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Abstract

Optimal monetary policy is sensitive to the Phillips curve used to represent the dynamics of
inflation and output. Most recent literature has used a New Keynesian Phillips Curve based on
Calvo pricing. This paper shows that this workhorse model is not robust to relatively minor
changes in its microfoundations, in particular allowing for time varying probabilities of afirm
being able to reset its price. We derive a general model that nests Calvo and the Taylor
staggering model as specia cases and analyse itsimplications for optimal policy, including the

relative desirability of inflation and price level targeting.
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| ntroduction

The monetary policy literature has made rapid progress in recent years in anaysing the
consequencesfor optimal policy of the presence of forward looking inflation expectationsin the
Phillips curve or aggregate supply relationship. When commitment isfeasible optimal policy in
response to a supply shock adjusts future policy to improve current outcomes through the
intertemporal link of expected future inflation in the Phillips curve.> From the point of view of
the future taken in isolation such apolicy is costly (and henceis not generally carried out under
discretion, resulting in stabilisation bias) but optimal policy balances these future costs against
current benefits. Clearly the strength of theintertemporal link inthe Phillipscurve, primarily the
size of the coefficient on expected future inflation, is important for optimal policy as well as

more generally for our understanding of macroeconomic dynamics.

This paper analyses the microfoundations of the Phillips curve and the coefficient on expected
future inflation in particular, showing that the standard value of close to unity used in the
literature from Calvo pricing is not robust to plausible and relatively minor changes in its
microfoundations. The paper presents a generalised version of the Phillips curves used in the
literature that may provide a better basis for policy analysis and shows its implications for
optimal policy. The common theme is fully optimising microfoundations but with different

exogenous staggering structures, motivated in part by concernsabout the robustness of the Calvo

'See Clarida, Gali and Gertler (1999) and Woodford (2000) for summaries. A growing
literature assesses how improved stabilisation may be achieved under discretion (when
intertempora commitment isgenerally infeasible) by altering the loss function to be minimised
under delegation by an independent central bank. These include interest rate smoothing
(Woodford, 1999), nominal income growth targeting (Jensen, 1999; Rudebusch, 2000) and
targeting the change in the output gap (Soderstrom, 2001; Walsh, 2001).
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model (see Wolman, 1999; Dotsey, King and Wolman, 1999, for recent discussion and results)
and more generally by the empirical evidence presented in Taylor (1999) who emphasises the
observed richness and variety of price and/or wage staggering structures and our comparative
ignorance of how to model them most accurately. McCallum (199 ) suggests that aggregate

supply isthe least well understood component of monetary policy models.

Itishelpful to briefly review the use of the New Keynesian Phillips curvein the monetary policy
literature before setting out the contribution of the current paper in more detail. The Calvo
(1983) model, which givesriseto aNew Keynesian Phillips curve of theform shown by (1), has
become the workhorse for much recent research.? In (1) B is the rate of inflation, $ the (real)
discount factor whichiscloseto unity, x the driving variable (such asthe output gap or marginal

cost), 6 a constant and u a shock variable.

B, ™ 3E[By,l % 6x % y, «y

Price staggering in the Calvo model is introduced by firms only being able to reset their prices
at stochastic times and a simplifying assumption is made that the probability of being able to
reset price in agiven period is constant and unrelated to the time that has elapsed since the last
price change. Clearly thisis astrong assumption but use of the model has been encouraged by
broad similarities between its properties and those of other models of price staggering. For
example Rotemberg's (1987) model of convex price adjustment costs also leads to a Phillips
curve of the Calvo form, though Rotemberg regards convex price adjustment costs as a

simplifying rather than fundamental assumption in much the sameway as Calvo (1983) presents

For example see Clarida, Gali and Gertler (1999), Svensson (1999), McCallum and Nelson
(19994, b) and Rotemberg and Woodford (1999).

2



the constant probability of price change assumption.

A number of authors (for example Roberts, 1995, and Walsh, 1998) have a so pointed to broad
similarities between the Calvo model and that of Taylor (1979, 1980) where price changes are
also staggered but are simply fixed for two (or more) periods a atime. If it was the case that
both the Calvo and Taylor models, with their different staggering assumptions, predicted the
same form for the Phillips curve it would be strong evidence that the details of staggering
structuresare not very important but we show that thisisnot the case, particularly inthe presence
of supply shocks which present the most acute problems for policy makers. Under perfect
foresight the Taylor model is similar to the Calvo case (1), and has an identical coefficient on
expected future inflation. 1f shocks are present, however, Taylor staggering gives the Phillips
curve(2) inwhich E_,[B,] ispresent and the coefficient on E[B,, ] isapproximately half itsvalue
in (1).>* This has very different implications for optimal policy compared with (1) given the
discussion above about the role of this coefficient in influencing the optimal extent to which

policy should commit to different future outcomes in order to affect the present.

3The Taylor Phillips curveis sometimes presented (see Roberts, 1995, and Walsh, 1998, egn.
(5.45) p.217 for example) in the form of (1) but with an additional 'expectational error' term on
theright hand sideinvolving E, ;[ B,]-B, (whichiszero under perfect foresight but not otherwise).
This 'error' is sometimes combined with the shock term, u,, to form a composite error. Thisis
algebraicaly correct but it is misleading if this error is subsequently treated as exogenous. On
average under rational expectations the expectational error should be zero but its size in any
giventimeperiod, and thusitseffect onthe Phillipscurve, isendogenousto timet policy because
E.,[B] is pre-determined at t whereas B, is not. Hence treating the error as if it is zero or
exogenous overstates the true coefficient on E[B,,,] in the Phillips curve.

“The driving variable and shock terms also take a more complex form in the Taylor model.
These are explored thoroughly below but for now the focusis on the termsin expected inflation
and hence we use the genera form f(x,u) in (2). Kiley (1998) draws attention to the general
differences between the Calvo and Taylor models but without explicit reference to the different
coefficients on expected inflation in (1) and (2) and their implications for optimal policy.
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Given that the Calvo and Taylor Phillips curves differ significantly in the presence of supply
shocksit appears that we are in the uncomfortable position of having divergent predictions for
the Phillips curve from different assumptions about price staggering when there seems little
compelling reason to find one or other more plausible. Interms of these modelsit also appears
to be abinary choice with strong implicationsfor the policy conclusionsthat will follow. Given
this choice a common stance is to choose the Calvo Phillips curve (1), primarily because the
Calvo model has more explicit microfoundations than the standard derivation of the Taylor
model (see Clarida, Gali and Gertler, 1999, and the discussion in Walsh, 1998, for examples).
Weshow below, however, that thelatter may be derived from exactly the same microfoundations
as Calvo, the difference between the two arising solely from different exogenous staggering

constraints faced by optimising agents.

The main contribution of this paper is to show that the Calvo and Taylor models may both be
viewed as special cases of amore general model that we derive below. Thisclarifiesthereason
for their different predictions for the Phillips curve, which arise solely from their different
assumptions about price change staggering, and clarifiesthat their underlying microfoundations
are the same apart from the staggering structure. The generalised model follows the Calvo
approach of making firms' ability to change price stochastic, but rather than the probability of
being able to change price remaining constant we allow it to take a different value one period

after apricechange(q,) than the per period probability thereafter (q). Thissimple generalisation



(which by no meansexhaustsall possibilities®) encompassesthe Calvo model for which g,=gand
the Taylor model where g,=0 and g=1 (for two period fixed prices). Defining g*=g-q,, whereg*
iszeroin Calvo and unity in Taylor, alowsthe generalised Calvo-Taylor Phillips curve (derived
in full below) to be expressed by (3) wherefor the time being we focus on the termsin expected

inflation and leave the driving variable and shock termsin general form.

B, " —4CE [B] % —> E[B,] % g(xu) 3)

b 1%$q( 1%$q(

From (3) it is clear that the generalised model has coefficients on E,[B,] and E|[B,,,] that vary
with g* (0#g*#1) between thosein (2) and (1) above of approximately a half each and zero for
the former and closeto unity for the latter. Thusthe generalised model clarifiesthe similarities
and differences between the Calvo and Taylor modelsindividually while suggesting that it isnot
appropriate, given our limited understanding of the most realistic way to model price staggering
(and pending further empirical evidence), to choose one or theother. Instead it appearsthat good
practice requires monetary policy analysis to check the sensitivity of resultsto variation in the

expected inflation coefficientsin the Phillips curve at | east between the ranges suggested above.®

To explore the implications of different staggering structures for the Phillips curve further we
also derive aversion of the generalised model in which wages rather than prices are staggered,
the latter being fully flexible ex post in this case. We show that thisreversal of theroles of the

two key nominal variables makes no difference to the coefficients on the first two termsin (3).

*Wolman (1999) considers aricher structure of probabilities though without explicit results
for the Phillips curve or optimal policy.

®Mankiw and Reiss (2001) derive a Phillips curve from adifferent approach in which theterm
in E[B,,,] disappears altogether.



Thisisastandard result with Taylor staggering but lessfamiliar with Calvo probabilitiesand new
for the generalised model. We also show the consequences, for the staggered prices version of
the generalised model, of wages being partly set in advance rather than being flexible ex post.
Thisisinthe spirit of the models of Barro and Gordon (1983) and Rogoff (1985) except that ex
ante wage setting coexists with price staggering. Inthiscasethe coefficient on E,_,[B,] increases

relative to that in (3) and that on E|[B,,] falls further.

We also note two aspects of the literature which we do not addressin the paper. Thefirst isthat
it has become increasingly common to introduce some inflation persistence (through aterm in
B,,) into the Phillips curve. Thisis motivated primarily by the strong empirical evidence for
persistence in the inflation process (see Rudebusch, 2000, and Roberts, 2001 for excellent
summaries and fresh empirical results) but as yet there is no consensus on optimising
microfoundations for this.” The focus of this paper is the different forms of the Phillips curve
that emerge from different staggering structures with common optimising microfoundations.
Hence we do not consider inflation persistence directly while noting that, i) the generalised
Calvo-Taylor model does not have any structural inflation persistence in the sense that B, ; does
not appear in the Phillips curve (except when wages are set partly ex ante and then as part of a
timet-1 expectation error which may be considered exogenous to timet policy choices), but ii)

under discretion inflation has some serial correlation in univariate reduced form. The latter is

"The approach to this issue of Christiano, Eichenbaum and Evans (2001), Sbordone (2001)
and Woodford (2001), who introduce price or wage indexing, appears very promising but it
appears to be too early to regard these models as widely accepted. If optimising
microfoundations for inflation persistence emerge from time dependent staggering the
generalised model of this paper (which could be extended to include indexing behaviour) will
also contribute to this research program.



not the casein the Calvo model but may contribute to observed inflation persistencein practice.?

Thesecond restriction of scopeisthat we consider only time dependent pricing behaviour. While
Ball and Ceccheti (1988) and Ball and Romer (1989) showed that staggering may emerge as an
equilibrium® it might be argued that state dependent pricing models are more theoretically
attractive. While sympathetic to thisview, the stance taken in this paper isthat the implications
of state dependent pricing for the Phillips curve are not fully understood and hence pending
further progress (see Dotsey, King and Wolman, 1999, for arecent contribution), and given the
use of time dependent pricing in most of the monetary policy literature, it remainsimportant for
us to understand the robustness of the workhorse Calvo model and the impact of different time

dependent staggering structures more generally.

While the prime contribution of the paper is the derivation of the generalised Calvo-Taylor
Phillips curve model we also derive optimal policy for the model in the presence of supply

shocks. This confirmsthe link between the coefficient on E|[B,,,] in the Phillips curve and the

8The criticism in footnote 1 of someinterpretations of the Taylor model extends to the usual
presentation of the Fuhrer-Moore (1995) relative real wage contracting model also. Thismodel
is often used as the basis for introducing inflation persistence. With a discount factor of unity
for simplicity and considering only termsininflation, the Fuhrer-Moore Phillips curveisusually
reported (for example see Walsh, 1998, eqn. (5.62) p. 225) as B=Y2(B, ,+E[B,,;;]+0,/2 where
0=E,,[B]-B,. Theexpectational error O, is sometimes taken as exogenous or zero or rolled into
acomposite error term with the truly exogenous shock variable (see for example the definition
of , inegn. (8) of Batini and Haldane, 1999). Asinfootnote 1, E ,[B,] ispre-determined at time
t whereas B, isnot and hencetheir difference should not betreated as exogenous at timet (except
under perfect foresight which is not usually the case of interest). Making O, explicit gives the
inflation termsin the Fuhrer-Moore Phillips curve when shocks are present by B.=(1/3)(B,,+E,.

[BI+E[B.4]).

*Bhaskar (1999) summarises arguments questioning these results while providing an
additional mechanism to support them.



extent to which policy should alter its future course in order to affect current outcomes. In
particular we examine the result of Clarida, Gali and Gertler (1999) who showed that with a
simple Calvo Phillips curve and a standard policy loss function involving fluctuations in the
output gap and inflation about target, optimal policy involves a stationary price level.®® If an
inflation increasing shock occurs at timet, optimal policy commits to inflation below its (zero)
target next period in order to influence the value of E[B,,,] and thus the timet inflation-output
tradeoff. The combined effect of these inflation rates, together with the optimal subsequent
returnto zeroinflation, isthat the sum of theinflation rates (which correspondsto the cumulative
changein the pricelevel) from the time of the shock into the infinite futureis zero (except in so
far as further shocks in the future may peturb that path). Hence based on the assumption of a
Calvo Phillips curve, optimal monetary policy with inflation rates in the loss function implies
price level targeting type policy choices. We show that this result no longer holds in the
generalised Calvo-Taylor model and whileit remains optimal to have alower inflation rate than
otherwise the period after an inflation increasing supply shock the optimal path no longer fully

offsetstheinitial impact of the shock on the price level .**

Thisresult complements the same finding by Jensen (1999) when inflation is persistent (which
isaso implicit in Steinsson, 2000) but shows that the optimality of price level targeting is not
robust even without inflation persistence. Given the continued controversy about the degree of

inflation persistencethisresult suggestsvery strongly that a cautious approach isrequired before

19See also Dittmar and Gavin (2000) and Goodfriend and King (2001).

“An assessment of the various mechanisms that have been proposed to achieve appropriate
‘policy inertia (seefootnote 1) in the new generalised model isbeyond the scope of this paper but
it seems highly likely that the reduced coefficient on expected future inflation in the Phillips
curve reduces the optimal degree of inertia (though not to zero).
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advocating price level targeting (see King, 1999) and is also highly relevant for the ongoing
debate about the appropriate objectives for the European Central Bank discussed by Alesinaet.
a. (2001) amongst others. More generally the policy results are supportive of the mixed

inflation-pricelevel targeting approach of Nessen and V estin (2000) and Batini and Y ates(2001).

The paper isstructured very simply in that Section 1 derivesthe generalised Phillips curve model
when either prices or wages are staggered (but with the other flexible), Section 2 analyses the
case of staggered prices with wages partly set ex ante, and Section 3 shows the implications of
the analysis for optimal policy and inflation vs. price level targeting in particular. Section 4
concludes while the appendices contain supplementary material, including detailed
microfoundations for optimal price and wage setting behaviour to emphasise that the Phillips
curve model sderived share common optimising microfoundations, their differencesarisingfrom

different staggering constraints.

1. The Generalised Calvo-Taylor Model

This section derives the generalised Calvo-Taylor model, initially for the case where prices are
staggered but wagesarefully flexible, before showing that similar resultsobtainif theserolesare
reversed. We consider the price setting decision of afirmthat is ableto changeits price at time
t subject to the exogenous probabilities of being able to change price again in the future of g, the
following period and g each period thereafter assuming that the price has not already been
changed again. Asnoted abovethe special case of g,=q recoversthe Calvo model and g,=0, g=1
corresponds to the Taylor model. Having derived and simplified the optimal price for asingle

firm we substitute for these individual pricesinto the appropriate expression for inflation given

9



this staggering structure (derived in Appendix B) to generate the Phillips curve for this model.
Appendix A gives microfoundations for optimal single period behaviour upon which the multi-

period optimisation under staggering constraints is based.

Wefollow the standard discrete time solution procedure for the Calvo model (asin Rotemberg,
1987 and summarised in Walsh, 1998, p.218-220) subject to the different probability structure
noted above.* Based on a second order Taylor series for profits as a function of price this
approximates the firm's optimisation by the minimisation of the expected discounted and
probability weighted sum of aper period lossfunction that is quadratic in the difference between
the logs of the firm's price and the ideal single period price. The latter is derived in Appendix
A, denoted p* and correspondsto the pricewhich thefirmwould set in that period in the absence
of constraints on changing pricesin the future. Thisterm for each period is discounted by the
(real) per period discount factor, $, and weighted by the probability of the price set at timet still
being in placein each subsequent period, t+. Thisprobability issimply (1-g,)(1-q)* for j$1 and
unity for j=0. The optimisation need not consider what happens after the firm has been able to
reset its price since the choice of price at timet does not constrain that subsequent optimisation.
Hence the firms choice problem may be expressed by (4) where L' is the total loss function for

firmi and x;, the priceit setsat t.

2We also follow Rotemberg (1987) and the standard forms of the Calvo and Taylor models
in assuming that new pricesin a given time period are set ex post on the basis of information
available in that time period. This contrasts with the original papers by Fischer (1977) and
Taylor (1979) where new prices or wages were set the previous period. Rotemberg and
Woodford (1997) allow for some agents (in an otherwise Calvo framework) to haveto set prices
on the basis of previous period information. This reduces the importance of time t dated
expectations in the Phillips curve and thus the potential gains from intertemporal commitment.
In Section 2 we alow for a proportion of wages to be set ex ante while new prices remain set ex
post which has asimilar effect.
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Thefirst order condition for (4) is given by (5) which shows that the optimal price set by afirm
at timet depends on the current and expected future optimal single period prices, appropriately
weighted by the discount factor and the probability of thetimet pricetill beingin effect infuture
periods. For convenience we use the notation g*=g-q, which is zero in the Calvo model and

unity in the Taylor model while unrestricted here.

1&$(1&q)][ ( (y( &a,)
Wsa( - (189)

X " E[E}.,$/(180)p,, (] ] (5)

From this point we may drop thei subscript dueto symmetry acrossfirmsthat are changing their

prices at the sametime. Itisconvenient to take the period t+1 out of the last termin (5) to give

(6).

(1&q,)

1&$(1&q) e [E-9(1&p, A1 ()

X [ 1%%aC 10 P (%(1&G,)$E [Py, (1%——

Next we shift (5) one period ahead to give the optimal x,,, and take expectations of thisat t to

give (7).

(184y) 4
(1&0)

1&$(180)

o) Bl PraC

Elxy,] = [V E[,$/(180)*py, (] (7)

Inturn (7) may berearranged to give (8), theright hand side of which isthe same asthelast term

in (6) so the left hand side may be substituted into (6) which gives (9).

(1%$9Q o (1&q,)
SORAIE ) e HOSEE [P () * ot EIER S50 R (@
X, " S(1EOE [x,,] % 218D, (wsq(E [p,, ] ©

1%$q(
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In turn we may substitute for E|[X,,,] intermsof E[B,,,] from (B7) and p*=p+(y+, from (A11),

wherey isthe (log) output gap and , ashock term, to give (10) where k is defined by (11).

4 r&l $(1%qQ)
OE,-1(1&0)"™ X, % —q(1%$q0 E[Byl
X " (10)

1%
%k(o—c?() [y %, HSACEL (Vg %5 0] ]

K q[1&$(1&Q)]

(180,)(1%$qO[1%$q((180)] (1)
In turn we may lag (10) one period to give the optimal price set at t-1 by (12).
‘ $(1%9Q
E',(18&0)%, % —— 1 E B
q r 2( q) Xt&r 0 q(1%$q() E[&]_[ t]
X1 (12)

0,
%k‘”“—cfo[(yt&l%,t&1%$q(a&1[<yt%,tn

At thispoint we draw on the material in Appendix B which derivestherate of inflation given the
staggering structure and the prices set at different times; x,, X, etc. In particular (B6) may be
rearranged to give (13) in which it may be seen that the two pairs of terms correspond to the |l eft
hand side minusthefirst term on the right hand side of (10) and (12). From (13) we can seethat
the origin of the Calvo specia caseisthat with g*=0 the second pair of termsin (13) disappear
so the prices set at t-1 become immaterial and E,_,[B,], which appears in (12) but not (10), will

be absent from the Phillips curve.

Bt ) 1%qq([xt&qE:1'1(1&q)r&l ar % q([xt&l&qu'z(l&Q)r&zﬂ&r] ] (13)

Substituting (10) and (12) into (13) gives (14) which is the Phillips curve for the generalised
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Calvo-Taylor model and the key result of this section.

$
1%$q( Et[Bt%l] " k((yt%’t%$q(Et[(yt%l%’t%1])

B, * (14)

$
%ﬁg(a&l{m % KAC( gy 0 BSACE il (Y6, )

From (14) it may be seen that the absolute values of g, and g matter only for the parameter k
givenin(11) whereasg* playsamoresignificant role. Firstly if g*=0, the Calvo case, thewhole
of the second line and the last two terms of thefirst line disappear and (14) takes the sameform
as(1). If g* ispositive the coefficient on E|[B,,,] isreduced, that on E, ;[B,] becomeslarger, and
the output gap and shock terms have aricher structureinvolving both lags and expectations over
these variables which are not present in the Calvo model. It may be noted that the response of
inflation in (14) to inflation expectations, output gaps and shocks has unusual propertiesif g* is
negative but thiswould only ariseif the probability of being ableto change price decreasesrather
than increases with the time elapsed since the | ast price change. Thisseemsimplausible and we

restrict attention to O#q* $1.

Focusing on therole of inflation expectationsin (14), Figure 1 showsthe coefficientson E[B,,,]
and E,[B,] asfunctionsof g* (by linesAA and BB respectively) with g* =0 corresponding to the
Calvo model and g*=1 the Taylor model as before. The figure confirms the discussion in the
introduction in that these models may be regarded as special cases of the more general model
presented above with the expected inflation coefficients varying monotonically (with mild non-
linearity) with g* between the two. There are no discontinuous jumps but it is clear that the
particular coefficients of the Calvo and Taylor models are not robust to changes in the structure

of probabilities of price changes. In apolicy context, as we show in the following section, the
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declineinthe coefficient on E|[B,,,] with g* isespecially significant because of itsimpact on the
extent to which committing to future policy actions can improve the current tradeoff between
inflation and the output gap. Inthegeneralised model thiscoefficient variesbetween$ . 1if g*=0
and $/(1+3$) . 1/2if g*=1 whilethe coefficient on E,,[B,] varies between zero and approximately

ahalf.

From (14) we note that g*>0, in addition to reducing the coefficient on E[B,,,], introduces the
termin EJy,.,] whichisafurther intertemporal link inthe Phillips curvethoughit doesnot offset
the former effect in the policy results. More generally g*>0 givesriseto aricher structure for
the effects of lagged and expected future output and shocks. In addition we note that (14)
suggests that the model may giverise to observed inflation persistence (even though thereis no
structural persistenceinthe sensethat lagged inflation doesnot appear inthe Phillipscurve) since
the second line of (14) is equal to g* times the first line of the equivalent expression for B, ;.
Hence, contingent on policy choices, inflation in each period may be positively correlated with
inflationinthe previousandfollowing periods. Thisisconfirmed by the policy resultsof Section

3.

We also note that the generalised model shares the property of the Calvo and Taylor models
individually of violating the weak form of the natural rate hypothesisin the sense that the sum
of the coefficients on inflation terms on the right hand side of (14), which equals
$(1+g*)/(1+$qg*), islessthan one unless $=1 though Figure 1 showsthat the differenceis small
at least for plausible values of $ closeto unity (0.98 inthefigure). Hencethe average output gap
isafunction of average inflation though the relationship is very weak. Under perfect foresight

(14) becomes (15) where the sum of inflation coefficients on the right hand sideissimply $.
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B, ™ $E[By,] % (1%$qQK([A(Y,e,%(1%Sq(?)y %$q(Y,y,,] (15)

From (15) we note that under perfect foresight the generalised model reducesto the Calvo form
(1) with respect to the expected inflation coefficients though the richer structure of output gaps
remains. As noted above the perfect foresight Phillips curve is not applicable when analysing

optimal policy responses to shocks.

Lastly, while we derived the generalised model assuming that prices are staggered with wages
set flexibly ex post these roles may be reversed and the termsin expected inflation are the same
asin (14). Thisisshown in Appendix C which uses exactly the same microfoundations as the
model above while changing the staggering assumptions. Typically the Calvo model has been
used only inastaggered prices-flexible wages context whilethe Taylor model hasbeen used with
either pricesor wages staggered. Hence onemay think of either of these model s (defined by their
assumptions about the probability of changing the staggered variable), or their generalisation

above, being combined with staggered prices or staggered wages.

2. Generalised Calvo-Taylor M odel: Staggered priceswith wages partly set ex ante.

The generalised Calvo-Taylor model of the previous section assumed that either prices or wages
were staggered, according to the (q,,q) probability structure, whereas the other variable was set
with full flexibility ex post. This naturally raises the question of what happensif there is some
form of staggering or timing constraints on the setting of both variables. Clearly there are many
possibilities including changes in both variables being stochastic (possibly with different

probabilities) or one could be stochastic and the other set for fixed periods of time, and with each

15



of these the variables could wholly or partly have to be set in advance rather than ex post.
Exploring al of theseis beyond the scope of the paper and we focus on a particular case where
prices are set as in the previous section while wages are still set for a single period but with a
constraint that they must be partly set in advance. We show that even with thisrelatively simple
modification there are significant changes in the Phillips curve and optimal policy. More
precisely we assume that a fraction, p, of wages must be set in advance or on the basis of
previousperiod information whiletheremaining fraction, 1-u, are set asbefore. Asnoted above,
Rotemberg and Woodford (1997) make asimilar assumption with respect to price settersand the
approach isalso in the spirit of the original Fischer (1977) and Taylor (1979) staggering papers
where wages were set ex ante as well as Barro and Gordon (1983) and Rogoff (1985) where
wages are set entirely in advance. The staggering/timing assumptions of this section are also of
interest because in the limit where g, tends to unity (so prices become flexible) and p tends to
one (al wagesare set in advance) themodel becomethe sameasthat in Barro and Gordon (1983)
and Rogoff (1985) and the substantial literature that followsthem. That having been said we do
not place special emphasison that special case and present thisversion of the generalised model
asi) potentially realistic to the extent that prices are staggered but wagesare partly set in advance
of the period for which they will apply, and ii) more generally a further exploration of the
possibleform of the Phillips curve given different timing and staggering constraints, once again

based on fully optimising microfoundations given those constraints.

From the above we assume that the aggregate or average nominal wage, W (in levels), isgiven

by (16) where WP is the ex post wage given by (A11) asin the previous section, and W@ the ex
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ante wage.”®

W, ™ (WOHWP) e (16)

For the ex ante wage wefollow the approach of Rogoff (1985) which amountsto workers setting

W?in advance to satisfy the expected value (A11) which gives (17).*

1
oot 2o Lyt
Y, ol1%2[1& (1&6)]]] (a7)

we - ("%ﬂ%ﬂ(w

Using (A1l), (16) and (17) the aggregate or average wage rate is given by (18) and substituting
this into the optimal single period price for firmi, P, given by (A10) gives us the log optimal
single period price across al firms, p*, by (19) which may be compared with (A13) where the
new constants (; and (, are defined in (20) and all other notation isthe same asin the previous

section.

1

Wy o WP Yy BaalY) olseieeadn (18)
(P)t (P) [ P " [(Y() H( < M

PC " PACY Y, UL By [BIEB)N((Epg[Y ] &Y,)] (19)

3In common with much of the literature we ignore possible aggregation issues and treat W
in (16) asthe common wage level in al firms,

¥“The shocksinthe model areall log-linear and all variables arelog-linear in those shocks and
hence arithmetic mean preserving spreads in logs and geometric mean preserving spreads in
levels. Sincethelog of a geometric mean is the same as the arithmetic mean of alog we have
the convenient result that in the model the log of an expectation isthe same as an expectation of
alog.
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' 0[1&"(1&%)] " opwepisr sy (20)

We now summarisethe derivation of the Phillips curvefor thisversion of the generalised model.
Firstly it may be noted that the new constraint on wage setting enters the derivation of Section
1 only through p* in (19) and hence (4)-(9) above remain unchanged since p* appearsin generd
form. Substituting the new p* from (19) into (9) gives (21) asthe equivalent of (10).
1%aQ)
E% (180)%x, % —90 E g
qE;-1(1&0)"  Xq, % q(1%3$q() (Bl
%, %SqCE[ (Y. %, ., (21)
%k(l%q()[ (yt t q( t[ (ytAul t/ol] ]
A %CH(E,[BI&B)NGH(Eyg,[Y,]&Y,)

Welag (21) one period to generate the equivalent expression for x,, and substitute that and (21)

into (13) to give the Phillips curve for this model by (22).

$ $qCe(1%$qOk(,H
By, % .
[(1%$q0(1%k(1u)]E‘[ wal % 1 (1%S$a Q) (29K (1) Bl

q(( H
10/ k (1 (Et&z[ t&l] &Bt&l)
B, " (22)

" 1%k [ (yt% ’ t%$q(E [ (yt%l% ’ t%l] % (2“(Et&1[yt] &yt)]
(1

ki
% S (( [ Viga5 11 %SACE g1 [ (V5 JGUE gl V1] &Yigr)]
l
We briefly note the properties of (22) compared with (14): i) (22) reducesto (14) if u=0, which
simply followsfrom the definition of ; ii) the perfect foresight version of (22) isthe sameasthe
perfect foresight version of (14) given by (15), which follows by inspection of (19) given that

expectation errors are zero under perfect foresight (intuitively, perfect foresight impliesthat the
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distinction between setting avariable ex anteand ex post disappears); iii) moregenerally if wages
arepartly setin advance (u>0) the coefficient on E[B,,,] inthe Phillipscurve (22) issmaller than
in (14) and that on E,_,[B,] islarger; iv) aspecia case of thisisthat if p and g, tend to unity (so
prices are flexible, which implies that k becomes large, and all wages are set ex ante) the
coefficient on E[B,,,] tends to zero and that on E.,[B,] tends to unity (thus giving a "Barro-
Gordon-Rogoff" form to inflation expectations in the Phillips curve); v) the ex ante setting of
some wages results in the expectation error terms in the second, third and fourth lines of (22);
and vi) (22) also violates the natural rate hypothesis though once again the sum of inflation

coefficients on the right hand side is close to unity (it isalso increasing in ).

3. Optimal Monetary Policy in the Generalised Calvo-Taylor M odel

We anayse optimal monetary policy both with commitment and under discretion in the
generalised Calvo-Taylor model of Section 1. In particular we focus on the extent to which the
reduction in the coefficient on E|[B,,,] below $, itsvaluein the Calvo model, if g* >0 affectsthe
degreetowhich optimal policy commitsto futurelower inflationin order to influencethe current
inflation-output tradeoff. With asmaller coefficient on forward looking inflation in the Phillips
curve we show that the optimal use of this mechanism is reduced, an immediate consequence
being that optimal policy nolonger impliespricelevel targeting if g*>0. Hence we demonstrate
that the value of g*, and thusthe nature of the Phillips curve (14), hasimportant implicationsfor
optimal monetary policy. Asdiscussed intheintroduction we make no claim that any particular
value of g* iscorrect, suggesting instead, in the spirit of the contributionsto Taylor (1999), that
monetary policy recommendationsshouldideally berobust to different coefficientsinthePhillips

curve (which in this model corresponds to different values of g*).
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Commitment

We first derive the optimal timeless perspective monetary policy rule when commitment is
feasible by analysing the policy maker's minimisation of the (standard) lossfunction (23) subject
to the Phillips curve constraint (14). In (23) 8 isthe relative weight on output gap fluctuations
and for simplicity we assumethat thetarget inflation rateiszero. Thelatter assumption does not
affect the results except in so far as price level targeting would become targeting a price level
trend. We also assume for ssmplicity that thereisno seria correlation in the supply shocks and

that the policy maker may be thought of as setting output directly.

L " Ep oS8y, %B] (23)

We proceed by first examining the constraints on policy imposed by the Phillips curve (14). We
conjecture that inflation and output under the optimal rule will be linear in the current and past
values of the shock variable and given by (24) and (25) respectively where the coefficientsc,, d,

etc are to be determined.

%C

B, * c¢,%cC 49 1530+ (24)

0
27181 %C

17t 37182

y, © d;,%d

17677727181

%0, 5 1g,%00, 5 g% (25)

Substituting (24) and (25) into (14) givesthe Phillips curve constraint in terms of the history of

shocks by (26).
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$c, ¢
, [K&C % %k ([d%S$q <d]]
1%$q ¢

c,&$c
kg 6D Q%k([q d,%(1%% ), %8q d]]
1%$q ¢
0- c.&%c
%, g0l & i %k([a ‘d %(1%$q (2)d3%$q (d,]]
1%$q ¢

c,&3$c
(,8%¢) %k([q (d.%(1%S$q ©)d,%$q (dg]
1%$q €

% ...

(26)

%, el &

The structure of (26) repeats from ,,, across earlier shocks which imposes the constraint that
each value of the coefficientsin (24) and (25) from ¢, and d, onwards respectively must differ
from the previous coefficient by a common multiplicative factor which we denote * such that
C,=*C,;, C=*C,, d;=*d, etc. Substituting this constraint into (26) gives (27) where the summary
parameter, A, is 1+$g* (gq* +*). The three square bracketed expressions to the right of each line
in (27) must al equal zero such that (27) asawhole equals zero given that the , terms may take
non-zero values. Hence the Phillips curve (14) implies three separate constraints on the choice
of the coefficientsin (24) and (25). The latter may also be expressed by (28) and (29). The
second and third lines of (27) also imply that as g* (and thus the kg* term of the second line)

tends to zero, c; must tend to *c, and d, to *d,.

$c, ¢
, [K&C % %k ([d%%$q <d]]
1%$q ¢

o- %,...[K (&%%k([ (d,%Ad,]] (27)
» g1l K 1%$0( g °d,nAd,

c,(185%)
2, b ][&io—

$q ¢

%[, %% 5 g3 %k(d,(q %*A)]
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)ox?

Yo T Ay 00,05 100 %7 % %+

g 2 1ga’0-r2) (29)

Having analysed the constraint we derive optimal policy (the values of c,, c,, c;, d;, d, and * by
maximising the Lagrangean (30) where B, and y, are given by (28) and (29) and the summary
term, C, issimply theright hand side of (27). The multiplier, N, is conjectured to take the form
(31) suchthat it has three independent parameters to match the three constraintsimplicit in (27)

and a repeating structure comparable to B, and y..

M E,E oS 8—(By HBIHN,C] (30)

N ) el t A)e2 ’ t&l%e3( ’ t&Z%* ’ t&3%*2 ’ t&4%*3 ’ t&5%' : ) (31)

We partialy differentiate (30) with respect to c,, ¢,, C,, d; and d, and take the expectation of each
(using the assumption of uncorrelated shocks such that E[ , ]=F? and E[ ,, 1=0) togivethefirst

order conditions (32)-(36).

c, " &e (32)
B
C 33
2 TygqC (33)
18%*%)&e,(18$*
¢ - &,(183™)&e,(1&$*) (3

1%$q €
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d, * X(essate) (35)

d, * %[(1&$*2)(q (e, lAe,)%$(q UrA)e,] (36)

We substitute (32)-(36) into the three square bracketed expressionsin (27), set each to zero and
solve the resulting simultaneous equations in e;, e, and e, subject to the constraint discussed

above that c, tends to *c, which implicitly determines * by (37).%
*(1&* * k2(2 0 O2(n (i xA)2 =
(1&*)(18$ )&T(Mﬁq )@ %*A)” * 0 (37)

The results for the coefficientsin (31) are given by (38)-(40) where the summary parameters B

and D are given by (41)-(42).

e, * &=1a‘(q AN (1 )(1%8q 9] (38)

e, * &21a(q G (*%q WAL 9(1%8q O] (39)

e " &g[*zq (g @*A)%q (g %A)(q W**A)%*3(1%q ) (1%$q )] (40)
B " k(1%$q O%(q %*A)? (41)

This expression may aso be obtained from a simple perfect foresight optimisation of (30)
in B and y directly with no shocks after ,,,. If g*=0 (37) reduces to the equivaent expression
inClaridaet. al. (1999). Inthesimulationsbelow we assumevaluesfor k, ( and 8 such that (37)
has a solution with O#*#1. For some values of g* (37) has two solutions within thisrange in
which case we choose the solution continuous in g* with that obtained when g*=0.
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[(a 9*A) (g 9%*)[ (1% ) 2%$(18*)]%*A(1&*) (18$*)]
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%00 C(18*)(1&$%)[&5(q U*A)2%6$q C(18*)(18$%)(1%$q %A)]

D isexpressed in compact form but may readily be shown to be positive such that B/D ispositive
and thus e, e, and g, are al negative. If g*=0, e,=*e, and e,=*?e, which, together with al the
resultswhen g* =0, correspondsto theresults of Claridaet. al. (1999) and M cCallum and Nelson

(2000).

From (38)-(42) the coefficients of the reduced forms (28) and (29) and thusinflation and output
arestraightforwardly derived from (32)-(36). Wefirst present an analytic result showing that the
cumulative effect on the price level of optimal policy following ashock is strictly positiveif g*
is strictly positive which contrasts with the stationarity of the price level under an optimal rule
inthe Calvo model where g*=0 shown by Claridaet. al. (1999). To show thisweassumeasingle
shock at sometimes, *, and note that from (28) the sum of the changes in inflation resulting

from this shock, which corresponds to the cumulative effect on the price level, is given ssimply

by (43).

C
P,&Py, - E-B, " cl%cz%Ei (43)

t"s—t

Using theresults above we may substitute for the ¢ parametersin which case (43) may be shown
toequal (44) whichiszeroif g* iszero but strictly positive (negative) for an inflation increasing

(decreasing) shock if g* is strictly positive.

B(1%$q €

5 q4(1&*)(1%q )(q %3$*)] $ 0as q¢ $ 0 (44)

Pa&Pgs  od
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We show the more general implications of the generalised Calvo-Taylor model derived above
for optimal policy graphically in Figures 2-4. These show the response of inflation, output and
thepricelevel under the optimal ruleto asingleshock (for illustrative purposes) inperiod 1. The
simulations assume for illustration that there are no further shocks and that inflation and output
(and expectations of their future values) are all zero prior to the shock. Assumed parameter
valuesare'=0.67, $=0.98, 0=6, 2=0.5, 8=0.5, q,=0.5-g*/2 and g=0.5+qg*/2. We do not specify
avaue for the particular shock modelled but this has a simple multiplicative effect on all the
variablesin all time periods and hence does not affect the comparisons between them. For this

reason we do not show a numerical scale on the vertical axes.

Figure 2 shows the cumulative effect on the price level over time of the single shock in period
1 under the optimal rule for g*=0, 0.5, 1. This confirms the result above that for g*>0 the
optimal rule does not correspond to targeting the price level whereasthe price level is stationary

if g*=0. It also shows that the long run impact of a shock on the price level isconvex in g*.

Figure 3 shows inflation rates over time following the shock. It may be seen that when g*>0
inflation the period after the shock tendsto be positive. Thisreflectstwo factors, first the shock
in period 1 also affects the Phillips curvein period 2 through the g* , ., termin (14), and second
the smaller coefficient on E[B,,,] in the Phillips curve with g*>0 implieslessgain from therule
committing to alow inflation rate the period after the shock. Thefirst of these factors matters
for the optimal inflation path but is not decisive for the long run price level remaining aboveits
initial value. If weimposed this"shock" in period 2 in aCalvo model the price level would il
be stationary (sinceit is stationary in relation to asingle shock and the effects of more than one

shock are additive). In period 3 the effect of the E[B,,,] term may be seen in that the strongly
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negative inflation rates when g* >0 will improve the inflation-output tradeoff in period 2. This
linkage between periods 2 and 3 is not affected by the reduced coefficient on forward looking
inflation in (14) because after period 1 the response to the period 1 shock is completely
predictable and the perfect foresight Phillips curve (15) has a coefficient on forward looking
inflation equal to $, asin the Calvo case, for any g*. Figure 4 shows the output gap under the
optimal rule. The time paths here are similar but the deviation of the output gap from zero is
larger thelarger isg*. Thispartly reflectstheqg* , ., termin (14) such that the total impact of the

period 1 shock isincreasing in g*.

Discretion

Under discretion we continue to assume that the policy maker minimises the loss function (23)
subject to the Phillips Curve constraint (14) but with the additional constraint that commitment
is not possible. This means that expectations already formed and past values of variables are
taken as given at the timethat policy choices are made though the policy maker may and should
take into account the effect of current choices on future choices subject to that constraint. In
effect the policy maker may take advantage of reduced form intertemporal relationships that
emerge from optimal policy making (which isimportant given the intertemporal nature of the

Phillips curve with g*>0) but cannot optimise those relationships directly.

Toderiveoptimal policy under discretion weform the Lagrangean (44) where T, isthemultiplier

for the discretion case.
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Given the presence of y,,, ,, and , ., in the Phillips curve we conjecture the reduced form
solutions for inflation and output given by (46) and (47) such that differentiating (45) with
respect to output will take account of the reduced form D parameters, including their effect on
expectations, but without the policy maker being able to optimise their values since thiswould

require a commitment to respond to past values.
B, " DgVien % @55 % @554 (46)

Yo 7 D¥ier % Dysy % Dysig (47)

From (45)-(47) wefind thefirst order conditionsfor the maximisation of (45) shown by (48) and

(49).

B, " &T, (48)

. 1. $0g
yt _[
8 1%$q ¢

%k ((1%$q D)][ T %$q E[T,,] ] (49)

Substituting the first order conditions into (14) we find that D is given by (50) and T, by (51)

where coefficients and constants are shown by (52)-(54).
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Having established the process for the multiplier we may substitute these results into the first
order conditions aboveto giveinflation and output explicitly. We show theseresultsgraphically
in Figure 5 below which compares rule and discretion outcomes for inflation and output for
g*=0, 0.5, 1. Thetop pair of figuresrepeatsthe standard Calvo results (see Claridaet. a., 1999)
that optimal policy under discretion ssimply responds to the current value of the shock variable
with inflation and the output gap returning to zero immediately if no further shock occurs the
following period. In this case D=0. Once g* is greater than zero, y,, and ,,, appear in the
Phillipscurvesuchthat D isnolonger zero (in fact it becomes negative) and policy both responds
to ,,, and also the current choice of output, y,, determinesthevaueof "y, ," thefollowing period.
The latter effect issmall, however, since in period 3 when the effect of the period 1 shock isno
longer present, optimal discretionary choicesare closeto zero. Hence whilethe outcomes under

discretion arefairly closeto therulein period 1 when the shock occursthe major differencelies
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in period 3 when the rule can commit to negative inflation (which benefits the period 2 outcome
also) while discretion achieves only marginally negative inflation, in turn worsening the period

2 outcome.

Figures 6 and 7 give results for the effect of optimal policy in each case on the expected per
period value of the loss function. As expected the loss under the rule is less than that under
discretion but both of them, and the rel ative gap between them shown by Figure 7, increase with
g*. Thisfollowsfrom the fact that anincreasein g* effectively raises the total variance of the
shocks hitting the economy since a shock in one period has an additional effect the following

period with weight g*.

Lastly, Figure 8 examines the reduced form persistence properties of inflation and output under
discretion, shown by the simpl e correl ation coefficient between neighbouring values. Theseare
zerowhen g* =0 (sincethe Calvo model hasno intertemporal dimension under discretion) but rise
significantly above zero as g* increases. It should be emphasised that we do not place a
structural interpretation on these values, especially that for inflation since B, , is not present in
the Phillips curve (14), but they show that observed inflation and output persistence can arise

from the generalised Calvo-Taylor model without serial correlation in the shock process.

3. Conclusion

This paper has analysed the microfoundations of the New Keynesian Phillips Curve, exploring
the reason for the differences between the Calvo and Taylor models when prices are staggered.

It presented a generalised model which nested these as special cases by means of allowing the
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probability of firms changing priceto vary between the period immediately after aprice change
and subsequent periods. While this change only affects one period, and is only one of many
possible changes to the staggering structures of these models that could be made, it shows that
the coefficients on expected inflation and the structure of the output and shock terms in the

Phillips curve vary significantly with the difference between these two probabilities.

The model clarifies the source of the different predictions for the Phillips curve in an otherwise
common framework, showing that they result solely from differences in staggering structures
given optimising behaviour by agents. While not itself giving a unique prediction of the
appropriate Phillips curve coefficients to use in policy modelling the paper nevertheless has a
strong conclusion that we should be wary of policy results that rest sensitively on a particular
staggering assumption or, equivaently, a particular coefficient on forward looking inflation in
the Phillips curve. In particular i) it was shown that the price level targeting result of Clarida,
Gali and Gertler (1999) is not robust to changesin the structure of staggering away from Calvo
pricing; and ii) that the generalised model may contribute to our understanding of observed
persistence in inflation (and output) even in the absence of a structural term in lagged inflation

in the Phillips Curve.
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Figure 1: Inflation Expectations Coefficientsin the Generalised Calvo-Taylor Model
Simulation of (13) with $=0.98; "A-A" isthe coefficient on E[B,,,], "B-B" isthe coefficient on

E.,[B,], and their combined value is shown by "Sum".
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Figure 2: Price Level Under the Optimal Rule (Single Shock in Period 1)
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Figure 3: Inflation Under the Optimal Rule (Single Shock in Period 1)
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Figure 4: Output Gap Under the Optimal Rule (Single Shock in Period 1)
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Figure5: Rule and Discretion Outcomes Compared (Single Shock in Period 1)
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Figure 6: Expected Level of Per Period Loss Under Rule and Discretion
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Figure 7: Expected Relative L oss Under Rule and Discretion
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Figure 8: Simple Correlation Coefficient Between B,, B,; and y,, y,.;, Under Discretion
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Appendix A: Microfoundations of Optimal Price and Wage Setting

We derive expressions for the prices and wages that would be set each period in a flexible
price/wage environment in order to generate<ideal’ pricesand wages per period which form part
of the derivation of optimal price (later wage) setting once staggering constraints are imposed.
The microfoundations of these choicesare standard. We consider alarge number of symmetric,
monopolistically competitive firms, indexed by i, each with production function (A1), whereY,
isfirm output, K; the firm's capital stock which we hold constant and L, firm level employment.
Any multiplicative constant that may be present in (A1) is normalised to unity for convenience
and without lossof generality. All expressionsin thisappendix refer to asingle period and hence
for simplicity we do not include time subscripts.

v, " KL

i (A1)

Each firm also faces the demand curve (A2) where P, isthefirm's price, P the general pricelevel
(defined asthe wei ghted geometric mean of firm priceswith weights summing to unity and equal
totheproportion of al firmswith each particular price), 0 thecommon price el asticity of demand

(defined such that 0>0) and Y ; an index of aggregate demand per firm.
F)i
Vit )T Y (A2)

We also make use of the notation W for the common nominal wage which isexogenousto firms
individually, ¢, for the per period cost of capital (which playsno part inthe analysissince capital
is fixed), and R, for firm profits. Profits are given by R=PY;-WL;-c, in terms of the three
variables endogenous to the firm, P, Y, and L;. For given Y and P the choice of any of these

three implies the other two through (A1) and (A2) and we substitute from those expressions for
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Y, and L, to give profitsin terms of P, by (A3).

(18" o 1

Ri - P[(%)l&o Ydi & Ki " (%/)(Fl)& Ydl_] & CKKi (A3)

Differentiating (A3) with respect to P, givesthefirst order condition for price, (A4), which may
be substituted into (1) and (2) to give optimal employment by (A5) and output by (A6). The

second order condition for profit maximisation may readily be shown to be satisfied.

' Wy 1
. Ya (E) 0[18"(182)]
A 18" 1,,- (A4)
K ["(1&5)]
w1
pao 1y, PR 5 1
(1&6)K| di 1&"(1&1)
L | — 0 (A5)
P
1 187 1
" "y 0
(1&6)K| Ydi 1&“(1&&)
Yo 0 (A6)
P

In (A4)-(A6) the powerson thefirm level quantity variables, L;, K; and Y 4 are such that we may
multiply each of these by the number of firms which then cancels such that the P, in (A4) may
be expressed asafunction of aggregate demand, Y 4, and the aggregate capital stock and (A5) and
(A6) give aggregate employment and output simply by dropping thei subscripts. From thispoint
K, may be normalised to unity. P, in (A4) may also be shown to be equal to nominal marginal

cost divided by (1-1/0) but we keep the roles of output and the real wage separate for clarity.
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We turn to wage setting behaviour, assuming that wages are set competitively by many small
groups of workers (who by symmetry set the samewage) whose preferences may be summarised
by the aggregate labour supply curve L=(W/P)? where without loss of generality a possible
multiplicative constant is normalised to unity. Equating labour supply with aggregate labour
demand from (A5) without i subscriptsgivesthe equilibrium real wageby (A7). Whilewethink
of workers setting the nominal wage we express outcomes in terms of the real wage for
convenience, noting that with contemporaneous wage setting rational workers will have full
information about the real wage that will result from any given nominal wage. Using the labour
supply curve and (A1) equilibrium employment and output are given by (A8) and (A9).
1

1 awor1emsdy
2 ey 0 (A7)

2
L [(180) 70 (A8)
1 "2
YT [ (e o)) HEE (A9)
Given that we have assumed complete within period price and wage flexibility and not yet
introduced shocks (A7)-(A9) may be interpreted as flexible wage-price natural rates. Denoting

these with a"*" we may re-express (A4) and (A7), each with their right hand side variables at

their natural rates, compactly in terms of deviations from natural rates by (A10) and (A11).

w1
. p . oneraedy
P - P[(%)l& (1 (A10)
(F)(
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We make further use of (A11) when we consider staggering of wages below but for the time
being the core version of themodel assumes complete wageflexibility while pricesare staggered
so (A11) may ssimply be substituted into (A10) which gives (A12) astheideal single period price
which would be set by an individual firm in the absence of staggering constraints.

_ 12018
o
Y | OlL%2[18" (18] (A12)

P. " P(—
| (Y(

Asafinal step (see Walsh, 1998 p.219) we take logs of (A12) and assume alog linear shock to
price setting (which could also arise from wage setting through (A11) substituted into (A10)),
,, to give (A13) as the single period ideal price in logs which we denote p* (without an i
subscript sinceit is symmetric across all firms). We also add time subscriptsand y refersto the
log of (Y/Y*), the output gap.

1%2(18")
0[1%2[1&"(1&%)] (A13)

pt(.pt%(yt%’t ; (.
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Appendix B: Inflation Given Optimal Pricesor Wages

Wefirst derive the aggregate inflation rate for given individual staggered prices set by firmsfor
usein the derivation of the generalised Calvo-Taylor Phillipscurvein Section 1. Thenew price
set by firmsin period t that are able to change their price at that timeisx,, and the probability of
being ableto change price again thefollowing periodisq, and, assuming that anew price has not
already been set, q each period thereafter. We derive the distribution of prices existing in each
period, distinguished by the time since they were set, on the assumption that the distribution is
initsergodic stationary state. Given that distribution the derivation of theinflation ratein terms

of prices set at different timesis straightforward.

We start by assuming that at time t-1 there is a given (for the time being unknown) proportion
of firms, s, that have changed their price at t-1 with the remaining prices having been set at time

t-r being distributed with (unknown) weights (1-s) T, such that p, ; isgiven by (B1) where 3T=1.

. 4
Pia1 K1 % (L&S)E 5T X, (B1)

Moving forward one period to timet, these prices will evolve asfollows. Considering the first
termin (B1), the probability of these prices changing again at timet is g, and the probability of
remaining the same, 1-q,. Giventheassumed large number of firmsthese probabilitiestrandate
into proportions and hence at timet these priceswill become x, with weight (ie. their proportion
of al the pricesthat will exist at timet) g,sand remain at x,, with weight (1-q,)s. Of the prices
inthesecondtermin (B1), the probability of their changing isqand hencethese priceswill either
changeinto x, (with weight (1-s)q, noting that 3T=1) or remain at x,, (with weights (1-g)(1-s)T,

respectively). Hence p, isgiven by (B2).
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Making use of the notation g-q,=g* we first equate the proportions of newly changed prices at
t-1, sin(B1), andt, g,;st+(1-s)qin (B2), whichimpliesthat s=g/(1+qg*). Substitutingfor sin(B1)
and (B2) gives (B3) and (B4) for p., and p,.

. WXy % (1&G)E,T X,

B3

L O % (180X, % (18G)(L&QES T X,
t 1%q(

(B4)

Equating the proportions of pricesset 1, 2, 3 etc. periods beforein (B3) and (B4) gives T,=g and
T,=q(1-g)"? for r$2. Substituting these T values into (B4) gives (B5) and subtracting the

equivalent expression for p,, givesinflation, B, by (B6).

- q 4 r
P e " (18G)ER(120) ey ] (B5)
B, " —J_[x & OXg & O(180)E™,(180) %X, ] (B6)

In Section 1 (B6) isre-expressed in a convenient form and we also make use of (B7) whichis

derived from shifting (B6) one period forward and take expectations at t.

BBl ™ okl & 0% & A180)E, (180X, ®7)
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Appendix C: Stagger ed wages with flexible prices

Weturnto therate of inflation in the generalised Calvo-Taylor model of Section 2 where wages
are staggered and prices are set flexibly period by period ex post. Workers are assumed to face
the same probabilities over the ability to change their wages asfirmsdid over their pricesin the
price setting version of the model set out in Section 1. Since the resulting structure of this
version of the model is very similar we give a brief treatment. Firstly, from (A10) with P=P

(giventhat all price setting is at the same time ex post) the log priceis given by (C1).

(1&™)

P, "W, %

Y& Ln[(WP)(] % ,, (C1)

From (C1) therate of priceinflation, B, in terms of nomina wage inflation B" is given by (C2).

. 1&™
B, B, % ( T )(yt&yt&l) % s&sie (C2)

From (A11) theideal wage that workerswould set each period in the absence of any constraints

on changing wages again, w*, is given by (C3) where (" is shown by (C4).

w,(C " p, % Yy, % LN[(WP)(] (C3)
- 1 - (o) >
0[1%2[1&"(185)]] (C4)

Weassumethat workers' utility maximisation problem may be approximated by the minimisation
of aloss function quadratic in the actual wage relative to the ideal wage given by (C3), the
equivalent assumptionto that for price setting. Given thisthe optimisation problem hasthe same

form as (3) except with X", the wage set by all workers able to changetheir wagein agiventime
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period, and w* in place of x and p*. Following thisthefirst order condition (4) followsdirectly,
asdo (5)-(8) and the expressionsin Appendix B with w and B in place of pand B. Substituting
from thewage setting version of (B7) and w* from (C3) into thewage setting version of (8) gives
x" for t and t-1 by expressions with the same structure as (9) and (11) except with the changein
notation outlined above and the coefficient (“+(1-"")/*" in place of (. Substitution of theseinto
(12) for B" gives (13) with the same changes as above. Use of (C2) then givespriceinflationin
the staggered wages version of the model by (C5) where the first two lines equal wage inflation
and thelast two linesthe difference between priceinflation and wageinflation. The coefficients
on the output gap and shock termsin (C5) may be expressed more compactly but our focusison
showing that the coefficients on expected inflation in this staggered wages version of the model

are the same as the staggered prices version (13).

_ 3 wy 18" o, 187
1%$q(Et[Bt%l] o KLCH=)y 00 HSACEL(CH—) ™

g TlB) % KACHE 5, s 5B CH I,
B * (C5)
.
0 () v &Yir) % &g
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