e —XQ_IET)I(% —x,_,Br), and &~! (1 — %) by the (1—4%)% critical value of
the standard t-distribution with T'— k degrees of freedom. Although such interval forecasts
have been discussed in the econometrics literature, the particular assumptions that underlie
them are not fully recognized.

Using this interpretation, the effect of parameter uncertainty on forecasts can also be
obtained via stochastic simulations, by generating alternative forecasts of yr,; for different
values of 3 (and ¢?) drawn from the conditional probability distribution of 3 given by (3).
Alternatively, one could estimate probability forecasts by focusing directly on the proba-
bility distribution of yr; for a given value of xr, simultaneously taking into account both
parameter and future uncertainties. For example, in the simple case where o? is known, this
can be achieved by simulating yé?}rl, 7 =12,...,J, where

j ~(5) ;
yéﬁil =xrB" + ugz)+1>
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B(]) is the j-th random draw from N <BT, UQQ;L) , and U%A is the j-th random draw from
N (0,02)." This is an example of the parametric “bootstrap predictive density” discussed
in Harris (1989). In large samples, the stochastic simulation approach will be equivalent
to the analytical methods discussed above. However, as argued below, it is more generally
applicable and will be used in our empirical application.

An alternative approach to allowing for the effects of future and parameter uncertainties
on prediction of yry; would be to follow the literature on “predictive likelihoods”, where
a predictive density for yr,; conditional on 7 is derived directly.® In the case of the
regression example, the problem has been studied by Levy and Perng (1986) who show that
the optimal prediction density for yr,1, in the Kullback-Leibler information-theoretic sense,
is the Student t distribution with 7'— k degrees of freedom, having the location g7, = x78p
and the dispersion 6% {1 + X’TQ}ile}. This is the same as the Bayes predictive density
of yr41|Qr with a non-informative prior on (3,02). In this way Levy and Perng provide a
non-Bayesian interpretation of Bayes predictive density in the context of linear regression
models. However, while this is the optimal prediction density in the original linear model,
Harris (1989) demonstrates that the bootstrap prediction density performs well in a number
of important cases.

3 A General Framework for Probability Forecasting

To formalize the discussion of probability forecasts, suppose we are interested in a decision
making process that requires probability forecasts of an event defined in terms of the m-
variable vector, z; = (214, Zat, ---, Zmt)’- Assume also that the forecasts are made with reference
to a parametric family of models, denoted by M (@), and characterized by the joint density
function of z; over the estimation and the forecast periods t = 1,2,...,7, and T'+ 1,7 +
2,...,T + h, respectively. The probability model, M(8), is a set of density functions, each
describing the probability of obtaining specified values for the observed and forecasted data,
and indexed by the unknown k x 1 parameter vector 6 assumed to lie in the compact
parameter space, ©:

M(0) ={f(z1,22,....,27,Z1+1, ZT12, ..., ZT+1;0), O € O}. (6)

Throughout we shall assume that the true value of @, which we denote by 8, is fixed and
remains constant across the estimation and the prediction periods and lies in the interior of
©. We denote the maximum likelihood estimate of 8y by @7, and assume that f(.) satisfies
the usual regularity conditions so that

VT (ET _ 00) LN (0, V),

In the realistic case where o2 is unknown it is replaced by 62.

8A large number of different predictive likelihoods have been suggested in the statistics literature.
Bjgrnstad (1990) provides a review.



where & stands for “asymptotically distributed as”, and V is a positive definite covariance
matrix.” Under these assumptions, parameter uncertainty only arises when 7 is finite. The
case where 6, could differ across the estimation and forecast periods poses new difficulties
and can be resolved in a satisfactory manner if one is prepared to formalize how 8, changes
over time.

The density function f(.) can be decomposed in two ways. First, a sequential conditioning
decomposition can be employed to write f(.) as the product of the conditional distributions
on successive observations on the z;,

t
.f(zlaz2a --'7Zt;Z0a0) - H.f (Zs | VARE X "'7Zs—l;Z070)a
s=1

for given initial values zo. And second, since we frequently wish to distinguish between
variables which are endogenous, denoted by y;, and those which are exogenous, denoted by
X, we can write z, = (y/,x})" and use the factorization:

f (Zt \ 71,2y, ---;thl;Zan) = fy (Yt | 7,72y, --->Zt717Xt;Z0a0y) X f:zc (Xt | 7,2y, ---vztfl;Z070:r)>

(7)

where f, (y: | 21, 22, ..., Zt—1, X¢; 29, 0) is the conditional distribution of y; given x; and the
information available at time ¢t — 1, ;1 = (241, Z¢2, ...), and f, (X¢ | Z1, 29, ..., Zt_1; Zo, 0,
is the marginal density of x; conditional on ), ;. Note that the unknown parameters @ are
decomposed into the parameters of interest, 6,, and the parameters of the marginal den-
sity of the exogenous variables, 6,. In the case where x; is strictly exogenous, knowledge
of the marginal distribution of x; does not help with the estimation of 6,, and estima-
tion of these parameters can therefore be based entirely on the conditional distribution,
Jy (v | Xt;Qtfl;oy)-

Despite this, parameter uncertainty relating to @, can continue to be relevant for prob-
ability forecasts of the endogenous variables, y;, and forecast uncertainty surrounding the
endogenous variables is affected by the way the uncertainty associated with the future path
of the exogenous variables is resolved. In practice, the future values of x; are often treated
as known and fixed at pre-specified values. The resultant forecasts for y; are then referred
to as scenario (or conditional) forecasts, with each scenario representing a different set of
assumed future values of the exogenous variables. This approach under-estimates the de-
gree of forecast uncertainties. A more plausible approach would be to treat x; as strongly
(strictly) exogenous at the estimation stage, but to allow for the forecast uncertainties of the
endogenous and the exogenous variables jointly. The exogeneity assumption will simplify
the estimation process but does not eliminate the need for a joint treatment of future uncer-
tainties associated with the exogenous variables and the shocks to the endogenous variables.

Now, suppose the joint event of interest is defined by

01(Zp. s 2142, Zrn) <agfor 1=1,2,... L,

9In the case of cointegrating vector autoregressive models analysed later in this paper, a more general
version of this result is needed. This is because the cointegrating coeflicients converge to their asymptotic
distribution at a faster rate than the other parameters in the model. However, the general results of this
section are not affected by this complication.
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or, equivalently,
¥ (ZT+17 Zri9,. .. 7ZT+h) <a,

!/

where ¢(.) and a are defined by the Lx 1 vectors ¢(.) = (01(.),02(.), ....0r(.)), a = (a1, as, ..., ar)’,
©1(Zpy 1, 2712, - - -, Zryn) s ascalar function of the variables over the forecast horizon T+1,...,

T + h and a; is the “threshold” value associated with ¢;(.). To simplify the exposition, we
denote this joint event by 2,. The (conditional) probability forecast associated with this
event is given by

7 (a,h;(.),0) = Prp (2711, 2122, - - s 2rn) < a| Qp;M(0)]. (8)

In practice, we might also be interested in computing probability forecasts for a number of
alternative threshold values over the range a; € [Amin, @max)-

If the model is known to be M (0) defined by (6) but the value of 6 is not known, a point
estimate of 7 (a,h; ¢(.), @) can be obtained by

s <a>h§‘P(-);§T) = f(Zri1, 2140, - .. Zrsp | QT;ET)dZTH ..dzpip, (9)
Ay

where f(z7y1,Zr42,.-. 2745 | QT;aT) is the joint density of zp,4,... 27, conditional
on {7 and evaluated at 6 :§T. This probability density function (viewed as a function of
a), also known as the “profile predictive likelihood”,'° takes account of future uncertainties
arising from the model’s stochastic structure and the future uncertainty with respect to the
evolution of the model’s exogenous variables. It does not, however, take account of model or
parameter uncertainties, as it is computed for a given density function within M (0) and for a
given value of 8, namely ET. To allow for parameter uncertainty, we assume that conditional
on Qr, the probability distribution function of @ is given by ¢ (0 | 7). Then

7 (ah () = / _wlakig().0) 9(02r) do. (10)

or, equivalently,

s (a,h; (P()) = / f(ZT+17 R/ N} ’ QT; 0) g (0 ’QT) dZT+1. . .dZT+hd0.
6co JA,

In practice, computation of 7 <a,h; e(.) ,éT) is typically carried out by stochastic simulations.

For further details, see Section 5 and the Appendix.

In a Bayesian context, g (6 | Qr) could be derived from a prior distributional assumptions
on 6 at the start of the estimation period. Alternatively, in the case where the asymptotic
normal theory applies to @7, it may be reasonable to compute the probability density function
assuming

0 |QrSN (§T, T*lffg) .

10See, for example, Bjgrnstad (1990).



In this case the point estimate of the probability forecast, (a,h;go(.),aT) , and the al-

ternative estimate, 7 (a,h;p(.)), that allows for parameter uncertainty are asymptotically
equivalent as T" — oo. The latter is the “bootstrap predictive density” described in Harris
(1989) and its application to a cointegrating VAR model will be discussed in Section 4. Also,
both of these estimates tend to 7 (a,h; ¢(.),d), which is the profile predictive likelihood for
a known value of 8. But for a fixed T, the two estimates could differ substantially, as the
applications in Section 5 demonstrate.

4 An Application to the UK Economy

4.1 A Cointegrating VAR Model of the UK Economy

In principle, probability forecasts can be computed using any macroeconometric model,
although the necessary computations would become prohibitive in the case of most large
scale macroeconometric models, particularly if the objective of the exercise is to compute
the probabilities of joint events at different horizons. At the other extreme, the use of
small unrestricted VAR models, while computationally feasible, may not be satisfactory for
the analysis of forecast probabilities over the medium term. An intermediate alternative
that we shall follow here is to use a cointegrating VAR model that takes account of the
long-run relationships that are likely to exist in a macro-economy. A model of this type
has been developed for the UK by Garratt et al. (2001, 2002). This model is based on a
number of long-run relations derived from arbitrage conditions in goods and capital markets,
solvency and portfolio balance conditions. The model comprises six domestic variables whose
developments are widely regarded as essential to a basic understanding of the U.K. economy;
namely, output, inflation, the exchange rate, the domestic relative to the foreign price level,
the nominal interest rate and real money balances. It also contains three foreign variables:
foreign output, foreign interest rate and oil prices (see Table 1 for a detailed description of
the variables used).

The five long-run equilibrium relationships of the model outlined in Garratt et al. (2001)
are given by:

Pt — Df — € = bio + bt + &1, (11

Ty — 717 = bao + &o641, (12
Ye — Y; = bao + &3041, (13
(
(

e~
— N N N N

hy — y¢ = bag + bart + Baore + Basye + Eapr1, 1
re — Apy = bso + &5.441, 15

where p; is the logarithm of domestic prices, p; is the logarithm of foreign prices, e; is the
logarithm of nominal exchange rate (defined as the domestic price of a unit of the foreign
currency, so that a depreciation of the home currency increases ¢e;), y; is the logarithm of
real per capita domestic output, y; is the logarithm of real per capita foreign output, r; is
the domestic nominal interest rate variable, r; is the foreign nominal interest rate variable,
h: is the logarithm of the real per capita money stock, we also use the variable p? which is
the logarithm of oil prices and ;41,2 = 1,2, .., 5, are stationary reduced form errors.

[10]



A detailed account of the framework for long run macro-modelling, describing the eco-
nomic theory that underlies the relationships in (11) - (15), is provided in Garratt et al.
(2001). In brief, we note here that (11) is the Purchasing Power Parity (PPP) relationship,
which allows for a trend in the real exchange rate, based on international goods market
arbitrage; (12) is an Interest Rate Parity (IRP) relationship, and is based on arbitrage be-
tween domestic and foreign bond holdings; (13) is an “output gap” (OG) relationship, based
on a stochastic version of the Solow growth model in which there is common technological
progress in production at home and abroad;!' (14) is a real money balance (RMB) relation-
ship, based on the condition that the economy must remain solvent in the long run; and (15)
is the Fisher Interest Parity (FIP) relationship.

The five long-run relations of the model, (11) - (15), can be written compactly as:

Et = IBIZt,1 — b1 (ZL, — 1) — bo, (16)
where
2o = (D7, €0, 78, Tty APt Yuy Pt — Df s e — yt73/2k)/7 (17)
by = (bo1, boz;, bo3,bos, bos)', b1 = (b11,0,0,b41,0),
ét = (§1t7 g?ta €3t7 £4t7 €5t)l7
and
0 -1 0 0 0 0 10 0
0o 0 -1 1 0 0 00 O
B=|0 0 0 0 0 1 00 —1 (18)
0 0 0 =B 0 —f3 01 0
0 0 0 1 -1 0 00 O
Under the assumption that oil prices are long-run forcing, efficient estimation of the
parameters can be based on the following conditional error correction model,'?
p—1
Ay, =a, —a, |Bz,_, —bi(t - 1)} 3 Tyildze i+ 4, A + Uy, (19)
i=1

where y; = (es, 7}, 74, Ape, Yi, Pr — Piy he — i, y7)', @, is an 8 x 1 vector of fixed intercepts,
is a 8 X 5 matrix of error-correction coefficients, {I'y;,7 = 1,2,...,p — 1} are 8 X 9 matrices
of short-run coefficients, 1, is an 8 x 1 vector representing the impact effects of changes in
oil prices on Ay, and u,, is an 8 x 1 vector of disturbances assumed to be I1D(0, ¥,), with
¥, being a positive definite matrix. This specification embodies the economic theory’s long-
run predictions by construction, in contrast to the more usual approach where the starting

HOur use of the term ‘output gap relationship’ to describe (13) should not be confused with the more usual
use of the term which relates more specifically to the difference between a country’s actual and potential
output levels (although clearly the two uses of the term are related).

12See Pesaran, Shin and Smith (2000) for details.
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point is an unrestricted VAR model with some vague priors about the nature of the long-run
relations.

For multi-step ahead forecasting, we also need to augment the conditional model, (19),
with a long-run forcing oil price equation. Such a general specification is given by

p—1
Ap] =a, + Z LoiAzy_i + U, (20)

=1

where I'y; is a 1 X 9 vector of fixed coefficients and u,; is a serially uncorrelated error term
distributed independently of u,;. This specification encompasses the random walk model as
a special case. It is the absence of the error correction terms, 3'z, ; — by(t — 1), in (20)
which renders oil price changes long-run forcing for y;.

Combining (19) and (20) solving for Az, yields the following reduced form equation

p—1

Az =a— o [/Blzt—l —bi(t — 1)] + Z LAz + vy, (21)
i=1
where
a 0 .
a= y , o= , Iy = o : 2
< ay - ,l’ljyoa/o ) ( ay > ( Pyi - /'pyo]-_‘oi ) ( )
and

Uot
vy = , 23
! < uyt - /l')byouot ) ( )

is the vector of reduced form errors assumed to be iid(0,X),where 3 is a positive definite
matrix.

4.2 The Estimated Model

Estimation of the parameters of the conditional model, (19), can be carried out using the
long-run structural modelling approach described in Pesaran and Shin (2001) and Pesaran,
Shin and Smith (2000). With this approach, having selected the order of the underlying VAR
model (using model selection criteria such as the Akaike Information Criterion (AIC) or the
Schwarz Bayesian Criterion (SBC')), we test for the number of cointegrating relations using
the conditional model, (19), with unrestricted intercepts and restricted trend coefficients.
As shown in Pesaran, Shin and Smith (2000), these restrictions ensure that the solution of
the model in levels of z; will not contain quadratic trends. We then compute Maximum
Likelihood (ML) estimates of the model’s parameters subject to exact and over-identifying
restrictions on the long-run coefficients.'® If there is empirical support for the existence of
five long-run relationships, as suggested by theory, exact identification in our model requires
five restrictions on each of the five cointegrating vectors (each row of 3), or a total of

13The computations were carried out using Pesaran and Pesaran’s (1997) Microfit 4.1.
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twenty-five restrictions on 3. These represent only a subset of the restrictions suggested by
economic theory as characterized in (18), however. Estimation of the model subject to all
the (exact- and over-identifying) restrictions given in (18) enables a test of the validity of
the over-identifying restrictions, and hence the underlying long-run economic theory, to be
carried out. Of course, it also provides the means for generating point as well as probability
forecasts.

Such an empirical exercise is conducted by Garratt et al. (2001) using UK data over
the period 1965q1-1999g4. Their results showed that: (i) a VAR(2) model can adequately
capture the dynamic properties of the data; (ii) there are five cointegrating relationships
amongst the nine macroeconomic variables; and that (iii) the over-identifying restrictions
suggested by economic theory, and described in (11) - (15) above, cannot be rejected. For
the present exercise, we re-estimated the model on the more up-to-date sample, 1965ql-
2001ql. The results continue to support the existence of 5 cointegrating relations, and are
qualitatively very similar to those described in Garratt et al. (2001). For example, the
interest rate coefficient in the real money balance equation, 34, was estimated to be 75.68
(standard error 35.34), compared to 56.10 (22.28) in the original work, while the coefficient
on the time trend, by;, was estimated to be 0.0068 (0.0010), compared to 0.0073 (0.0012).

Since the modelling exercise here is primarily for the purpose of forecasting, we next re-
estimated the model over the shorter period of 1985q1-2001q1, taking the long-run relations
as given. The inclusion of the long-run relations estimated over the period 1965q1-2001ql
in a cointegrating VAR model estimated over the shorter sample period 1985q1-2001ql, is
justified on two grounds: (i) as argued by Clement and Hendry (1999, 2002) and Barassi,
Coporale and Hall (2001), the short-run coefficients are more likely to be subject to struc-
tural change as compared to the long-run coefficients; and (ii) the application of Johansen’s
cointegration tests are likely to be unreliable in small samples. Following this procedure, we
are able to base the forecasts on a model with well-specified long-run relations, but which
is also data-consistent, capturing the complex dynamic relationships that hold across the
macroeconomic variables over recent years.

Table 2 gives the estimates of the individual error correcting relations of the model
estimated over the 1985q1-2001ql. These estimates show that the error correction terms
are important in most equations and provide for a complex and statistically significant set
of interactions and feedbacks across commodity, money and foreign exchange markets. The
estimated error correction equations pass most of the diagnostic tests, and compared to
standard benchmarks fit the historical observations relatively well. In particular, the r
of the domestic output and inflation equations, computed at 0.549 and 0.603 respectively,
are quite high. The diagnostic statistics for tests of residual serial correlation, functional
form and heteroskedasticity are well within the 90 per cent critical values, although there is
evidence of non-normal errors in the case of some of the error correcting equations. Non-
normal errors is not a serious problem at the estimation and inference stage, but can lead
to biased probability forecasts. To deal with this problem, we shall also consider the use of
non-parametric (re-sampling) techniques for the computation of one-step ahead probability
forecasts.'

1But as explained in the Appendix the use of non-parametric techniques for computation of multi-step
ahead forecasts can be problematic.
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4.3 Evaluation of Probability Forecasts

In addition to the above in-sample diagnostics, an out-of-sample evaluation of the model’s
performance is also desirable. For this purpose, we considered a number of simple events
and two versions of the cointegrating VAR model: a restricted version as set out in Table 2
which imposes the over-identifying restrictions on the long-run relations based on economic
theory, and an alternative, purely cointegrating specification which does not. This alternative
model is also a VAR model in the nine variables with the same lag order, a cointegrating
rank of 5, and unrestricted short-run dynamics, but it does not incorporate any of the long-
run over-identifying restrictions.!® Our objective here is to see if the imposition of long-run
restrictions yield better forecasts. Note that forecasts from an exactly identified cointegrating
VAR model are invariant to the way the long-run relations are identified.

Using these alternative specifications of the conditional model, (19), combined with an
estimated version of the oil price equation, (20), we generated two sets of forecasts for a num-
ber of simple events over the period 1999q1-2001ql in a recursive manner, where we first
estimated the models over the period 1985q1-1998q4 and computed one-step-ahead probabil-
ity forecasts for 1999q1, and ended with forecasts for 2001q1 based on models estimated over
the period 1985q1-2000g4.'® The probability forecasts were computed for directional events
of interest. In the case of p, — p}, e;, r¢, 7 and Ap;, we computed the probability that these
variables rise next period, namely Pr[A(p; — p;) > 0] €;—1], Pr[Ae; > 0| €4_1]), and so on.
For the remaining trended variables, (y:, y;, hy — y: and p?), we considered the event that the
rate of change of these variables rise from one period to the next, namely Pr [A2%y; > 0 | 4],
Pr[A%y; > 0] ;_4]), and so on. The probability forecasts are computed recursively using
the parametric stochastic simulation technique which allow for future uncertainty and the
nonparametric bootstrap technique which allow for parameter uncertainty. Both techniques
are described in the Appendix. To evaluate the probability forecasts, we adopted a statistical
approach, using a threshold probability of 0.5, so that an event was forecast to be realized
if its probability forecast exceeded 0.5.!" Formal statistical comparisons of forecasts and
realizations were made using Kuipers score (KS), Pesaran and Timmermann (PT) (1992)
directional (market timing) statistic and the probability integral transform as proposed by
Dawid (1984) and developed further in Diebold, Gunther and Tay (1998).

Table 3a reports the incidence of the four possible combinations of our directional fore-
casts based on the over-identified model, and Table 3b gives the results for the exactly
identified specification. For each variable, nine event forecasts are generated over the period
1999q1-2001ql (nine quarters), thus providing 81 forecasts for evaluation purposes. These

I5For both the over and exactly identified models, the coefficients of the cointegrating relationships are
estimated using data for the longer period 1965q1-1998q4.

16Tt is worth emphasising that the two-stage estimation procedure used to obtain our model, in which
estimates of the long-run and the short-run relationships were based on a samples starting in 1965q1 and
1985q1 respectively, was also employed in the evaluation exercise. But the end date of the sample rolled
forward in the recursion so that no out-of-sample information was used in the construction of the forecasts.

17 As an alternative, we could conduct a decision-theoretic approach to forecast evaluation as advocated in
Granger and Pesaran (2000) and reviewed in Pesaran and Skouris (2001), which bases the evaluation of the
probability forecasts on their implied economic value in a specific decision-making context. However, this
demands a complete specification of the decision problem and this has been rather rare in macro-economic
policy evaluation.
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event forecasts are compared with their realizations and grouped under the headings, ‘UU’,
indicating forecasts and realizations are in the same upward direction, ‘UD’ indicating an
upward forecast with a realized downward movement, and so on. High values for UU and
DD indicate an ability of the model to forecast upward and downward movements correctly,
while high values of UD and DU suggest poor forecasting ability.

Using the information in Tables 3a and 3b, the Kuipers score is defined by H — F, where H
is the proportion of ups that were correctly forecast to occur, and F' is the proportion of downs
that were incorrectly forecast.!® It provides a measure of the accuracy of directional forecasts
of the model, with high positive numbers indicating high predictive accuracy. The probability
forecasts based on the model subject to the long-run over-identifying restrictions yielded
the more accurate forecasts. It also turned out that allowing for parameter uncertainty
in the computation of probability forecasts resulted in marginally poorer forecasts. For
example, the Kuipers score of forecasts based on the over-identified model that allow only
for future uncertainty was 0.342, as compared to 0.216 for the exactly identified model.'”
The corresponding estimates when parameter uncertainty is also allowed for were 0.252 and
0.120, respectively.

The Kuipers score is a useful summary measure but does not provide a statistical test.
Pesaran and Timmermann (1992) provide a formal statistical test of the directional forecast-
ing performance which, as shown in Granger and Pesaran (2000b), turns out to be equivalent
to a test based on the Kuipers score. The PT statistic is defined by

PP

PT = T
{V(p)- v}’

?

where P is the proportions of correctly predicted upward movements, P* is the estimate of
the probability of correctly predicting the events under the null hypothesis that forecasts and
realisations are independently distributed, and V( P) and V(P*) are the consistent estimates
of the variances of P and P* respectively. Under the null hypothesis, the PT statistic has
a standard normal dlbtrlbutlon. For the forecasts based on the over-identified model, we
obtained PT = 3.16 when only future uncertainty was allowed for, and PT = 2.35 when
both future and parameter uncertainties were taken into account. Both of these statistics
are statistically highly significant. However, the probability forecast results based on the
exactly identified model were much less convincing. The associated PT statistics for the case
of future uncertainty only, and when both future and parameter uncertainties were taken
into account were 1.95 and 1.09, respectively. These results clearly highlight the potential
importance of imposing theory-based long-run restrictions for probability forecasting. It
would be interesting to see if this result also holds in other similar applications.

8These two proportions are known as the “hit rate” and “false alarm rate” respectively. In the case where
the outcome is symmetric, in the sense that we value the ability to forecast ups and downs equally, then the
score statistic of zero means no accuracy, whilst high positive and negative values indicate high predictive
power.

Y These statistics are based on probability forecasts where future uncertainty is taken into account using
a parametric procedure. The results are hardly affected if a non-parametric procedure used instead. For
example, for the over-identified model the Kuipers score based on the probability forecasts computed using
the non-parametric approach was 0.345, compared to 0.342 obtained with the parametric procedure.
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An alternative approach to probability forecast evaluation would be to use the probability
integral transforms

U<Zt):/ e (%) dx, t=T+1,T+2,...T+n,

—00

where p; (x) is the forecast probability density function, and z;, t =T + 1,7 + 2,...,T + n,
the associated realizations. Under the null hypothesis that p; (x) coincides with the true
density function of the underlying process, the probability integral transforms will be dis-
tributed as iid U|0, 1]. This result is due to Rosenblatt (1952), and has been recently applied
in time series econometrics by Diebold, Gunther and Tay (1998).2° In our application,
we first computed a sequence of one step ahead probability forecasts (with and without
allowing for parameter uncertainty) from the over-identified and exactly identified models
for the nine simple events set out above over the nine quarters 1999¢1,1999¢2, ..., 2001q¢1,
and hence the associated probability integral transforms, wu(z;). To test the hypothesis
that these probability integral transforms are random draws from U|0, 1], we calculated the
Kolmogorov-Smirnov statistic, D,, = sup, |F,,(x) — U(x)|, where F,(z) is the empirical cu-
mulative distribution function (CDF') of the probability integral transforms, and U(z) = z, is
the CDF of iid U[0, 1]. Large values of the Kolmogorov-Smirnov statistic, D,,, indicate that
the sample CDF is not similar to the hypothesized uniform CDF.2! For the over-identified
specification, we obtained the value of 0.111 for the Kolmogorov-Smirnov statistic when only
future uncertainty was allowed for, and the larger value of 0.148 when the underlying proba-
bility forecasts took account of both future and parameter uncertainties. The corresponding
statistics for the exactly identified model turned out to be 0.111 and 0.136, respectively. All
these statistics are well below the 5% critical value of Kolmogorov-Smirnov statistic (which
for n = 81 is equal to 0.149), and the hypothesis that the forecast probability density func-
tions coincide with the true ones cannot be rejected. This is in line with the results of the
directional tests and provides further support for the use of the over-identified specification
in forecasting. With this in mind, we now proceed to the generation of out-of-sample forecast
probabilities of interest using the over-identified model.

5 Probability Forecasts of Inflation and Output Growth

In this section, we present out-of-sample probability forecasts of two events of particular
interest for the analysis of macro-economic policy in the UK, namely inflation targeting
and output growth. Inflation targets have been set explicitly in the UK since October
1992, following the UK’s exit from the European Exchange Rate Mechanism (ERM). The
Chancellor’s stated objective at the time was to achieve an average annual rate of inflation
of 2%, while keeping the underlying rate of inflation within the 1%-4% range. In May 1997,
the policy of targeting inflation was formalized further by the setting up of the Monetary
Policy Committee (MPC), whose main objective is to meet inflation targets primarily by

20 Also see Diebold, Hahn and Tay (1999) and Berkowitz (1999).
21For details of the Kolmogorov-Smirnov test and its critical values see, for example, Neave and Worthing-
ton (1992, pp.89-93).
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influencing the market interest rate through fixing the base rate at regular intervals. Its
current remit, as set annually by the Chancellor, is to achieve an average annual inflation
rate of 2.5%, with the rate falling in the target range 1.5%-3.5%.

The measure of inflation used by the MPC is the Retail Price Index, excluding mortgage
interest payments, (RPI-x), and the time horizon over which the inflation objective is to be
achieved is not stated. Inflation rates outside the target range act as a trigger, requiring the
Governor of the Bank of England to write an open letter to the Chancellor explaining why
inflation had deviated from the target, the policies being undertaken to correct the deviation,
and how long it is expected before inflation is back on target. The Bank is also expected to
conduct monetary policy so as to support the general economic policies of the government,
in so far as this does not compromise its commitment to its inflation target.

Since October 1992, the Bank of England has produced a quarterly Inflation Report
which describes the Bank’s assessment of likely inflation outcomes over a two-year forecast
horizon. In addition to reviewing the various economic indicators necessary to place the
inflation assessment into context, the Report provides forecasts of inflation over two year
horizons, with bands presented around the central forecast to illustrate the range of inflation
outcomes that are considered possible (the so-called fan charts). The forecasts are based on
the assumption that the base rate is left unchanged. Since November 1997, a similar forecast
of output growth has also been provided in the Report, providing insights on the Bank’s
perception of the likely outcome for the government’s general economic policies beyond the
maintenance of price stability. For a critical assessment of the Bank’s approach to allowing
for model and parameter uncertainties, see Wallis (1999).

The fan charts produced by the Bank of England are an important step towards acknowl-
edging the significance of forecast uncertainties in the decision making process and it is clearly
a welcome innovation. However, the approach suffers from two major shortcomings. First,
it seems unlikely that the fan charts can be replicated by independent researchers. This is
largely due to the subjective manner in which uncertainty is taken into account by the Bank,
which does not readily lend itself to independent analysis even though it may be justified
from a real time decision-making perspective. Second, the use of fan charts is limited for the
analysis of uncertainty associated with joint events. Currently, the Bank provides separate
fan charts for inflation and output growth forecasts, but in reality one may also be interested
in joint events involving both inflation and output growth, and it is not clear how the two
separate fan charts could be used for such a purpose. Here, we address both of these issues
using the long-run structural model developed in the previous section.??

In what follows, we present plots of estimated predictive distribution functions for infla-
tion and output growth at a number of selected forecast horizons using the over-identified
version of the cointegrating model, (19), augmented with the oil price equation, (20). These
plots provide us with the necessary information with which to compute probabilities of a
variety of events, and demonstrate the usefulness of probability forecasts in conveying the
future and parameter uncertainties that surround the point forecasts. But our substan-
tive discussion of the probability forecasts focuses on two central events of interest; namely,
keeping the rate of inflation within the announced target range of 1.5 to 3.5 per cent, and

22We do not address the important issue of model uncertainty, but our approach could be adapted to deal
with it following a method similar to that discussed in Draper (1990).
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avoiding of a recession. Following the literature, we define a recession as the occurrence
of two successive negative quarterly growth rates. Other concepts of recessions, such as a
negative annualised rate of output growth, could also be considered, although we do not
expect the probability estimates presented in this section would be much affected by which
one of these notions is adopted.??

5.1 Point and Interval Forecasts

Before reporting the probability forecasts, it is worth briefly summarizing the point and
interval forecasts to help place the probability forecasts in context. Tables 4a and 4b provide
the point forecasts for domestic inflation rates and output growth over the period 2001q1-
2003ql together with their 95% confidence intervals. Table 4a presents the four quarterly
growth rate forecasts, while Table 4b gives the forecasts of annualised quarter-on-quarter
growth rates.?*

The model predicts the average annual rate of inflation to fall from 2.5% in 2001ql to
1.8% in 2001g2. This is followed by further falls for the rest of 2001 before returning to
approximately 2% to the end of the forecast horizon, 2003ql. These point forecasts are
lower than the inflation rates realized during 2000, as illustrated by the historical data on
inflation presented in Figure la. Output growth is predicted to be positive throughout the
forecast horizon, falling from an average annual rate of 2.8% in 2000 to 1.4% by the end of
2001, before rising to around 2.0% thereafter. (See Table 4a). Therefore, based on these
point forecasts, we may be tempted to rule out the possibility of a recession occurring in the
UK over the 2001-2003 period.

However, these point forecasts are subject to a high degree of uncertainty, particularly
when longer forecast horizons are considered. For example, at the two year forecast horizon
the point forecast of annual inflation in 2003q1 is predicted to be 1.9%, which is well within
the announced inflation target range. But the 95% confidence interval covers the range -0.8%
to +4.6%. For the quarter on quarter definition, the uncertainty is even larger, with a range
of -3.5% to 7.5% around a point forecast of approximately 2.0%. Similarly, the point forecast
of the annual rate of output growth in 2003q1 is 2.1%, but its 95 per cent confidence interval
covers the range -2.6% to +6.7%. As we have noted, it is difficult to evaluate the significance
of these forecast intervals for policy analysis and a more appropriate approach is to directly
focus on probability forecasts as a method of characterising the various uncertainties that
are associated with events of interest. This is the topic that we shall turn to now.

5.2 Predictive Distribution Functions

In the case of single events, probability forecasts are best represented by means of probability
distribution functions. Figures 2a-2b give the estimates of these functions for the four quar-

23Harding and Pagan (2000) make the argument that, by focusing on turning points in output levels,
this definition of recession matches the most widely-held view of the business cycle and one which decision
makers find most useful. As a point of comparison, in this paper, we also consider the event ‘output growth
prospects are poor’, defined when the four quarterly moving average of output growth falls below 1 per cent.

241t is worth noting that the inflation target is expressed in terms of RPI-x while our model provides
forecasts of RPI.
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terly moving averages of inflation and output growth for selected forecast horizons: 1, 4 and
8 quarters ahead. These estimates are computed using the simulation techniques described
in detail in the Appendix and take account of both future and parameter uncertainties. We
shall refer to these as the bootstrap predictive distribution (BPD) functions, and denote
them by 7.

Figure 2 presents the BPD function estimates of inflation for the threshold values ranging
from 0% to 4% per annum at the three selected forecast horizons. Perhaps not surprisingly,
the estimates for the one-quarter ahead forecast horizon is quite steep, but starts to become
flatter as the forecast horizon is increased. Above the threshold value of 2.0%, the estimated
probability distribution functions shift to the right as longer forecast horizons are considered,
showing that the probability of inflation falling below thresholds greater than 2.0% declines
with the forecast horizon. For example, the forecast probability that inflation lies below 3.5%
becomes smaller at longer forecast horizons, falling from close to 100% in 2001q2 to 70%
in 2003q1l. These forecast probabilities are in line with the recent historical experience, as
set out in Figure 1. Over the period 1985q1-2001q1, the average annual rate of inflation fell
below 3.5% for 53.9 per cent of the quarters, but were below this threshold value throughout
the last two years of the sample, 1999q1-2001q1.

Figure 2b plots the BPD functions for output growth. These estimates also become flatter
as the forecast horizon is increased, reflecting the greater uncertainty associated with growth
outcomes at longer forecast horizons. These plots also suggest a weakening of the growth
prospects in 2001 before recovering a little at longer horizons. For example, the probability
of a negative output growth in 2001¢2 is estimated to be almost zero, but rises to 14% in
2002q1 before falling back to 12% in 2003q. Therefore, a rise in the probability of a recession
is predicted, but the estimate is not sufficiently high for it to be much of a policy concern
(at least viewed from the end of our sample period 2001q1).

5.3 Event Probability Forecasts

Here we consider three single events of particular interest:

A :  Achievement of inflation target, defined as the four-quarterly moving
average rate of inflation falling within the range 1.5%-3.5%.

B : Recession, defined as the occurrence of two consecutive quarters
of negative output growth.

C : Poor growth prospects, defined to mean that the four-quarterly moving

average of output growth is less than 1%.
and the joint events

ANB : Inflation target is met and recession is avoided.

ANC : Inflation target is met combined with reasonable growth prospects.

where B and C denote the complement of events B and C.
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5.3.1 Inflation and the Target Range

Two sets of estimates of Pr(Azy, | Q7) are provided in Table ba (for h = 1,2,...,8) and
depicted in Figure 3 over the longer forecast horizons h = 1,2, ...,24; namely the profile
predictive likelihoods (PPL or 7) which only take account of future uncertainty, and the
bootstrap predictive distribution (BPD’s or 7) functions that allow for future as well as pa-
rameter uncertainties. As we shall see, m and 7 both convey a similar message in these Tables
and Figures, but there are nevertheless some differences between them, at least at some fore-
cast horizons, so that it is important that both estimates are considered in practice.?

Based on these estimates, and conditional on the information available at the end of
2001q1, the probability that the Bank of England will be able to achieve the government in-
flation target is estimated to be high in the short-run but falls in the longer run, reflecting the
considerable uncertainty surrounding the inflation forecasts at longer horizons. Specifically,
the probability estimate is high in 2001q2, at 0.87 (0.80) for 7 (7), but it falls rapidly at the
end of 2001 /early 2002 as the likelihood that inflation will lie below the 1.5% threshold rises.
In fact, forecast levels of inflation are low by historical standards throughout the forecast
period: as shown in Figure 4b, for example, the probability that inflation will fall below
3.5%, the upper threshold of the target range, is estimated to be close to 1.0 initially and
settles down to around 0.70 (0.77) using 7 (7) in the longer term. Ultimately, the estimated
probability of achieving inflation within the target range settles to 0.38 (0.35) for 7 (7) in
2003ql. However, at the same time, the probabilities of inflation falling below and above
the target range are 0.32 and 0.30, respectively, using 7 (or 0.42 and 0.23 using 7), so these
figures reflect the relatively high degree of uncertainty associated with inflation forecasts
even at moderate forecast horizons. Hence, while the likely inflation outcomes are low by
historical standards and there is a reasonable probability of hitting the target range, there
are also comparable likelihoods of undershooting and overshooting the inflation target range
at longer horizons.

5.3.2 Recession and Growth Prospects

Figures 5 and 6 show the estimates of the recession probability, Pr(Bry, | £2r), and the
low growth probability, Pr(Cr.y | Qr), over the forecast horizons h = 1,2, ..., 24. For these
events, the probability estimates that allow for parameter uncertainty (i.e. 7) exceed those
that do not (i.e. 7) at shorter horizons, but the opposite is true at longer horizons. For
event B, m and 7 are very similar in size across the different forecast horizons and suggest a
very low probability of a recession. Based on the 7 estimate, the probability of a recession
occurring in 2001q2 is estimated to be around zero, rising to 0.09 in 2002q1. (See Table 5b).
However, the probability that UK faces poor growth prospects is much higher, in the region
of 0.3-0.4 during 2001, falling to 0.3 in 2003ql according to the 7 estimates.

25For a given model and sample size, allowing for parameter uncertainty could increase or decrease the
probability of an event of interest and there can be no general rule as to the order of magnitudes of the two
types of probability estimates.
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5.3.3 Joint Event Probabilities

Single events are clearly of interest but very often decision makers are concerned with joint
events involving, for example, both inflation and output growth outcomes. As examples here,
we consider the probability estimates of the two joint events, Az, N Brip, and Ap.pnNCrap
over the forecast horizons h = 1,2, ..., 24. Probability estimates of these events (based on 7)
are presented in Table 5b and Figures 7a and 7b. Both events are of policy interest as they
combine the achievement of the inflation target with alternative growth objectives. Also
provided in each of the Figures is a plot of the product of the single event probabilities;
that is Pr (Ar.p | Qr) x Pr (§T+h | QT), h =1,2,.24 in Figure 7a and Pr(Ar.y | Qr) x
Pr (€T+h | QT), h = 1,2,..24 in Figure 7b. For the event Ar,j, N By, the joint probability
forecasts are similar in magnitude to those that relate to Pr (Ar.y, | Qr) alone at every time
horizon. Of course, this is not surprising since the probability of a recession is estimated
to be small at most forecast horizons and therefore the probability of avoiding recession is
close to one.?® More interesting though are the plots provided in Figure 5b where the joint
probabilities are clearly distinct from either of the single event probabilities. In this case, it
is also interesting to compare the joint probabilities with the product of the two single event
probabilities since this provides an indication of the degree of dependence/independence of
the two events. As it turns out, these two sets of probabilities are very close at most forecast
horizons, thus indicating little dependence between output growth prospects and inflation
outcomes. This result is certainly compatible with the long-term neutrality hypothesis that
postulates independence of inflation outcomes from output growth outcomes in the long-run.

6 Concluding Remarks

One of the many problems economic forecasters and policy makers face is conveying to the
public the degree of uncertainty associated with point forecasts. Policy makers recognise that
their announcements, in addition to providing information on policy objectives, can them-
selves initiate responses which effect the macroeconomic outcome. This means that Central
Bank Governors are reluctant to discuss either pessimistic possibilities, as this might induce
recession, or more optimistic possibilities, since this might induce inflationary pressures.
There is therefore an incentive for policy makers to seek ways of making clear statements re-
garding the range of potential macroeconomic outcomes for a given policy, and the likelihood
of the occurrence of these outcomes, in a manner which avoids these difficulties.

In this paper, we have argued for the use of probability forecasts as a method of charater-
ising the uncertainties that surround forecasts from a macroeconomic model believing this
to be superior to the conventional way of trying to deal with this problem through the use of
confidence intervals. We argue that the use of probability forecasts has an intuitive appeal,
enabling the forecaster (or users of forecasts) to specify the relevant “threshold values” which
define the event of interest (e.g. a threshold value corresponding to an inflation target range
of 1.5% to 3.5%). This is in contrast to the use of confidence intervals which define thresh-
old values only implicitly, through the specification of the confidence interval widths, and

260f course, even relatively minor differences in probabilities can have an important impact on decisions
if there are large, discontinuous differences in the net benefits of different outcomes.
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these values may or may not represent thresholds of interest. A further advantage of the use
of probability forecasts compared with the use of confidence intervals and over other more
popular methods is the flexibility of probability forecasts, as illustrated by the ease with
which the probability of joint events can be computed and analysed. Hence, for example, we
can consider the likelihood of achieving a stated inflation target range whilst simultaneously
achieving a given level of output growth, with the result being conveyed in a single num-
ber. In situations where utility or loss functions are non-quadratic and/or the constraints
are non-linear the whole predictive probability distribution function rather than its mean is
required for decision making. This paper shows how such predictive distribution functions
can be obtained in the case of long-run structural models, and illustrates its feasibility in
the case of a small macro-econometric model of the UK.

The empirical exercise of the paper provides a concrete example of the usefulness of
event probability forecasting both as a tool for model evaluation and as a means for con-
veying the uncertainties surrounding the forecasts of specific events of interest. The model
used represents a small but comprehensive model of the UK macro-economic which incorpo-
rates long-run relationships suggested by economic theory so that it has a transparent and
theoretically-coherent foundation. The model evaluation exercise not only demonstrates the
statistical adequacy of the forecasts generated by the model but also highlights the consider-
able improvements in forecasts obtained through the imposition of the theory-based long-run
restrictions. The predictive distribution functions relating to single events and the various
joint event probabilities presented in the paper illustrate the flexibility of the functions in
conveying forecast uncertainties and, from the observed independence of probability forecasts
of events involving inflation and growth, in conveying information on the properties of the
model. The estimated probability functions also show the importance of taking into account
parameter uncertainty as well as future uncertainty in deriving the probability forecasts.

The various probability forecasts presented in the paper are encouraging from the point of
view of the government’s inflation objectives. Taking account of future as well as parameter
uncertainties, the probability of inflation falling within the target range is quite high in the
short run, accompanied with only a small probability of a recession. Over a longer forecast
horizon the probability of inflation falling within the target range starts to decline, primarily
due to a predicted rise in the probability of inflation falling below 1.5%, the lower end of
the target range. Overall, however, based on information available at the end of 2001ql,
the probability that the inflation objective is achieved with moderate output growths in the
medium term is estimated to be reasonably high, certainly higher than the probabilities of
inflation falling above or below the target range.?”

2T0Of course, these probability forecasts have taken into account future uncertainty and parameter uncer-
tainty only and have not accommodated model uncertainty. It is possible that different conclusions would
be drawn if we extended the analysis to consider other models in addition to that which we have estimated,
and on which our probability forecasts are based.
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A Appendix: Computation of Probability Forecasts by
Stochastic Simulation

In this Appendix, we consider some of the computational issues that will typically be encoun-
tered in the calculation of probability forecasts and note how these can be dealt with through
the use of stochastic simulation methods. These methods involve repeatedly simulating the
future values of the variables under study, z;, (say S times), using the assumed stochastic
structure of the data generating process, to obtain zgfih(é), h=12,..,s=1,2,...,5. On
each simulation, the occurrence or non-occurrence of the event of interest is noted and, even-
tually, the probability of the event occurring can be calculated as the proportion of the S
simulations in which the event was observed to occur. We illustrate the use of these methods
below in the context of the general vector error correcting model used in the paper.

For forecasting purposes we first write the reduced form error correction model (21) in
the following form

p
Zy :Z@izt_i—i—ag—kalt—f—vt, t = 1,2,...,T, (24)

i=1
where

¢, = Im_a/6,+rla (I)i:Fi_Fiflai:2737'“7p_17 (I)p:_rpfla

ag = a,—ayby, a; = a,by,

and v; is assumed to be a serially uncorrelated itd vector of shocks with zero means and
a positive definite covariance matrix, ». In what follows, we consider the calculation of
probability forecasts using (24), first assuming that the parameters are known and then
taking into account parameter uncertainty.

A.1 Forecasts in the absence of parameter uncertainty

Suppose that the ML estimators of ®;, 7 = 1,2,... ,p, by, by and X are given and denoted by
®; i =1,2,...,p, by, by and X, respectively. Then the point estimates of the h-step ahead
forecasts of zp.;, conditional on Q7, which we denote by Zr.,, can be obtained recursively
by

p
2T—i—h = Z(i)iiT-&-h—i + é-() + é-l(t + h)? h = 1a 27 s (25)

=1

where the initial values, zp,zpr_4,... ,2Z7_p+1, are given. To obtain probability forecasts
using stochastic simulation methods, we need to simulate the values of zr; by

)

p
20, = S, tagtat+h) +vi, h=12.., s=12..8,  (26)
i=1
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where superscript ‘(s)’ refers to the s-th replication, and zgf) = zr, zgf)_l =Zr_1,..., zgf)_pH =

zr_p41 for all s. The vgfih’s can be drawn by parametric or nonparametric methods as
described in section B below. The probability that ¢ (zg,fil(b\), zgi)ﬂ(/é), . ,zgfih(b\)) < a,
can then be computed as

o (ie0.8) = 4 301 o (01801 28]

where I [-] is an indicator function which takes the value of one if a—¢ (zgfil (9), zgf)+2(§) . zgflh(g)
0, and zero otherwise. ’

A.2 Forecasts in the presence of parameter uncertainty

To allow for parameter uncertainty, we first use the simulation method to obtain R (within
sample) simulated values of z;, t = 1,2, ..., T, denoted by zﬁ’"),

p
z\") = Z&)Zz@, tag+at+vi?, t=12..T r=12 R,
i=1
where actual observations on the initial values, z_4, ... ,z_, are used for this purpose. Again,
the vgr)’s can be drawn either by parametric or nonparametric methods. Having obtained
the R set of the simulated in-sample values, (zgr),zg), . (T)) the VAR( ) model (24)

is estlmated R times to obtain new maximum likelihood estimates, CIJ( ) =1,2,...,p,

b0 , blr) and 2 ), r=1,2,...,R. For each of these replications, we employ the smlulation
technique described above to obtain the associated probability forecasts which we denote by
7, r=1,2,..., R. Then, the empirical mean of the probability forecast is obtained by

1 R
- (r)
WR—R;W

and the associated 100ac % lower and upper confidence bands computed as the R a-th
smallest and largest values of 7("), r = 1,2, ..., R, respectively.?

B Generating Simulated Errors

In this section, we briefly comment on the alternative methods that can be used to simulate
errors for use in the stochastic simulations and the bootstrap exercises described above,

28We can also obtain the empirical mean of the point forecasts by

Zyyn = RZ ;ii, =1,2,..,

and construct their associated 100a % lower and upper confidence bands as the RS a-th smallest and largest

values of zgﬁw 1=1,2,...,5, r=1,2,..., R, respectively.
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allowing for the contemporaneous correlations that exist across the errors in the different
equations of the model. The first is parametric method where the errors are drawn from an
assumed probability distribution function. Alternatively, one could employ a non-parametric
procedure. These are slightly more complicated and are based on re-sampling techniques in
which the simulated errors are obtained by a random draw from the observed errors (see, for
example, Hall (1992)).

In what follows the application of these two approaches to generate forecast probabilities
at different horizons, T'+ h, h = 1,2, ..., H, will now be described.

B.1 Parametric Approach

In our application of the parametric approach we assume that the errors are drawn from a
multivariate Normal distribution with zero mean and the covariance matrix, . The proce-
dure makes use of the matrix P, where P! is the lower triangular Choleski decomposition
of ¥ such that ¥ = PP’. In this case, &, = P~ !v; is an m x 1 vector of standard normal
disturbances. To obtain simulated errors for m variables over h periods, say, we generate
mh draws from the standard normal distribution, denoted by {eri1,€r42,... €111}, and
these are used to obtain {vyi1,vriy, ..., vy, via the transformation vy, = Periy.

B.2 Non-Parametric Approaches

The most obvious non-parametric approach to generating simulated errors, vr.,, which
we shall denote ‘Method 1’, is simply to take h random draws from the observed errors
{v1,...,vr}, replacing the chosen error vector after each draw. The simulated errors thus
obtained clearly have precisely the same distribution and covariance structure as that ob-
served in the original sample. However, this method is susceptible to the criticism, discussed
below, that serial independence is introduced at longer forecast horizons since there is a set
of just T observations from which we sample each time.

An alternative non-parametric method for generating simulated errors, ‘Method 2’, makes
use of the Choleski decomposition of the estimated covariance employed in the parametric
approach. Having identified the matrix P for which ¥ = PP’, we can obtain a set of mT
transformed error terms {ey, ... ,er} whereg; = P~lv;, t = 1, ..., T. The mT individual error
terms are uncorrelated with each other, but retain the distributional information (relating to
extreme values, and so on) contained in the original observed errors. A set of mh simulated
errors can be obtained through random draw, with replacement, from the transformed errors,
and these can be arranged into a set of m x 1 vectors {er.1,... ,er.,} which can be used to
obtain {vy.i1,..., vy} using vpo, = Peryy. Given that the P matrix is used to generate
the simulated errors, it is clear that the vy, again have the same covariance structure
as the original estimated errors. And being based on errors drawn at random from the
transformed originals, these generated simulations will also display the same distributional
features. Further, given that the re-sampling occurs from the m7T" transformed error terms,
Method 2 also has the advantage over Method 1 that the serial dependence introduced
through sampling with replacement will be problematic only at longer time horizons.
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B.3 Choice of Approach

The non-parametric approaches described above have the advantage over the parametric ap-
proach that they make no distributional assumptions on the error terms, and are better able
to capture the uncertainties arising from (possibly rare) extreme observations. However, they
suffer the disadvantage that they require random sampling with replacement. Replacement
is essential as otherwise the draws at longer forecast horizons are effectively ‘truncated’ and
unrepresentative. On the other hand, for a given sample size, it is clear that re-sampling
from the observed errors with replacement inevitably introduces serial dependence in the
simulated forecast errors at longer horizons as the same observed errors are drawn repeat-
edly. When generating simulated errors over a forecast horizon, therefore, this provides an
argument for the use of non-parametric methods over shorter forecast horizons, but suggests
that a greater reliance might be placed on the parametric approach for the generation of
probability forecasts at longer time horizons.
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Table 1
List of Variables and their Descriptions in the Core Model

natural logarithm of the UK real per capita GDP at market prices (1995 = 100).
natural logarithm of the UK Retail Price Index, All Items (1995 = 100).

is computed as r, = 0.25In(1 + R;/100), where R; is the 90 day Treasury Bill average
discount rate per annum.

: natural logarithm of UK real per capita M0 money stock (1995 = 100).
: natural logarithm of the nominal Sterling effective exchange rate (1995 = 100).

: natural logarithm of the foreign (Total OECD) real per capita GDP at market prices

(1995 = 100).

: natural logarithm of the foreign (Total OECD Consumer Price Index) (1995 = 100).

¢ . is computed as 77 = 0.25In(1 + R;/100), where R} is the weighted average of 90 day

interest rates per annum in the United States, Germany, Japan and France.

natural logarithm of oil prices, measured as the Average Price of Crude Oil.

t : time trend, taking the values 1,2,3,... , in 1965¢1,1965¢2, 1965q3, . . ., respectively.

Notes: The data set used in the probability forecasting exercise is based on the European Standard of

Accounts. For more detail of the data sources and a description of the construction of the series see the Data
Appendix in Garratt et al. (2002).



Table 2
Error Correction Specification for the Over-identified Model: 1985q1-2001q1l

| Equation [ A(pep}) | Aer | Ary | Arf | Ay | Ayp | Alh-ye) | A%, |

¢ —.020% 136* .003 .0006 010 002 031% —014*
1t (.010) (.071) | (.004) | (.001) | (.009) | (.006) (.017) (.008)
g —.775 —2.59 | —593F 117 .541 .063 —1.31 —1.057
2t (.664) (4.63) | (281) | (.075) | (.592) | (418) (1.09) (.508)
é .022 073 .029 —.003 | —.061 057 271’ .087*
3t (.060) (414) | (.025) | (007) | (.050) | (.037) (.098) (.045)
g .010* .003 .004 —001 | —.012F | .0004 —.003 .005
4 (.006) (.043) | (.003) | (.0007) | (.005) | (.004) (.010) (.005)
5 131 2.04 007 —014 315 .060 257 1.26
5t (.239) (1.67) | (101) | (027) | (.203) | (.150) (.393) (.183)
A( ) 275 —588 | —.030 007 136 03T =066 163
Pt—1-Di_1 (.176) (1.23) | (.074) (.020) (149) | (111) (.289) (.134)
Ae .020 210 —.0001 .0004 .019 —.012 .059 —.025
-1 (.022) (.155) | (.009) | (.003) | (.029) | (.014) (.037) (.017)
Ar —.025 —3.90 214 053 190 1025 —.296 .9607
-1 (.404) (2.81) | (171) | (046) | (.342) | (.254) (.665) (.309)
Ar* —.839 5.74 —120 4077 784 —732 —2.42 1.15
t—1 (1.23) (859) | (522) | (139) | (1.05) | (.775) (2.03) (.943)
A —.090 —1.47 .009 —.017 439t 343 —.782f 252+
Yt-1 (177) (1.23) | (075) | (0200 | (150) | (.111) (.291) (.135)
Au* —.052 489 131 0721 351% 184 386 147
Y1 (.229) (1.51) | (.097) (.026) (194) | (.053) (.377) (.175)
A1 ) 023 —08T | —029 | —.001 | —.057 | —.007 — 255~ —023
t—1"Yt-1 (.086) (.588) | (.036) (.010) (.073) | (.053) (.141) (.066)
AT, —064 360 —0T2 [ —.008 | —.019 | —.049 =191 017
D1 (.171) (1.19) | (072) | (019) | (145) | (107) (.281) (.131)
Ap? —.005 006 | —.0001 | —.0009 | .012f .005 .006 .003
Di_1 (.005) (.036) | (.002) | (.0006) | (.004) | (.003) (.009) (.004)
Ap° —.010f —.019 .002 —.0007 | —.010" | —.001 —.001 .004
D1 (.005) (.032) | (.002) | (.0005) | (.004) | (.003) (.007) (.003)

—2
R .365 .089 .017 476 .549 371 378 .603
o .005 .032 .002 .001 .004 .003 .008 ..003
X2cl4] 4.31 3.16 | 9.40° | 191 | 574 | 7.29 7.40 5.89
Xor[1] 3.04 0.76 | 3.49* | 226 | 086 | 2.31 0.02 0.98
x312] 3.53 1.2t | 713" | 027 | 191 | 147 | 3397 26.0'
p% 0.01 0.01 | 108 | 001 | 083 | 0.84 0.17 057

Notes: The five error correction terms, estimated over the period 1965q1-2001q1, are given by

él,t+1 = Pt — p: — e, — 4.8566,

o401 = Ti— r{ —0.0057, §3,041 = Yt — y; + 0.0366,
é b — o 75.68 r4 0.0068
Lt = TR 35.34) T (0.001)

é5,t+1 = r; — Ap; —0.0037.

t+0.1283,

” indicates significance at the

Standard errors are given in parenthesis. “*” indicates significance at the 10% level, and “
5% level. The diagnostics are chi-squared statistics for serial correlation (SC), functional form (FF), normality (N) and het-

eroscedasticity (H).
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Table 3a
Forecast Evaluation of the Over-identified Model

Variable Future Future/Parameter

Uncertainty Uncertainty
| [UD DD DU UU|[UD DD DU UU |

jd 0 6 1 2 1 5 1 2

et 5 0 0 4 5 0 0 4

T} 0 3 2 4 2 1 2 4

T 5 0 0 4 5 0 0 4

Apy 1 3 0 5 2 2 0 5

Yt 2 2 1 4 2 2 1 4

De-D; 2 5 2 0 3 4 2 0

hi-y: 0 4 1 4 0 4 1 4

vp 2 3 3 1 2 3 2 2

Total 17 26 10 2822 21 9 29
Hit Rate | 54/81=0.67 | 50/81=0.62

Table 3b

Forecast Evaluation of the Exactly-identified Model

Variable Future [ Future/Parameter
Uncertainty Uncertainty
| |UD DD DU UU|UD DD DU UU |
jus 0 6 1 2 0 6 1 2
et 2 3 1 0 2 3 3 1
Ty 1 2 1 5 2 1 1 5
T 5 0 0 4 5 0 0 !
Apy 3 1 0 5 4 0 0 5
Yt 2 2 1 4 3 1 1 4
DDy 2 5 1 1 3 4 2 0
hi-ys 1 3 2 3 0 4 2 3
vy 3 2 3 1 3 2 4 0
Total 19 24 13 25 [ 22 21 14 24
Hit Rate | 49/81=0.61 | 45/81=0.56

Notes: The forecast evaluation statistics are based on one-step-ahead forecasts obtained from models esti-
mated recursively, starting with the forecast of events in 1999q1 based on models estimated over 1985q1-
19984 and ending with forecasts of events in 2001ql. The events of interest are described in Section 4. In
the column headings the first letter denotes the direction of the forecast (U=up, D=down) and the second

letter the direction of the outcome (U=up, D=down). For example, UU indicates an upward movement was

correctly forecast. Hit rate is defined as (DD + UU) / (UD + DD+ DU + UU) .
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Table 4a
Point and Interval Forecasts of Inflation and Output Growth
(Four Quarterly Moving Averages)

Forecast Output Growth Inflation

Horizon | Per cent, Per annum | Per cent, Per annum
20012 1.84 (1.02, 2.65) 1.80 (1.11, 2.49)
2001q3 1.30 (-0.13, 2.73) 1.61 (0.34, 2.88)
2001q4 1.28 (-0.62, 3.18) 1.37 (-0.36, 3.11)
2002q1 1.27 (-1.05, 3.51) 1.69 (-0.44, 3.82)
2002q2 1.42 (-1.10, 3.94) 2.08 (-0.31, 4.47)
2002q3 1.65 (-1.08, 4.37) 2.01 (-0.51, 4.52)
2002q4 1.89 (-1.04, 4.81) 1.92 (-0.69, 4.52)
2003q1 2.02 (-1.08, 5.12) 1.93 (-0.75, 4.60)

Notes: Forecasts are based on the model reported in Table 2, combined with an estimate of the oil price
equation, (20). The figures in parenthesis are the lower and upper 95% confidence intervals. The four
quarterly moving average output growth is defined as 400 X In(GDPr,,/GDPr.}_4), where GD Pr
is the real Gross Domestic Product in 2001ql, which is computed from the forecasts of per capita output,
Y7+h, assuming a population growth of 0.22% per annum. The four quarterly moving average inflation rate
is defined as 400 X (prip — Prn—a) where pr is the natural logarithm of the retail price index in 2001q1.

Table 4b
Point and Interval Forecasts of Inflation and Output Growth
(Quarter on quarter changes)

Forecast Output Growth Inflation
Horizon | Per cent, Per annum | Per cent, Per annum
20012 1.30 (-1.96, 4.55) 0.28 (-2.49, 3.06)
2001q3 1.16 (-2.61, 4.91) 2.22 (-2.05, 6.50)
2001q4 1.12 (-2.83, 5.07) 2.31 (-2.40, 7.04)
2002q1 1.53 (-2.59, 5.64) 1.93 (-3.01, 6.87)
2002q2 1.89 (-2.37, 6.15) 1.86 (-3.28, 7.00)
2002q3 2.05 (-2.36, 6.45) 1.91 (-3.39, 7.21)
2002q4 2.08 (-2.45, 6.61) 1.95 (-3.47, 7.37)
2003q1 2.08 (-2.56, 6.71) 1.97 (-3.54, 7.49)

Notes: See Table 4a. Output growth is defined as 400 X In(GDPr.;/GDPr.p_1), while inflation
is defined as 400 X (pron — PTrh-1)-
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Table 5a

Probability Estimates of Single Events Involving Inflation

Forecast || Pr(Inf < 1.5%) | Pr(Inf < 2.5%) | Pr(Inf < 3.5%) | Pr(1.5% < Inf < 3.5%))

Horizon T T T T 7'(' T T T
2001q2 0.206  0.135 |0.978 0.920 | 1.000 1.000 | 0.795 0.865
20013 || 0.437 0.275 | 0884 0.732 [0.996 0.963 | 0.560 0.688
2001g4 | 0.541 0.364 | 0.849 0.682 |0.974 0.899 | 0.433 0.535
2002q1 | 0.451 0.292 | 0.721  0.533 | 0.893 0.761 | 0.442 0.469
2002q2 0.367 0.244 | 0.597 0.441 | 0.801 0.652 | 0.434 0.408
2002q3 0.405 0.285 | 0.611 0.484 | 0.785 0.683 | 0.381 0.398
2002¢g4 | 0424 0.315 |0.625 0.514 |0.792 0.705 | 0.368 0.390
2003ql | 0.422  0.321 | 0.607 0.515 |0.772 0.702 | 0.351 0.381

Notes: The probability estimates for inflation relate to the four quarterly moving average of inflation

defined by 400 X (prin — Prin—4), where p is the natural logarithm of the retail price index. The

probability estimates (7 and %) are computed using the model reported in Table 2, where 7 is the “Profile

Predictive Likelihood” that only takes account of future uncertainty, whereas 7 is the “Bootstrap Predictive

Distribution” function and accounts for both future and parameter uncertainties. The computations are

carried out using 2,000 replications. See the Appendix for computational details.

Table 5b

Probability Estimates Involving Output Growth and Inflation

Pr(Recession) | Pr(output | Pr(1.5% < Inf < 3.5%, | Pr(1.5% < Inf <3.5%,
Forecast growth <1%) No Recession) output growth < 1%)
Horizon T i s s
2001qg2 0.000 0.040 0.865 0.832
2001q3 0.111 0.319 0.629 0.500
20014 0.084 0.343 0.499 0.381
2002q1 0.092 0.371 0.426 0.300
2002qg2 0.092 0.312 0.373 0.278
2002q3 0.088 0.314 0.365 0.273
20024 0.090 0.305 0.358 0.272
2003q1 0.092 0.295 0.350 0.270

Notes: The probability estimates for output growth are computed from the forecasts of per capita output,

assuming a population growth of 0.22% per annum. Recession is said to have occured when output growth

(measured, quarter on quarter, by 400 X ln(GDPT+h / GDPT+h_1)) becomes negative in two consecutive

quarters. Also see the notes to Tables 5a and 4a.
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Figure la: Inflation (four-quarter moving average)
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Figure 2a: Bootstrap Predictive Distribution Functions for

Inflation Forecasts at Different Horizons'
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Figure 3: Probability Estimates of Inflation
Falling within the Target Range (A)T
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Forecast Horizon

T The inflation event (A) refers to inflation falling within the range 1.5-3.5 per cent. PPL is the Pro-
file Predictive Likelihood which takes into account future uncertainties. BPD is the Bootstrap Predictive

Distribution function which takes into account both future and parameter uncertainties.

Figure 4: Probability Estimates of Inflation Falling Below the 3.5% Threshold'
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T See the notes to Figure 4a.



Figure 5: Probability Estimates of a Recession (B)T
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TA recession (event B) is defined as the occurrence of negative growth rates during two consecutive quarters.
The PPL and BPD estimates are defined in the footnote to Figure 3.

Figure 6: Probability Estimates of a Low Growth Scenario (C)}
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T The low growth event (C') is defined as four-quarter moving average output growth lying below 1 per cent.
The PPL and BPD estimates are defined in the footnote to Figure 3.
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Figure 7a: Probability Estimates of Achieving the Inflation Ob jective!
without a Recession ( AN B)
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T The difference between the product and joint event probabilities measures the degree of independence
between events A and Not B. All probability estimates plotted are BPDs.

Figure 7b: Probability Estimates of Achieving the Inflation
Objective Combined with Reasonable Growth Prospects ( ANC)
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TThe difference between the product and joint event probabilities measures the degree of independence
between events A and Not C. All probability estimates plotted are BPDs. Also see the footnote to Figure

6.
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