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Abstract

Several ways of modelling non-linear state space models have been suggested.
The extended Kalman Filter is a tractable way of doing so. One application is to
consumer durable demand. Models explaining this flow are normally conditioned
on the stock. For the UK, measures of the stock are unavailable. However, it
might be estimated from a non-linear state space model. The model is estimated
using a linear approximation of the first order conditions for the household’s
consumption problem and the stock accumulation identity. The results suggest
there is very little time variation in depreciation rates over our sample, and that
households are close to risk neutrality. Diagnostics suggest further refinement
of the model is called for.

1 Introduction

There are several areas in economics where models incorporate stock-flow relationships.
In some cases, this creates no special problems, but in others it may be much easier
to measure the flow than the stock. In particular, where the stock depreciates at
an unknown rate, measurement is particularly difficult. Two examples of this are
in the demand for consumer durables and investment. However, it may be possible
to estimate the stock within an econometric model. In this paper we survey the
techniques, and apply one to a model of consumer durable demand. The preliminary
results suggest further refinements are required. In the rest of this paper, we discuss
econometric methods for non-linear state space models in Section 2. In the following
two sections, we motivate our choice of variable to apply the method to, and set out
a model. In Section 5 we present some results. The final section concludes.



2 Methodology

In this section we discuss the methods that may be used to estimate and conduct
inference using a non-linear state space model. For reference we present the linear state
space model and the linear Kalman filter first. We then discuss an approximation to
the linear model that can be estimated with the Kalman filter. By contrast, the other
methods proposed in the literature are exact in that no conceptual approximation is
involved, but do not provide closed form expressions for the filter equations. Numerical
methods are used to provide estimates for the states and consequently the likelihood
used for estimating the parameters. All the methods deal with general non-linear,
non-gaussian state space models. The focus therefore shifts from conditional means
and variances which completely characterise normal distributions to whole densities,
since the states are no longer normal.

2.1 The linear state space model and the Kalman filter

A general linear state space model is given by

y = X\B,+e¢ e~iid(0,0°) t=1,...,T (1)
IBt = Atﬂt—1+€t €tNZZd(O,EE) (2)

The optimality of the Kalman filter crucially depends on assuming that the measure-
ment and transition equation errors are normally distributed. We abstract from issues
arising from the estimation of the parameters of the models and concentrate on the es-
timation of the state variable conditional on the parameters being known. We denote
the estimator of B; conditional on the information set up to and including time ¢ by
b;. We denote the covariance matrix of by by P;. The estimator of 8; conditional on
the information set up to and including time ¢ — 1 is denoted by bg;—1. Its covariance
matrix is denoted by Py;_1. The Kalman filter comprises sequential application of
two sets of equations which recursively deliver the estimates of the state variable and
their covariance matrix. The filter is initialised by specifying the estimate of the state
and its covariance matrix at the start of the sample. The two sets of equations are
given by

b1 = Abiy (3)
Py, = AP, A +3, (4)

which are known as the prediction equations, and

Yt — «’Ifébt|t—1>
Ji

1
P, = Pt|t—1 - Pt|t—1$t (7) CU;Pt|t—1 (6)
t

which are known as the updating equations. f; is given by X;P;;_1 X, + 0. The
log-likelihood of the model may be easily written in terms of the prediction errors. It

by = by—1+ Py_1xy (



is given by
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where the prediction errors v, are given by y, — Xiby,—1. The log-likelihood can be
used to estimate any unknown parameters.

2.2 Non-linear models

If either the disturbances are non-normal or (as in our case) the system is non-linear,
then the Kalman filter cannot be used in its present form. We suggest alternatives
for departures from the linear Gaussian model. Let a non-linear state space model be
given by
v, = X(B)+e e~iid(0,0%) t=1,...,T (8)
IBt = At(ﬂt—l) + Er Epr~ ZZd(O, 26) (9)

Now X,(.) and A;(.) denote non-linear time varying functions which will be assumed
continuous and smooth enough to accept a first order Taylor series expansion.
2.2.1 The extended Kalman Filter

The extended Kalman filter is the easiest extension that can accomodate non-linearity
but not non-Gaussianity. It is an approximate filter. Let first order expansions for the
functions X,(.) and A,(.) around by;—; and b, be given by

X (8y) =~ X(bye-1) + X (B, — bys-1)

and )
Ai(Bi1) = Ay(bi1) + Au(Biog — bi1)
here X, = 2XBd) and A, = 0ABy1) This leads us to express the
v ! 9B+) Bt=byt—1 ! 9Bi-1) Bi_1=bi—1 P
original non-linear system as an approximate linear model given by
~ ~
Y = XtBt -+ dt =+ €t (10)
B, = AB,  +c+eg (11)

d; and ¢, are the remaining terms in the Taylor expansion and need never be estimated.
The states can be estimated by the Kalman filter with the modified prediction and
updating equations given by

byi—1 = As(b_1)

and

— X (b
by = byy—1 + P11z <yt 1By 1)>

fi

Once prediction errors are obtained the prediction error decomposition may be used
to provide expressions for the log-likelihood and therefore a means to estimate any
unknown parameters.



2.2.2 Kitagawa (1987)

The method proposed by Kitagawa (1987) is based on the well known prediction and
filtering densities for a non-linear and non-Gaussian state space model of the form
given in (8). Let the conditional density of 3, given observations (y1,...,Ym) = Yn,
be denoted by p(B,|y,,). Then, the prediction density is given by

o

p(Bily;—1) :/ P(By|B-1)p(Bi_11Y;—1)dB; 1

—0o0

The filtering density is given by

. (vl B)p(Bily; 1)
PB) = T8 By

Therefore, all relevant densities may be obtained by knowledge of the filtering, pre-
diction and the two error densities, assuming the parameters of the model are known.
Kitagawa approximates all these densities by piecewise linear functions. Conceptually,
this approximation is not problematic if the number of nodes (points of connection
between linear pieces) is allowed to go to infinity. This assumption together with the
prediction and filtering relations given above provide all the necessary densities over
time and from this characteristics of the state and the likelihood is obtained. Once
again the likelihood can be used to estimate parameters. From Kitagawa’s comments,
it appears this method is rather expensive computationally. With modern computing
power this is less of an issue.

2.2.3 Gibbs sampler

The Gibbs sampler is an influential technique for carrying out Bayesian analysis be-
longing to the class of Markov Chain Monte Carlo algorithms. We give a very brief
account of Bayesian econometrics to provide a framework for the analysis.

It is well known that one of the distinguishing features of Bayesian econometrics is
the treatment of model parameters not as constants but as random variables. Statisti-
cal analysis in its simplest form starts with a model whose parameters are assumed to
be random variables and for which there exist prior information in the form of a prior
probability distribution which these parameters follow. Once the data are observed
the prior distributions of the parameters are coupled with the distribution of the data
conditional on the parameters and using Bayes theorem a posterior distribution for
the parameters may be obtained. This distribution is simply the distribution of the
parameters conditional on the data. Then, inference on the parameters may be carried
out.

The Gibbs sampler is a powerful technique for carrying out such inference. In par-
ticular, say there is a vector of parameters on which inference is to be carried out,
denoted by 6 = (6,...,0,,). Also assume that the distribution of 6; conditional on
all other parameters and the data is easy to sample from for all : = 1,...,m. By
contrast, assume that the joint distribution of @ conditional on the data is not easy
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to derive analytically or sample from. Obtaining this distribution is the aim of the
analysis.

This is common in many situations including non-linear state space models. Then
a Markov chain is defined whereby, for some initial value of the parameters, each of
0;,i=1,...,m is sampled from its conditional distribution. Once a complete set of
0’s are sampled the whole process is repeated, conditioning on the obtained values of
0. After a sufficient number of repetitions the sampled 6’s can be used to provide
the posterior distribution of the parameters once a proportion of these repetitions has
been dropped to remove dependence on initial conditions.

Denote the distribution of 6; conditional on the data and the rest of the #’s by
p(0:0;) where 04 = (61,...,0;-1,0;41...,0,)". Symbolically, the algorithm is as
follows

Step 1 Initialise the parameter vector by setting ) = (0%0), . 0@)

Step 2 For each i generate /) by sampling from p(|0§2)

Step 3 Repeat Step 2 R times where for j = 2,..., R U) is generated from p(.|0g;1)).
At the end the following set of sampled parameter values will have been obtained:
0 ... oW,

Step 4 Drop the first Ry of the above R vectors.

Step 5 FoFV) 9% follows p(0) where p(0) is the posterior distribution of the pa-
rameters.

In the context of the non-linear state space model, both the state and the model
parameters are considered as random variables. Then the crucial consideration is to
specify the model in such a way that it is easy to sample from the conditional distri-
butions of each of the states and parameters. This forms the bulk of the specification
task. We will not discuss this here because it is very case dependent. It is sufficient
to say that it is more of an art than science.

3 Durable consumption

In many empirical studies of consumer’s expenditure durables are either ignored or
subsumed into the aggregate. Yet expenditure on consumer durables forms an in-
creasing proportion of total expenditure: see Figure 1. Moreover, while the ratio of
consumption to (financial and housing) wealth has fallen since the late 1960s (Fig-
ure 2), the ratio of durables to wealth has remained roughly constant (Figure 3), so
there is clear evidence that the drivers of behaviour differ. Moreover, the relative price
of durables has fallen by about 40% since 1965 (Figure 4). These facts suggest that it
would be worthwhile attempting to model durables and non-durables separately. Yet
models of the flow will require estimates of the stock, unless we are in a steady state,
which is plainly false. There are no official measures of stocks of durables. The stock



Figure 1: Ratio of durable to total Figure 2: Ratio of total consump-
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of durables may also be large enough to figure significantly in household wealth. For
these reasons it would be very useful to have estimates of the stock.
If the stock of durables is K and gross purchases are C'D,

Kt = Kt—l(l — 5,5_1) + CDt, s.t. K() = K() (12)

where ¢ is the depreciation rate. Clearly, if we have an estimate of § and an initial value
Ky, we can infer the stock from the flows. However, the depreciation rate may vary
over time for a variety of reasons. For example, the proportion of electronic goods in
durables has increased which may raise average depreciation; or the scrapping decision
may be cyclical.

Academic research into durables has tended to fall into two categories.! Firstly, as
an extension of the Euler condition tests of the PI-RE hypotheses, and secondly, on
the implications of adjustment costs, especially fixed costs, on the adjustment process.
In this paper we take the first approach, and use a model of the relationship between
the stock of durables and non-durable expenditure, following Mankiw (1985). The

1See Caballero (1994).



Figure 3: Durable consumption to Figure 4: Relative price of durable
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model does not attempt to explain the level of consumption. Instead it estimates an
expression derived from the FOCs for a simple model.

4 A model of consumption with durable expendi-
tures

Consumers maximise
o0

E; Z(l +79) U(Crps) + V (Kips)] (13)

s=0

subject to an intertemporal budget constraint. Here C' is non-durable expenditure and
7 is the rate of time preference. Ej(.) denotes the expectation operator conditional on
information available at time ¢. Assume that preferences can be modelled by iso-elastic
(CRAA) felicity,

Cl_a
= : 14
)= a0 (1)
OK!'-5
V(C) = .0, B>0. (15)
1-p
The log-linearised FOCs? are
log(Ci11/Cr) = ag + 1/ log(Reyy1) + o (16)
log(Ci11) = bo + 1/a log(Ri p11) + B/ log(Ky) + pik e (17)
where .
w =302~ 1og(1+)] /a (18)
L,
bo = |50k —log(0 +67)| /o (19)
1 s 1, -
Hjt1 = §(€j,t+1) ~ 505 Gt Ja; j=CK (20)
Ey(pje1) =0; j=CK (21)
Rey =144 — 7oy (22)
RK,t = (PK,t/PC,t)[5 + it — 7TK,t]- (23)

Py + is the durables price level, Pr; is the non-durables price level, d; is the unobserved
depreciation rate, ¢; is the nominal interest rate, 7 is the durables inflation rate, m¢;
is the non-durables inflation rate, and R¢; and Rg; are the own-price user costs. We
assume the level of uncertainty is constant. Here €; are innovations and Ey(e;) = 0.

Solving (16) and (17)

log(RK,tJrl/RC,tJrl) = afag — by) — Blog K; + alog Cy + vy (24)

2Exact if the error is log-normal.



where
Vi1 = a(NC,t-i—l - MK,t+1)- (25)

The dependent variable is approximately

[5,5 + (1 — 5,5)(% — 7TK,t+1)]PK,t/PC,t- (26)

The aim is to estimate (24) together with (12) and an equation describing the evolution
of §. We will assume a simple random walk.

5 Results

Arguably, of the methods discussed above, the linearised Kalman filter is the easiest to
implement, and we apply it to the non-linear state space model of durable consumption
described in Section 4. It is designed to provide an estimate of the unobserved stock
of durables using UK data. The key relations are given by (27), (28) and (29),

IOg(PK’t/PC’t) = ag — lOg(dt -+ (1 — (5,;) (Zt +0.015 — Et(’]TK,H»l)) — BlOg Kt + O!lOg Ct + e

o (27)
Op = 01 + Usy (28)
Kt = Kt—l(]- — 5,5) + CDt + UKt (29)

where notation is as above. 4; is measured by the London clearing banks’ base rate
with a 6% per annum retail margin assumed to hold. ag, 3, o are parameters and ey,
us; and wug are error terms which are assumed normal, with covariances o2, 07 and
o%. o2 and o} are restricted to be strictly positive numbers while % is set to zero,
as (29) is an identity. We assume that

6; = 0.1exp(—6%) + 0.01 (30)

guaranteeing that whereas 0, can take values on the whole real line, § remains bounded
between 0.01 and 0.11, which we consider to be a reasonable range. We also restrict
the parameters 5 and « to be positive. To maximise the log-likelihood we use numer-
ical maximisation, and in particular the BFGS algorithm. To initialise the extended
Kalman filter we set the initial values of the states to unknown parameters to be esti-
mated and the covariance matrix of the states at time t = 0 to zero. We denote these
parameters by Ky and dy. We restrict Ky to lie between 20000 and 100000, a range
determined by rough calculations of the likely size of the stock for assumed steady
state growth and depreciation rates. The expectation of w41 at time ¢ is obtained
by using the one-step forecast from an ARDL model where the durable inflation rate is
conditioned on past durable and general inflation, GDP growth, nominal interest rates
and the ratio of durable to non-durable expenditure. The equation has no significant
evidence of autocorrelation ARCH. Details are given in Table 1.

The parameter estimates of our model are given in Table 2. For this model the
intial condition estimates go to the corner. Standard errors cannot be calculated as
the Hessian is not positive definite, die to the corner solution. The main interest is in
the estimates of @ and 3, the parameters in the felicity functions. A ‘standard’ case



Table 1: The expectations model

Dependent Variable: Alog P ;1
Sample: 1980:1 2000:4
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
constant -0.026991 0.012946 -2.084897 | 0.0410
Alog Pg 1 0.252518 0.129758 1.946069 | 0.0559
Alog Pk 49 0.078131 0.108313 0.721345 | 0.4732
Alog Pr 43 0.168385 0.087243 1.930073 | 0.0579
Alog Pk 44 -0.104820 0.085927 -1.219869 | 0.2269
Alog P_y -0.115274 0.204013 -0.565034 | 0.5740
Alog Py -0.157829 0.199625 -0.790628 | 0.4320
Alog P;_3 -0.308760 0.212005 -1.456379 | 0.1500
Alog P_4 0.045651 0.221672 0.205938 | 0.8375
AlogV; 4 -0.266841 0.172915 -1.543190 | 0.1276
AlogV; o 0.685876 0.172039 3.986751 | 0.0002
AlogV; s -0.381837 0.156967 -2.432598 | 0.0177
AlogY;_4 0.160530 0.154239 1.040787 | 0.3018
logCD, 1/Cy—1 | -0.011756 0.009359 -1.256150 | 0.2135
1 0.003304 0.001008 3.278003 | 0.0017
Tt—9 -0.004260 0.001386 -3.072714 | 0.0031
i3 0.001674 0.001427 1.173158 | 0.2449
Tp—4 0.000915 0.000985 0.928048 | 0.3568
R? 0.589683

Autocorrelation: LM(8) F: 0.77 (p-value 0.63)
ARCH: F: 0.66 (p-value 0.42)
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Table 2: Parameter estimates

K, | 20000

oo | 0.010

o2 | 0.0036310506
ag

ag

B

o

2

2| 0.00010000039
0.056608773
0.17887438
0.0020950417

Figure 5: Stock of durables: ARDL Figure 6: Depreciation rate: ARDL
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would be that of homethetic log-linear preferences, so that these are both equal to
unity. We are some distance from this. Agents are close to risk neutral. The results
also indicate very little time variation in the depreciation rate within sample. The
depreciation rate remains close to the upper limit we considered, at nearly 11% per
quarter or about 50% per annum. This is higher than that assumed by Mankiw (1985),
who took the official US Bureau of Economic Analysis rate of 20%. However, it is not
obvious that these rates are implausible. We plot the estimated stock of durables
and the depreciation rate in Figures 5 and 6. We also plot durable consumption in
Figure 7. With the rapid depreciation, the stock respnds to purchases rapidly, dipping
in the early 1990s as households fail to replace depreciated durables.

A by-product of the Kalman filter is an estimate of the ‘covariance’ of the state
estimates around the true state realisations®. We have obtained these estimates which
provide very narrow bands around the state point estimates and are therefore not
plotted. Note that the depreciation rate is modelled as a random walk and therefore
has no well defined variance as a result. The narrowness of the bands for the stock of
durables estimate reflect the assumption about the transition equation of the stock of
durables being an identity, and therefore having an error term with zero variance.

3As the state realisations are random variables themselves this estimate is not strictly speaking
an estimate of a covariance.
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Table 3: Parameter estimates for random walk case

‘ ‘ coeff. | S. error |

Ko | 26022.775 | 1153253.84
do | 0.01879 0.04979959
o? | 0.00378 0.19514097
ag 0.000108 | 0.00000

ap | 0.1960 1167.59975
B | 0.1918 62.8359716
a | 0.00264 0.08012490

We also estimate the model using an alternative simpler assumption concerning
the expectation of durables inflation. In particular we assume that agents believe
inflation to be a random walk and therefore Ey(7x 11) = 7k, Results for this case
are presented in Table 3; they hardly differ. However, the initial conditions are not
forced to the corner and standard errors can be calculated. The model is clearly very
badly determined. We plot the estimated stock of durables and the depreciation rate
in Figures 8 and 9.

Neither of these two models have satisfactory statistical features. Apart from the
poorly determined standard errors, there is evidence of massive ARCH and serial
correlation, although the random walk version does have normal errors. This need not
be utterly fatal. Consistent estimation of the coefficients of the model relies firstly on
the correct specification of the conditional mean in the measurement equation, and,
secondly, given the presence of serial correlation in the error term of the measurement
equation, on the independence of the states and the error term of the measurement
equation. If these conditions hold then standard results (e.g., in White (1994)) imply
consistency of the parameter estimates Nevertheless one would be reluctant to take
this model as a good representation of the data.

Table 4: Diagnostics for model residuals (p-values)

| | Random walk | ARDL |

normality 0.173 0.009
4th order ser. cor. | 0.000 0.000
ARCH(4) 0.000 0.000

6 Conclusions

Estimates of the stock of durable goods are arguably essential for meaningful analysis
of consumer expenditure; but none exist for the UK. This paper sets out a methodology
for estimating such a stock, using an economic model embedded in a non-linear state
space model. We briefly discuss three different inference procedures for non-linear state
space models. the method of Kitagawa (1987) is the simplest but less widely used. The
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Figure 10: Residuals: ARDL Figure 11: Residuals: random walk
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Gibbs sampler is more common, but requires experience in Bayesian analysis to specify
the prior and conditional distributions, and is judgemental to an extent. On the other
hand the extended Kalman filter, although an approximation, is a promising avenue.
As a result we use this to estimate a non-linear state space models derived from
intertemporal utility maximisation and provide estimates for the unobserved stock.
The model on which they are based assumes no adjustment costs, although this is
not an obviously bad assumption. The results indicate very little time variation in
the depreciation rate within sample. While the results are not absurd, we do have
some reservations. The depreciation rate is close to the upper limit we considered
plausible (at nearly 11% per quarter or about 50% per annum), implying a rapid
economic depreciation rate. Another aspect of the results is that the parameters on
the preference structure imply very little risk aversion. The diagnostics clearly suggest
that this is not a well determined statistical model, either.

Several further avenues suggest themselves for future research. Firstly, we could
endogenise the depreciation rate, allowing for obsolescence and endogenous scrapping.
These issues have been to the fore recently in the context of the role of computers in
the capital stock: see Whelan (2000). Secondly we could explore models incorporating
adjustments costs. Finally, it should be clear that this methodology might also have
applications in the study of investment and the capital stock.
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