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Abstract

This paper studies the impact of the process of technological change on the distribution of pro-

ductivities and pro…ts across sectors. We …nd that if technological progress a¤ects high-tech and

traditional sectors di¤erently, the impact of changes in the determinants of economic growth may dif-

fer depending on which is the actual change. When an economy is growing faster due to an increase

in the productivity of research or to a reduction of the taxes on capital accumulation, inequality will

decrease. However, if faster growth is due to the presence of tax incentives to high technology sectors

or to structural changes that allow a better absorption of externalities, inequality will increase. Re-

garding the e¤ect on growth of changes a¤ecting the distribution of productivities we …nd that if the

scope of technological spillovers is su¢ciently broad, a distribution with a larger mass of high-tech

sectors is associated with a larger growth rate. Nevertheless, a larger mass of research intensive sec-

tors is not necessarily associated with faster growth when spillovers are technology speci…c or narrow

in scope. In this case, the mass of the leading group of sectors will not a¤ect the growth rate because

the increased probability of innovation due to the larger mass of high-tech products is completely

o¤set by the reduction in the marginal impact of an individual innovation.
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1 Introduction

Does technological progress increase or reduce inequality in the pro…tability of productive activities? How

is the distribution of productivities related to the growth process? Do growth promoting policies induce

di¤erent degrees of inequality among productivities? In this paper we try to provide answers to these

questions by means of an endogenous growth model in which the distribution of productivities across

sectors a¤ects and is a¤ected by the characteristics of the process of technological change.

We take as reference the Aghion and Howitt (1998) model of endogenous technological change in

which the distribution of relative productivities is time invariant and is not a¤ected by changes in most

of the parameters except for the size of innovations. By means of the introduction of a punishment to

obsolescence, we develop a model in which both technological parameters and policy instruments will

be able to modify the distribution of productivities. We will …nd that in some cases, faster growth can

induce more inequality, introducing a wider gap between the technological leaders of the economy and

the less innovative sectors.

R&D based models of growth were initially divided into horizontal models of product development

(as in Romer 1990) and models of growth through creative destruction (Aghion and Howitt 1992). The

introduction of the schumpeterian concept of creative destruction allows for the existence of obsolescence

of old intermediate products but technological improvements in other sectors can also cause relative

obsolescence. However, Aghion and Howitt (1992) considered only one intermediate sector producing

improved varieties of the same good as technology evolved. When a multisector approach is taken, as in

Caballero and Ja¤é (1993) and Howitt and Aghion (1998), a wide variety of new considerations appear. In

this new framework, growth promoting policies will make aggregate productivity grow faster but di¤erent

policies may have distinct e¤ects on the distribution of productivities across the economy. Empirical

studies detect relevant changes in the distribution of productivities in the last decades. Cameron et

al. (1997) …nd that the distribution of productivity levels across UK manufacturing sectors exhibits an

increase in dispersion and becomes increasingly skewed during the period 1973-1989. They …nd evidence

of convergence of a number of industries just below the mean while productivity levels in a few sectors

persistently remain above and rise away from mean values. This divergence in productivity levels between

high-tech industries and traditional sectors and the formation of technological clusters has been observed

in most developed countries.1 In addition, there exists a wide array of policies that try to a¤ect the

productive performance of di¤erent sectors. Research subsidies are predominantly devoted to high-tech

sectors while most countries develop programs to support the competitiveness of traditional sectors or to

increase research productivity.2 The model we propose allows to analyze the distributional implications

of these di¤erent policies in a theoretical framework.

The distribution of productivities considered in this model di¤ers from the one used in leap-frogging

neo-Schumpeterian literature in the following aspect: In the standard model, the occurrence of a sole

1See Bergeron et al. (1998) or Boschma (1999).
2 See Ford, R. and W. Suyker (1990) and Eaton et al. (1998).
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innovation would take the productivity of the sector to the leading edge, no matter how long ago occurred

the last innovation or how obsolete was the previous technology. In our model, the introduction of a

punishment to obsolescence creates two classes of sectors. If the relative productivity of a sector falls below

a given threshold, it will not be able to reach the technological frontier with just one innovation. Instead,

the productivity increase will only be a fraction of the gap existing between the previous productivity

and the most advanced technology of the economy. We will refer to these sectors as the lagging group.

Conversely, the leading group will be formed by those sectors with a relative productivity parameter

above that threshold. These sectors are able to reach the leading edge if they innovate, but if they do

not, their relative productivity will fall and will enter into the lagging class. The resulting distribution

will be a¤ected by policy variables and technological parameters. We …nd that a larger productivity of

research or an increase in the incentives to accumulate capital will make the economy grow faster and

reduce the mass of technological laggards, improving thus the distribution of productivities and pro…ts

across sectors. Conversely, a larger size of innovations or a higher in‡uence of individual innovations on

the aggregate state of knowledge will increase the size of the lagging group, and therefore, there will exist

a larger mass of …rms earning relatively low pro…ts with respect to the technological leaders. Whether

this increase in the size of innovations is growth enhancing or not will depend on the assumption we make

about what determines the growth rate of productivity. Similarly, a research subsidy to high-tech sectors

will also reduce the mass of the leading group since it will induce a higher research intensity and thus a

faster rate of decay of non-innovating sectors. Again, the e¤ect on growth of this subsidy depends on how

the size of the leading group a¤ects the evolution of aggregate productivity. We have also found that a

subsidy to less research intensive sectors will reduce the size of the lagging group and may increase the

rate of growth of the economy.

In summary, this model establishes a set of links between the process of technological progress and the

distribution of productivities and pro…ts across economic sectors. We …nd that if technological progress

a¤ects high-tech and traditional sectors di¤erently, the impact of changes in the determinants of economic

growth may be very di¤erent depending on which is the source of faster growth.

The rest of the paper is organized as follows: Section 2 presents the model, sections 3 and 4 perform

the equilibrium and steady state analysis and section 5 concludes the paper.

2 The model

This paper presents a model in which the nature of the process of innovation will a¤ect the distribution of

productivities across sectors. The paper is based on the work of Aghion and Howitt (1998) but their model

is modi…ed in such a way that changes in the technological parameters will in‡uence the distribution of

pro…ts across economic sectors.
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2.1 Consumers

There exists a representative consumer who gets utility from the consumption of a …nal good. He

therefore, will maximize the present value of utility

V (C (t)) =

Z 1

0

ln(C (t))e¡½tdt; (1)

where C (t) is consumption at time t and ½ is the rate of discount.

2.2 Final good sector

The consumption good is produced in a competitive sector out of labor L; that is assumed to be exoge-

nously given, and a continuum of mass one of intermediate goods. Let mi (t) be the supply of sector i

at date t: The production function is a Cobb-Douglas with constant returns on intermediate goods and

e¢ciency units of labor as given by

Y (t) = L1¡®
Z 1

0

Ai (t) [mi (t)]
®
di; (2)

where Y (t) is …nal good production and Ai (t) is the productivity coe¢cient of each sector. The evolution

of each sector’s productivity coe¢cient Ai (t) is determined in the research sector. I assume equal factor

intensities to simplify calculations.

2.3 Intermediate goods

Intermediate goods are produced in a sector formed by a continuum of monopolies each producing one

good. They are monopolies because their production technology is protected by a patent. The only

input in the production of intermediate goods is capital. In particular, it is assumed that Ai (t) units of

capital are needed to produce one unit of intermediate good i at date t: As we will see, this assumption is

necessary to obtain stability. Capital is hired in a perfectly competitive market at rate ³ (t) : Therefore,

the cost of one unit of intermediate good i is Ai (t) ³ (t) : Because the …nal good sector is assumed to be

competitive, the equilibrium price p (mi (t)) of intermediate good i will be its marginal product

p(mi (t)) = ®L
1¡®Ai (t) [mi (t)]

®¡1
:

Consequently, the monopolist’s pro…t maximization problem will be

¼i (t) = max
mi(t)

[p(mi (t))mi (t)¡Ai (t) ³ (t)mi (t)]

subject to p(mi (t)) = ®L1¡®Ai (t) [mi (t)]
®¡1 ;

from where we obtain the pro…t-maximizing supply and the ‡ow of pro…ts as

mi (t) = L

µ
®2

³ (t)

¶ 1
1¡®

¼i (t) = ®(1¡ ®)L1¡®Ai (t) [mi (t)]
®
:
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Due to the assumption of equal factor intensities, supply of intermediate goods is equal in all sectors,

mi (t) = m (t). Thus, the aggregate demand of capital is equal to
R 1
0 Ai (t)m (t) di: Let A (t) =

R 1
0 Ai (t) di;

be the aggregate productivity coe¢cient. Then, equilibrium in the capital market requires demand to

equal supply

A (t)m (t) = K (t) ;

or equivalently, the ‡ow of intermediate output must be equal to K(t)
A(t) which we will call capital intensity

and denote by k (t) : That is,

m (t) =
K (t)

A (t)
´ k (t) :

With this notation we can express the equilibrium rental rate in terms of capital intensity

³ (t) = ®2L1¡® [k (t)] ®¡1: (3)

2.4 Research sector

Innovations are produced using the same technology of the …nal good sector. Hence, they need capital

apart from labor to be produced. Let ni (t) ´ Ni(t)
Amax(t) be the productivity adjusted level of research or

research intensity of sector i at date t. It is de…ned as the total amount of output invested in research

by that sector Ni (t) ; divided by Amax (t) ; the productivity coe¢cient of the most advanced technology

in the economy. Investment in research is adjusted by Amax (t) in order to take into account the e¤ect

of increasing technological complexity. Thus, as technology evolves and becomes more complex, an ever

increasing amount of research will be necessary in order to obtain further technological improvements.

The Poisson arrival rate of innovations in each sector is assumed to be ¸ni (t) ; where ¸ is a positive

parameter representing the productivity of research.

Let us de…ne ai (t) as the relative productivity parameter of sector i at date t: This relative productivity

is given by the productivity coe¢cient Ai (t) of that sector; divided by the productivity coe¢cient Amax (t)

of the leading edge technology, and this ratio measures the technological level of the sector with respect to

the most advanced technology of the economy. We will assume that Amax (t) will grow due to the ‡ow of

innovations in the economy. Therefore, if Ai (t) does not change, the relative productivity parameter will

gradually fall as the sector’s technology becomes obsolete. This process of obsolescence can be avoided if

an innovation occurs in the sector since then, its productivity coe¢cient will increase. In order to take

into account the e¤ect of intertemporal and intersectoral spillovers, we assume that Ai (t) will jump to

Amax (t) : That is, the …nal increase in productivity depends upon the evolution of innovations in the rest

of the economy and the technological gain will arise from the adoption of new technologies created in other

sectors and the absorption of spillovers. However, consider a sector with a very low relative productivity

parameter. A low value of ai (t) implies that the sector’s technology has fallen far behind the leading

edge and that no recent innovations have taken place. Let us call this type of sectors lagging sectors. In
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Aghion and Howitt’s model, a sole innovation would take the productivity coe¢cient of this sector to the

leading edge. In the present model, we will introduce a punishment for having lagged behind, in the sense

that if the relative productivity parameter has fallen below a given threshold, innovating once will not

allow the sector to reach the top of the distribution. We will thus assume that if an innovation occurs in

a lagging sector, the productivity coe¢cient attained will only be a fraction of Amax (t) : Speci…cally, we

assume that if ai (t) falls below ¯; the relative productivity parameter attainable by an innovation will

be ° instead of 1, where 0 · ¯ < ° < 1: In order to analyze the implications of this assumption, we will
consider …rst the determination of the equilibrium level of research investment.

There exists a number of research …rms in each sector competing in a patent race to get the next

innovation for a speci…c production technology. The …rst innovating …rm gains the patent and it either

becomes the monopolist producer of the new variety or sells the patent to an established …rm. In any case,

the reward to the innovation will be the present value of the ‡ow of pro…ts arising from the monopolistic

exploitation of the patent. Let us denote the value of the innovation by V (t) : On the other hand, the

cost of one unit of research is one unit of output. If a …rm invests one unit of research it will have a

probability of obtaining the innovation equal to ¸
Amax(t) : The research arbitrage equation establishes that

the cost of one unit of research must be equal to the expected revenue from this research. Therefore,

1¡ si = ¸V (t)

Amax (t)
; (4)

where si is the subsidy rate to research in sector i: Consider now the determination of the value of

the innovation V (t) : The ‡ow of pro…ts will depend on whether the innovating sector was a leading or

a lagging sector. If the innovation has occurred in a leading sector, then the productivity coe¢cient

achieved is Amax (t) and the ‡ow of pro…ts will be given by ® (1¡ ®)L1¡®Amax (t) [k (t)]® and equation
(4) may be written as

1¡ si = ¸® (1¡ ®)L1¡® [k (t)]®
r (t) + ¸ni (t)

;

where r (t) is the interest rate. Notice that in order to compute the present value of the ‡ow of pro…ts,

the rate of discount includes ¸ni (t) in addition to the rate of interest. The term ¸ni (t) represents the

probability that the incumbent monopolist is replaced by the owner of a new patent and it is also known

as the rate of creative destruction.

If the innovating sector was a lagging sector, then the ‡ow of pro…ts arising from the innovation will

be ® (1¡ ®)L1¡®°Amax (t) [k (t)]® : Consequently, equation (4) will now be given by

1¡ si = °
µ
¸® (1¡ ®)L1¡® [k (t)]®

r (t) + ¸ni (t)

¶
:

It is thus obvious that research intensity in lagging and leading sectors will be generally di¤erent. In

particular, we can establish that the relationship between research intensities will be

¸nl (t) = °¿¸nh (t)¡ (1¡ °¿) r (t) ;
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where nl (t) and nh (t) are research intensity in lagging and leading sectors, respectively, and ¿ = 1¡sh
1¡sl ;

where sl and sh are the corresponding subsidies to lagging and leading sectors. Notice that in equilibrium,

the research intensity performed in all the sectors belonging to the same group will be equal given that

they will obtain the same reward. Notice also that if ¿ · 1
° ; research intensity in the lagging group will

not be larger than research intensity in the leading group. In what follows we will restrict the analysis to

subsidy values satisfying this condition, namely, that the subsidy to lagged sectors may increase research

intensity up to but not above the level of leading sectors. Thus, we will not consider subsidies that would

make lagged sectors more research intensive than the technological leaders.

For the sake of simplicity, we will assume that aggregate knowledge and, hence, Amax (t) will only

grow thanks to innovations in the leading group. Intuitively, this implies that lagged sectors only adapt

technological improvements from other sectors, but do not add to the growth of the technological frontier.

Indeed, data on the contribution of traditional sectors to knowledge creation suggest that this assumption

is not too far from reality.3 We will consider two alternative assumptions for the growth behavior

of Amax (t). The …rst assumption simply states that the rate of growth of the knowledge frontier is

proportional to the aggregate probability of innovation in leading sectors, that is

_Amax (t)

Amax (t)
= ¾ (1¡ Á)¸nh (t) ; (5)

where ¾ > 0 is a parameter that measures the e¤ect of individual innovations on the leading edge

productivity coe¢cient. This parameter is traditionally interpreted as measuring the size of innovations,

but it can also represent the degree of interrelation between sectors or the capacity to absorb spillovers

from other sectors. The parameter Á measures the size of the lagging group. We will refer to this

assumption as the aggregate assumption.

In models where technological progress is due to both vertical and horizontal innovations, it is generally

assumed that an increase in the mass of available technologies reduces the e¤ect of an innovation on the

aggregate economy. In particular, it is assumed that the increasing probability of innovation due to the

larger mass of products is completely o¤set by the reduction in the marginal impact of an individual

innovation.4 In this case the rate of growth of aggregate knowledge would be proportional to the average

probability of innovation in leading sectors. Consequently, we will refer to this assumption as the average

assumption and the rate of growth of Amax (t) would be given by

_Amax (t)

Amax (t)
= µ¸nh (t) ; (6)

where µ > 0 is a parameter measuring the e¤ect on the rate of growth of aggregate knowledge of a change

in the average probability of innovation in leading sectors.

3Cameron et al. (1997) report that only seven industries out of nineteen accounted for 95% of TFP growth in the UK

economy in the last decades. Among these industries, Computing, Pharmaceuticals and Aerospace, the highest productivity

attainers, accounted for a 42% of the total growth in productivity.
4 See Aghion and Howitt (1998), chapter 12 or Howitt (1999).
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The key di¤erence between these two assumptions lies on whether we consider that the technological

frontier is formed by all the production technologies in the economy or only by those sectors innovatively

active enough to reach the frontier with just one innovation. In the …rst case, an increase in the mass

of the leading group should make the economy grow faster because the sectors in this group are more

research intensive. In the second case, even though there will be more research, there will also exist more

technologies to improve and thus, research e¤orts will have to be distributed among more di¤erent …elds.

The lagging group is formed by sectors with obsolete technologies in which no innovation has occurred

for a considerably long period of time. Productivity increases in these sectors are generally due to the

adoption of technologies from other sectors. Therefore, ignoring them as part of the technological frontier

should not represent a problem, at least when there exists a large distance between traditional and high-

tech sectors. In very developed economies we may expect a wide gap between the leading-edge production

technologies and the most traditional sectors of the economy. In these cases, spillovers from the high-tech

sectors will probably be technology speci…c and narrower in scope.5 This picture of the technological

system is better …t by the average assumption. On the other hand, consider an economy in the early

phases of development or with a nearly non-existing high-tech sector. Then, the di¤erence between the

leading-edge and the more obsolete sectors will not be so large and technological improvements in the

leading group will not be so speci…c that the whole mass of technologies cannot bene…t from it. In this

case, the most appropriate assumption would be the aggregate assumption.

Trying to connect these theoretical discussion with empirical …ndings, let us mention the paper by

Caballero and Ja¤é (1993) in which the authors observe a decline over the twentieth century in a parameter

representing the “potency of spillovers emanating from each cohort of ideas or the intensity of use of old

ideas by new ideas”. This decline could be interpreted, in the authors’ words, as a process by which

“research is steadily becoming narrower and hence generates fewer spillovers because each new idea is

relevant to a smaller and smaller set of technological concerns”. The authors estimate that the average

idea at the beginning of the century generated about 5 times the level of spillovers as the average recent

idea. This narrower scope for spillovers could be supporting the average assumption, by which the relevant

set of technologies that conform the technological frontier is the leading group and an increase in the size

of this group would induce a smaller e¤ect of innovations on the enlarged set of technologies.

We will develop the model …rst under the average assumption because this assumption allows us to

identify the e¤ect of growth determinants on the distribution of relative productivities. In fact, under

the average assumption we could abstract from the complications arising from the interaction between

the productivities distribution and the growth rate. When considering the aggregate assumption, we will

have to take into account the relationship between changes in the mass of the lagging group and changes

in the growth rate.

In addition to the e¤ect on the research investment of …rms, the introduction of the assumption that

5 Indeed, Cameron et al. (1997) …nd informal evidence suggesting that for at least a small subsector of industries,

the development of technology is quite speci…c to the individual sector and does not spill over rapidly into many other

manufacturing sectors.
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lagged sectors will not be able to reach the leading edge with a sole innovation has another important

implication. Without this assumption, the long run distribution of relative productivity parameters is

time invariant and does not depend on the growth behavior of the economy. Speci…cally, the long run

distribution of relative productivities is described by the following distribution function6

H (a) = a
1
¾ :

In the present model however, the distribution of relative productivities will depend upon the growth

rate of the economy and will be a¤ected by changes in the determinants of equilibrium.

2.5 Capital market

Capital is used as a factor of production in the intermediate goods sector. We have seen that equilibrium

in the capital market requires the rental rate to satisfy equation (3). The owner of a unit of capital will

obtain ³ (t) for it. This amount must be enough to cover the cost of capital. This includes the interest

rate r (t), the depreciation rate ±, and the tax rate on capital accumulation ¿k which is introduced in

order to parametrize the incentives to accumulate capital. Hence, the capital market arbitrage equation

is

r (t) + ± + ¿k = ®
2L1¡® [k (t)] ®¡1;

which establishes a decreasing relationship between the interest rate and capital intensity.

2.6 Public sector

The role of the government in this model will be con…ned to the concession of subsidies to leading and

lagging sectors sh and sl; respectively and the imposition of the tax on capital accumulation ¿k: The

public budget will be balanced through a lump-sum tax or transfer T which will help us to isolate the

e¤ects of the di¤erent policy instruments. Therefore, the government budget is given by the following

equation:

T (t) = shNh (t) + slNl (t)¡ ¿kK (t) :

2.7 Distribution of relative productivity coe¢cients

The existence of a lagging group that behaves di¤erently after an innovation determines a distribution of

relative productivities that will be a¤ected by changes in the technological and policy parameters. The

next proposition provides the distribution function of a under the average assumption:

6 See Aghion and Howitt (1998).
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Proposition 1 The long run distribution of relative productivity coe¢cients under the average assump-

tion is time invariant and is described by the following cumulative distribution function:

H (a) =

8>>>><>>>>:
Á+ (1¡ Á)a 1µ if ° · a · 1
Á+

³
a
°

´ 1
µ

µ
(1¡ Á) ° 1

µ + Á
R °
a
¸nl

¡
~t (a)

¢ ³
a
°

´¡ 1
µ ~t0 (a) da

¶
if ¯ · a · °

Á exp
³R ¯

a ¸nl
¡
~t (a)

¢
~t0 (a) da

´
if a · ¯

; (7)

where ~t (a) is a di¤erentiable and decreasing function relating date t and the relative productivity a of a

given sector which is implicitly de…ned by equation (23) in Appendix A.

Proof. See Appendix A.

Similarly, Proposition 2 gives the distribution function of a under the aggregate assumption.

Proposition 2 The distribution of relative productivity coe¢cients under the aggregate assumption is

time invariant and may be characterized by the following distribution function:

H (a) =

8>>>>>><>>>>>>:

Á+ (1¡ Á)a 1
¾(1¡Á) if ° · a · 1

Á+ (1¡ Á)a 1
¾(1¡Á)+

+
³
a
°

´ 1
¾(1¡Á)

Á
R °
a
¸nl

¡
~t (a)

¢ ³
a
°

´¡ 1
¾(1¡Á) ~t0 (a) da

if ¯ · a · °

Á exp
³R ¯

a
¸nl

¡
~t (a)

¢
~t0 (a) da

´
if a · ¯

: (8)

Proof. See Appendix A.

The distribution of relative productivity coe¢cients will thus be a¤ected by policy changes and the

characteristics of the process of technological change. In order to analyze the implications of changes in

these parameters we solve the model in the following section.

3 Equilibrium

3.1 Equilibrium under the average assumption.

General equilibrium is de…ned by the following equations:

1¡ sh = ¸® (1¡ ®)L1¡® [k (t)]®
r (t) + ¸nh (t)

; (9)

¸nl (t) = °¿¸nh (t)¡ (1¡ °¿) r (t) ; (10)

r (t) + ± + ¿k = ®
2L1¡® [k (t)] ®¡1; (11)

where (9) is the arbitrage equation for research in a leading sector, (10) gives the relationship between

lagged and leading sectors research intensity and (11) is the capital market arbitrage equation. The last
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expression implies that the interest rate is a function of the equilibrium value of capital intensity. Thus,

from (9) we can view nh (t) as a function of k (t) ; while (10) gives us the research intensity nl (t) in

lagged sectors as a function of capital intensity k (t). Consequently, using these equations we may denote

nh (t) = nh (k (t)) ; nl (t) = nl (k (t)) and r (t) = r (k (t)) : Therefore, we can express the dynamics of the

model in terms of capital and consumption. The laws of motion for these two variables are

¢
K (t) = Y (t)¡C (t)¡ (Nh (t) +Nl (t))¡ ±K (t) ;

and

¢
C (t) = (r (t)¡ ½)C (t) ; (12)

where (12) is derived from the consumer’s optimization problem. These expressions can be written in

e¢ciency units as follows:

¢
k (t) = L1¡®k (t)® ¡ c (t)¡ 1

E (a)
(nh (k (t)) + nl (k (t)))¡ (± + g (t))k (t) (13)

¢
c (t) = (r (t)¡ ½¡ g (t))c (t) ; (14)

where g (t) is the rate of growth of aggregate knowledge and E (a) is the mean of the distribution of

relative productivity parameters.7 The rate of growth of aggregate knowledge and E (a) can also be

viewed as functions of k (t) since E (a) will depend upon nh (t) and r (t) ; while g (t) is given by the

following expression:

g (t) =
_A (t)

A (t)
=

_Amax (t)

Amax (t)
+
_E (a)

E (a)
= µ¸nh (t) +

_E (a)

E (a)
:

Since the distribution of a is time invariant in the long run, so is E (a) : Therefore, g (t) = µ¸nh (t) :

Due to the non-linearity of the system, we linearize it around the steady state in order to analyze the

local dynamics of the model. We …nd local saddle path stability around the steady state.8 Therefore, we

can perform comparative statics analysis at the long run equilibrium.

3.2 Equilibrium under the aggregate assumption.

The equations determining equilibrium under this assumption are the same as for the average assumption

except that the rate of growth of aggregate technology is now given by

g (t) = ¾ (1¡ Á)¸nh (t) ; (15)

where Á is implicitly de…ned as a function of k by equation (29) in Appendix A. Therefore, the dynamic

system de…ned by equations (13) and (14) with g (t) de…ned by (15) presents also local saddle path

stability. See Appendix B for a proof.

7We are using the relationship between aggregate and leading edge productivity since At =
R 1
0 Aitdi = A

max
t

R 1
0

Ait
Amaxt

di =

Amaxt

R 1
0 ah (a) da = A

max
t E (a) ; where h (a) is the density function of a:

8 See Appendix B for a proof.
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4 Steady state analysis

4.1 Steady state analysis under the average assumption

In equilibrium, the production function is simpli…ed due to the fact that the equilibrium value of inter-

mediate input is the same for every sector. Consequently, we may write equation (2) as

Y (t) = A (t)L1¡® [k (t)]® ;

which implies that in a steady state, the rate of growth of output will be the rate of growth of aggregate

productivity. That is

g = µ¸nh:

Using this result, and the fact that in a steady state k and nh are constant we may write equations (9),

(10) and (11) as follows:

1¡ sh = ¸® (1¡ ®)L1¡®k®
½+ (1 + µ)¸nh

; (16)

¸nl = °¿¸nh ¡ (1¡ °¿) (½+ µ¸nh) ; (17)

½+ µ¸nh + ± + ¿k = ®
2L1¡®k®¡1; (18)

where we are using the steady state relationship between the interest rate and the growth rate, i.e.

r = ½ + µ¸nh: Equations (16) and (18) determine the steady state values for k and n and allow us

to perform comparative statics on the di¤erent parameters of the model. The following proposition

establishes the steady state relationships between some of the parameters and the growth rate:

Proposition 3 The steady state growth rate is increasing in µ, ¸ and sh and decreasing in ¿k:

Proof. See Appendix A

These results were already obtained in the standard model. They are relevant however, because we

want to look at the relationship between growth and the distribution of pro…ts across sectors. The next

lemma establishes the relationship between the mass of the lagging group and the previous parameters:

Lemma 4 The mass of the lagging group Á is increasing in µ; ¿k and sh and decreasing in ¸:

Proof. See Appendix A

The result established in Lemma 4 allows us to rank distribution functions. A change in these

parameters will have the following e¤ects on the distribution of relative productivities:
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Proposition 5 a) Let µ1 < µ2 and let Hµi (a) be the distribution function of relative productivities

associated to µi for i = 1; 2: Then, Hµ1 (a) < Hµ2 (a) for a 2 (0; 1) :
b) Let ¸1 < ¸2 and let H¸i (a) be the distribution function of relative productivities associated to ¸i

for i = 1; 2: Then, H¸1 (a) > H¸2 (a) for a 2 (0; 1) :
c) Let sh1 < sh2 and let Hshi (a) be the distribution function of relative productivities associated to

shi for i = 1; 2: Then, Hsh1 (a) < Hsh2 (a) for a 2 (0; 1) :
d) Let ¿k1 < ¿k2 and let H¿ki (a) be the distribution function of relative productivities associated to

¿ki for i = 1; 2: Then, H¿k1 (a) < H¿k2 (a) for a 2 (0; 1) :

Proof. See Appendix A

Proposition 5 implies …rst degree stochastic dominance of Hµ1 (a) over Hµ2 (a) ; of H¸2 (a) over

H¸1 (a) ; of Hsh1 (a) over Hsh2 (a) and of H¿k1 (a) over H¿k2 (a) : Consequently, the Generalized Lorenz

curves for the distribution of relative productivities associated to µ1; sh1; ¿k1 and ¸2 dominate the Gen-

eralized Lorenz curves associated to µ2; sh2; ¿k2 and ¸1 respectively.9 Accordingly, an increase in ¸ or a

reduction in µ; sh or ¿k reduces the inequality induced by the distribution of relative productivities across

sectors. In other words, an increase in the growth rate due to a larger value of µ or sh will shift H (a)

upwards and therefore, make the generalized Lorenz curve shift downwards. Figure 1 illustrates the e¤ect

of an increase in any of these two parameters. Observe that the shift in the distribution function implies

that after the change, there exists a larger mass of sectors with smaller relative productivity coe¢cients

and that the mass of the leading group10 is reduced. Conversely, a higher growth rate due to a larger

value of ¸ or to a reduction in ¿k will shift H (a) downwards and make the generalized Lorenz curve

shift upwards. This implies that the relationship between growth and the distribution of productivities

can be positive or negative depending on the cause of faster growth. The e¤ect of an increase in µ due

for instance to a higher ability of …rms to absorb externalities is a larger growth rate. However, it will

also induce an increase in the mass of …rms that lag behind and that consequently, have smaller relative

pro…ts while the leading group, the one with higher relative pro…ts, is reduced. Similarly, a higher subsidy

to research in leading sectors, will make the economy grow faster due to the higher research intensity

of these sectors, but the gap between the leading and the lagging group will be wider. However, when

faster growth is due to a larger productivity of research or to a tax reduction that stimulates capital

accumulation, the result is the opposite. That is, the mass of lagging sectors is reduced while the number

of sectors in the high-technology group increases, which reduces the inequality among relative productiv-

ities. Consequently, faster growth due to an increase in µ or sh will induce a more unequal distribution

of productivities and pro…ts. On the other hand, if the cause of faster growth is an improvement in the

productivity of research that a¤ects all sectors or a policy change that stimulates capital accumulation,

productive inequality will decrease. Observe that we are considering a set of parameters that includes

9See Shorrocks (1983) for a proof of these results and a de…nition of the Generalized Lorenz Curve.
10 In the …gure, the leading group is formed by those sectors with a > ¯; where ¯ is set to 0:6 just for illustrative purposes.
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proper policy instruments like subsidies to R&D and taxes on capital accumulation on one hand and ex-

ogenous technological parameters like the scope of spillovers µ and research productivity ¸ on the other.

Strictly speaking, µ and ¸ are not policy instruments that can be changed at the discretion of the public

sector. However, one can think of policies oriented at in‡uencing their values. Empirical studies have

found evidence that investment in infrastructure and education or the performance of public research

can improve private research productivity and the absorptive capacity of private …rms (see Eaton et al.

1998).

0

0.2

0.4

0.6

0.8

1

H(a)

0.2 0.4 0.6 0.8 1a

Figure 1: Shift in H (a) caused by an increase in either µ or sh:

4.2 Steady state analysis under the aggregate assumption

Under the assumption that the rate of growth of the leading edge technology is determined by the

aggregate probability of innovation in the leading group, the rate of growth of the economy will be given

by

g = ¾¸ (1¡ Á)nh:

Therefore, the equations determining the steady state values of k; nh; nl and Á are

1¡ sh = ¸® (1¡ ®)L1¡®k®
½+ (1 + ¾ (1¡ Á))¸nh ; (19)

¸nl = °¿¸nh ¡ (1¡ °¿) (½+ ¾ (1¡ Á)¸nh) ; (20)
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½+ ¾ (1¡ Á)¸nh + ± + ¿k = ®2L1¡®k®¡1; (21)

(1¡ Á)¯ 1
¾(1¡Á) ¡ Á nl

nh

Ã
1¡

µ
¯

°

¶ 1
¾(1¡Á)

!
= 0; (22)

where (19), (20), and (21) are the research arbitrage equation in leading sectors, the relationship between

lagged and leading sectors research intensity and the capital market equilibrium condition, respectively,

all expressed for the steady state. Equation (22) is derived from the steady state distribution function of

a: It establishes that Á must be such that the distribution function is continuous at a = ¯: The following

proposition establishes the steady state relationships between some of the parameters and the growth

rate:

Proposition 6 The steady state growth rate is increasing in both ¸ and sl; decreasing in ¾ and ¿k and

the e¤ect of sh on growth is ambiguous:

Proof. See Appendix A

Observe that the e¤ects on growth of research productivity and the tax on capital accumulation are

not altered by the assumption that the growth rate depends upon the size of the leading group. However,

this is not the case for the other three parameters. The next lemma presents the e¤ect of these parameters

on the size of the lagging group, which will help us understand the cause of the new results:

Lemma 7 The mass of the lagging group Á is increasing in ¾; ¿k and sh and decreasing in both ¸ and

sl:

Proof. See Appendix A

Lemma 7 implies that a larger ¸ will increase the productivity of research on one hand, and on the

other, it will reduce the mass of lagging sectors. Therefore, a larger productivity of research is both

growth enhancing and promotes less inequality among productivities across sectors. A similar e¤ect is

induced by a reduction of ¿k; that is, by an increase in the incentives to accumulate capital. With respect

to sl; notice that under the average assumption it had no e¤ect on the rate of growth. However, under

the aggregate assumption we observe that it reduces the mass of lagging sectors. This is a positive e¤ect

on growth that is able to compensate the reduction induced on the research intensity of leading sectors.

The cases of the other two parameters are more complex to understand. Consider the e¤ect of having

a larger ¾: Recall that this parameter measures the size of innovations or the in‡uence of individual

innovations on the leading edge productivity. When ¾ increases, research intensity falls due to the rise in

the interest rate that makes the inputs to research more expensive. However, ¾ has a positive direct e¤ect

on the growth rate, which made the total growth e¤ect positive under the average assumption. Under

the aggregate assumption, we observe that the size of innovation has an additional e¤ect on Á which will

15



make the …nal impact on growth negative. The larger size of innovation makes the relative productivity

parameter of the non-innovating sectors fall faster and therefore, there will exist a larger probability

of entering the lagging group. Something similar happens when we increase the subsidy to research in

high-tech sectors. The subsidy provides incentives to perform a higher research intensity in the leading

sectors which will induce large productivity increases for innovators. However, those sectors that were

not successful, will lag behind more rapidly and enlarge the lagging group. Consequently, the net e¤ect

on growth is ambiguous. Thus, under the aggregate assumption the in‡uence of policy parameters on

the mass of the lagging group a¤ects the growth rate …nally achieved and introduces important changes

in the e¤ectiveness of intendedly growth promoting policies. Only those policies that in‡uence positively

both R&D investments and the mass of the leading group will unambiguously promote growth. On the

contrary, those policies that induce a larger lagging group will see their growth e¤ectiveness undercut

due to their distributional e¤ects.

The complexity of the system under the aggregate assumption prevents us from establishing a ranking

of distribution functions similar to the one presented in Proposition 5. Nevertheless, the results for the

value of Á provide a partial characterization of the e¤ects on the distribution function.

5 Conclusions

This paper has analyzed the e¤ects of technological progress on the distribution of relative productiv-

ities across sectors. In particular, we have observed how changes in the characteristics of the process

of technological change induce modi…cations on the distribution of productivities and pro…ts across eco-

nomic activities and how they may in‡uence the growth performance of the economy. We have found

that increases in research productivity, in the incentives to accumulate capital and larger subsidies to

technological laggards will increase the mass of research intensive sectors and improve the growth rate

of the economy. However, higher subsidies to technological leaders and a larger size of innovations or a

higher degree of spillovers will increase the mass of the lagging class, which may in some cases reduce the

growth rate of the economy.
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A Proofs

Proof of Proposition 1. In order to derive the distribution of relative productivities de…ne

Amax (t0) to be the absolute productivity coe¢cient of a sector that innovated on date t0 and achieved

the leading edge productivity. Then, from equation (6) we may write

Amax (t0)

Amax (t)
= exp

µ
¡
Z t

t0

µ¸nh (s) ds

¶
; (23)
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which establishes that as Amax (t) grows, the relative productivity parameter of this sector will fall at

a rate µ¸nh (t) : De…ne F (¢; t) as the cumulative distribution of the absolute productivity coe¢cients A
across sectors at any arbitrarily given date t: De…ne ©(t) = F (Amax (t0) ; t) : Then,

©(t0) = 1

and

d©(t)

dt
=

8>><>>:
¡ (© (t)¡©(t2))¸nh (t) if t0 · t < t1
¡ (© (t)¡©(t2))¸nh (t)¡©(t2)¸nl (t) if t1 · t < t2
¡©(t)¸nl (t) if t2 · t

; (24)

where t1 and t2 are, respectively, the dates at which a0 =
Amax(t0)
Amax(t) equals ° and ¯: Thus t1 and t2 are

implicitly de…ned by the following equations which in turn, are derived from (23):

exp

µ
¡µ
Z t1

t0

¸nh (s) ds

¶
= ° (25)

exp

µ
¡µ
Z t2

t0

¸nh (s) ds

¶
= ¯: (26)

The time derivative of ©(t) gives us the rate at which the sector that innovated at date t0 is left behind

by other innovating sectors. Notice that while t > t1; a0 > ° and the sector will only be overtaken

by those sectors belonging to the leading group and having an absolute productivity parameter below

Amax (t0) : Those sectors have a ‡ow probability of innovation ¸nh (t) and a mass of ©(t)¡©(t2) :However,
when t1 · t < t2; the relative productivity coe¢cient a0 has fallen below ° and consequently, it may be
overtaken by all innovating sectors having an absolute productivity coe¢cient below Amax (t0) : Therefore,

we have a number of sectors which belong to the leading group, ©(t) ¡ ©(t2) with a ‡ow probability
of innovation equal to ¸nh (t) and all the sectors in the lagging group ©(t2) ; with a ‡ow probability of

¸nl (t) : When t ¸ t2; all the sectors with an absolute productivity coe¢cient below Amax (t0), that is

©(t) ; belong to the lagging group and therefore, have a ‡ow probability of innovation of ¸nl (t) : Equation

(24) de…nes a di¤erential equation whose solution is given by the following expression:

©(t) =

8>>>>>><>>>>>>:

©(t2) + (1¡©(t2)) exp
³
¡ R t

t0
¸nh (s) ds

´
if t0 · t < t1

©(t2) + (1¡©(t2)) exp
³
¡ R tt1 ¸nh (s) ds´° 1

µ¡
¡ exp

³
¡ R t

t1
¸nh (s) ds

´
©(t2)

R t
t1
¸nl (v) exp

³R v
t1
¸nh (s) ds

´
dv

if t1 · t < t2

©(t2) exp
³
¡ R t

t2
¸nl (s) ds

´
if t2 · t

; (27)

where

©(t2) =
¯
1
µ

¯
1
µ +

³
¯
°

´ 1
µ R t2

t1
¸nl (t) exp

³R t
t1
¸nh (s) ds

´
dt

:
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Equation (23) implicitly de…nes t as a function of a0: Let ~t (a0) be this function and use it to perform a

change of variable in (27). The function that we obtain is

©
¡
~t (a0)

¢
=

8>>>>>><>>>>>>:

©(t2) + (1¡©(t2)) (a0)
1
µ if ° · a0 · 1

© (t2) + (1¡©(t2)) (a0)
1
µ +

+
³
a0
°

´ 1
µ

©(t2)
R °
a0
¸nl

¡
~t (a0)

¢ ³
a0
°

´¡ 1
µ ~t0 (a0) da0

if ¯ · a0 · °

©(t2) exp
³R ¯

a0
¸nl

¡
~t (a0)

¢
~t0 (a0) da0

´
if a0 · ¯

:

From the de…nition of ©(t) we know that this function gives the mass of sectors with an absolute

productivity parameter below Amax (t0) at date t: In terms of relative productivity coe¢cients, ©
¡
~t (a0)

¢
gives us the mass of sectors with a relative productivity coe¢cient below a0 and therefore, it is giving

us the value of the distribution function of relative productivity parameters for a sector that innovated

on date t0: In the long run, almost all sectors will have innovated at least once and therefore ©
¡
~t (a0)

¢
;

which can now be renamed H (a0) ; represents the cumulative distribution function of any sector with

a relative productivity parameter between 0 and 1. The expression for H (a) in (7) can be obtained

replacing the size of the lagging group ©(t2) by a parameter Á; whose de…nition in terms of a is given by

Á =
¯
1
µ

¯
1
µ ¡

³
¯
°

´ 1
µ R °

¯ ¸nl(
~t (a)) exp

¡¡ R °a ¸nh ¡~t (a)¢ ~t0 (a) da¢ ~t0 (a) da:
Observe that H (a) does not depend on t and therefore it is time invariant.

Proof of Proposition 2. The distribution function in (8) is obtained following the same steps as

in the previous proof except that in this case, the relationship between a0 and t is given by

a0 = exp

µ
¡
Z t

t0

¾ (1¡ Á)¸nh (s) ds
¶
; (28)

and Á is implicitly de…ned by the following equation:

(1¡ Á)¯ 1
¾(1¡Á) + Á

µ
¯

°

¶ 1
¾(1¡Á) Z °

¯

¸nl
¡
~t (a)

¢
exp

µ
¡
Z °

a

¸nh
¡
~t (a)

¢
~t0 (a) da

¶
~t0 (a) da = 0: (29)

Proof of Proposition 3. In order to …nd the derivatives of the growth rate with respect to µ; ¸

and sh let us express equations (16) and (18) as follows:

(1¡ sh) (½+ (1 + µ)¸nh)¡ ¸® (1¡ ®)L1¡®k® = 0
½+ µ¸nh + ± + ¿k ¡ ®2L1¡®k®¡1 = 0;

and denote then by f1 (k; nh; µ; ¸; sh) and f2 (k; nh; µ; ¸; sh) respectively. These functions may be consid-

ered as the components of a function F : (0;1)£ (0;1)! R2 and use the implicit function theorem to

…nd the derivatives needed. The Jacobian of F with respect to k and nh will be given by

JF (k; nh) =

0@ ¡¸®2 (1¡ ®)L1¡®k®¡1 (1¡ sh) (1 + µ)¸
®2 (1¡ ®)L1¡®k®¡2 µ¸

1A ;
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and its inverse is equal to the following expression:

[JF (k; nh)]
¡1 =

1

det [JF (k; nh)]

0@ µ¸ ¡ (1¡ sh) (1 + µ)¸
¡®2 (1¡ ®)L1¡®k®¡2 ¡¸®2 (1¡ ®)L1¡®k®¡1

1A ;
where det [JF (k; nh)] = ¡¸ (1¡ ®) ³

³
µ¸+ (1¡sh)(1+µ)

k

´
: The Jacobian of F with respect to the param-

eters is given by

JF (µ; ¸) =

0@ (1¡ sh)¸nh (1¡ sh) (1 + µ)nh ¡ ® (1¡ ®)L1¡®k®
¸nh µnh

1A ;
JF (sh; ¿k) =

0@ ¡½¡ (1 + µ)¸nh 0

0 1

1A :
Implicit di¤erentiation implies the following expressions for the derivatives of nh and k with respect to

the parameters:

dnh
dµ

= ¡
³
¸+ (1¡sh)

k

´
nh

µ¸+ (1¡sh)(1+µ)
k

(30)

dnh
d¸

=

¡
1¡sh
k

¡
½
¸

¢¡ µ¸nh¢
¸
³
µ¸+ (1¡sh)(1+µ)

k

´ (31)

dnh
dsh

=
½+ (1 + µ)¸nh

¸k
³
µ¸+ (1¡sh)(1+µ)

k

´ (32)

dnh
d¿k

=
¡1

µ¸+ (1¡sh)(1+µ)
k

dk

dµ
=
(1¡ sh)¸2nh
det (JF )

dk

d¸
=

µ¸¼

det (JF )

dk

dsh
=
µ¸ (½+ (1 + µ)¸nh)

det (JF )

dk

d¿k
=

¡ (1¡ sh) (1 + µ)
(1¡ ®) ³

³
µ¸+ (1¡sh)(1+µ)

k

´ :
Recall that the rate of growth is given by g = µ¸nh; but also, from f2 (k; nh) = 0; we know that

g = ®2L1¡®k®¡1 ¡ ± ¡ ½¡ ¿k:
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Therefore

dg

dµ
= ¡ (1¡ ®)®2L1¡®k®¡2 dk

dµ
=

¸nh
(1¡sh)
µk

¸+ (1¡sh)(1+µ)
µk

dg

d¸
= ¡ (1¡ ®)®2L1¡®k®¡2 dk

d¸
=

µ~¼

k
³
¸+ (1¡sh)(1+µ)

µk

´
dg

dsh
= µ¸

dnh
dsh

=
½+ (1 + µ)¸nh

k
³
¸+ (1¡sh)(1+µ)

µk

´
dg

d¿k
= µ¸

dnh
d¿k

=
¡µ¸

µ¸+ (1¡sh)(1+µ)
k

;

where ~¼ = ¼
Amax(t) : The …rst three derivatives are positive and the last one is negative. Thus, steady state

growth is increasing in µ; ¸ and sh and decreasing in ¿k.

Proof of Lemma 4. In a steady state, the distribution of relative productivity coe¢cients will be

given by

H (a) =

8>>>><>>>>:
Á+ (1¡ Á) a 1µ for ° · a · 1
Á+ (1¡ Á) a 1µ ¡ Á nlnh

µ
1¡

³
a
°

´ 1
µ

¶
for ¯ · a · °

Á
³
a
¯

´ nl
µnh for 0 · a · ¯

: (33)

where Á in a steady state is given by

Á =
¯
1
µ

¯
1
µ +

µ
1¡

³
¯
°

´ 1
µ

¶
nl
nh

: (34)

The derivative of Á with respect to ¸ will be determined by d
d¸

³
nl
nh

´
: Accordingly, let us perform this

derivative …rst. From equation (17) nlnh = °¿¡(1¡ °¿)
³

½
¸nh

+ µ
´
:Therefore, d

d¸

³
nl
nh

´
= (1¡°¿)½

(¸nh)
2

¡
¸dnhd¸ + nh

¢
:

Equation (31) allows us to write ¸dnhd¸ + nh =
(1¡sh)

k (½+¸(1+µ)nh)

¸

µ
µ¸+

(1¡sh)(1+µ)
k

¶ which is positive. If nlnh increases with

¸; then Á necessarily decreases.

In order to look for the derivative of Á with respect to µ; let us write Á as follows:

Á =
1

1 +
³
¯¡

1
µ ¡ °¡ 1

µ

´
nl
nh

:

Then,

dÁ

dµ
= ¡Á2

·
d

dµ

³
¯¡

1
µ ¡ °¡ 1

µ

´ nl
nh
+
³
¯¡

1
µ ¡ °¡ 1

µ

´ d
dµ

µ
nl
nh

¶¸
;

where

d

dµ

³
¯¡

1
µ ¡ °¡ 1

µ

´
=
1

µ2
¯¡

1
µ ln (¯)¡ 1

µ2
°¡

1
µ ln (°) (35)

d

dµ

µ
nl
nh

¶
= ¡ (1¡ °¿)

Ã
1¡ ½dnhdµ

¸ (nh)
2

!
: (36)
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Since ¯ < ° and dnh
dµ < 0; both (35) and (36) are negative, which implies that dÁdµ is positive.

The sign of dÁ
dsh

will be determined by the sign of d
dsh

³
nl
nh

´
: Hence, if the level of research intensity in

lagged sectors relative to research intensity in leading sectors falls, then dÁ
dsh

will be positive. From (32)

nh increases with sh: Therefore, in order to prove that d
dsh

³
nl
nh

´
is negative, it is enough to show that

dnl
dsh

is negative. Consider thus this derivative

dnl
dsh

=
¡ (½+ (1 + µ)¸nh) ((1¡ sh) + °¿µ¸k)
¸ (1¡ sh) (µ¸k + (1¡ sh) (1 + µ)) ;

which is negative: Hence, since dnl
dsh

and d
dsh

³
nl
nh

´
are negative, dÁ

dsh
is positive.

Similarly, the sign of dÁ
d¿k

will the determined by
d
³
nl
nh

´
d¿k

which is given by

d
³
nl
nh

´
d¿k

= (1¡ °¿)
µ
½

¸n2h

dnh
d¿k

¶
;

a negative expression. Therefore, dÁ
d¿k

is positive.

Proof of Proposition 5. Consider the steady state distribution of relative productivities given by

equation (33). The e¤ect of µ on H (a) may be computed as

dH (a)

dµ
=

8>>>>>>>><>>>>>>>>:

dÁ
dµ

³
1¡ a 1µ

´
+ (1¡ Á) ¡¡ lna

µ2

¢
a
1
µ if ° < a · 1

dÁ
dµ

µ
1¡ a 1µ ¡

µ
1¡

³
a
°

´ 1
µ

¶
nl
nh

¶
+ (1¡ Á)a 1µ ¡¡ lna

µ2

¢
+

+Á nlnh

³
a
°

´ 1
µ

µ
¡ ln( a° )
µ2

¶
¡
µ
1¡

³
a
°

´ 1
µ

¶
Á d
dµ

³
nl
nh

´ if ¯ < a · °

Á
³
a
¯

´ nl
µnh

h dÁ
dµ

Á + ln
³
a
¯

´
d
dµ

³
nl
µnh

´i
if 0 · a · ¯

:

The three pieces of this function are positive since
µ
1¡ a 1µ ¡

µ
1¡

³
a
°

´ 1
µ

¶
nl
nh

¶
is positive and both

d
dµ

³
nl
µnh

´
and d

dµ

³
nl
nh

´
are negative.11 This implies that if we increase ¾; the resulting distribution will

attach a higher value to any a 2 (0; 1) : Therefore, if µ1 < µ2 then, Hµ1 (a) < Hµ2 (a) for a 2 (0; 1) :
Similarly, the e¤ect of ¸ on H (a) will be given by

dH (a)

d¸
=

8>>>>><>>>>>:

dÁ
d¸

³
1¡ a 1µ

´
if ° < a · 1

dÁ
d¸

µ
1¡ a 1µ ¡

µ
1¡

³
a
°

´ 1
µ

¶
nl
nh

¶
¡ Á

µ
1¡

³
a
°

´ 1
µ

¶
d
d¸

³
nl
nh

´
if ¯ < a · °

Á
³
a
¯

´ nl
µnh

·
dÁ
d¸

Á +
ln( a¯ )
µ

d
d¸

³
nl
nh

´¸
if 0 · a · ¯

:

The three pieces are negative since dÁ
d¸ is negative,

d
d¸

³
nl
nh

´
is positive and ln

³
a
¯

´
for a < ¯ is negative.

Consequently, dH(a)d¸ is negative for all values of a between 0 and 1: Therefore, if ¸1 < ¸2; the distribution

11The expression
µ
1¡ a 1µ ¡

µ
1¡

³
a
°

´ 1
µ

¶
nl
nh

¶
is positive if nl

nh
· 1: A su¢cient condition for nl

nh
· 1 is °¿ · 1; which

is an assumption we have already made.
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function associated to ¸2 will give smaller values to any a 2 (0; 1) than the distribution function associated
to ¸1: Therefore, H¸1 (a) > H¸2 (a) for a 2 (0; 1) :
The proof for sh is similar. Consider the derivative of H (a) with respect to sh

dH (a)

dsh
=

8>>>>><>>>>>:

dÁ
dsh

³
1¡ a 1µ

´
if ° < a · 1

dÁ
dsh

µ
1¡ a 1µ ¡

µ
1¡

³
a
°

´ 1
µ

¶
nl
nh

¶
¡ Á

µ
1¡

³
a
°

´ 1
µ

¶
d
dsh

³
nl
nh

´
if ¯ < a · °

Á
³
a
¯

´ nl
µnh

·
dÁ
dsh

Á +
ln( a¯ )
µ

d
dsh

³
nl
nh

´¸
if 0 · a · ¯

:

Again, the three pieces are positive, since dÁ
dsh

is positive, d
dsh

³
nl
nh

´
is negative and ln

³
a
¯

´
is negative for

a < ¯. Consequently, if sh1 < sh2 then; Hsh1 (a) < Hsh2 (a) for a 2 (0; 1) :
Similarly,

dH (a)

d¿k
=

8>>>>><>>>>>:

dÁ
d¿k

³
1¡ a 1µ

´
for ° · a · 1

dÁ
d¿k

³
1¡ a 1µ

´
¡
µ
1¡

³
a
°

´ 1
µ

¶µ
dÁ
d¿k

nl
nh
+ Á

d
³
nl
nh

´
d¿k

¶
for ¯ · a · °

dÁ
d¿k

³
a
¯

´ nl
µnh + Á

³
a
¯

´ nl
µnh 1

µ

d
³
nl
nh

´
d¿k

ln
³
a
¯

´
for 0 · a · ¯

is also positive because dÁ
d¿k

nl
nh
+ Á

d
³
nl
nh

´
d¿k

= Á2
d
³
nl
nh

´
d¿k

which is negative.

Proof of Proposition 6 and Lemma 7. The distribution function of relative productivity

parameters in a steady state under the aggregate assumption is given by

H (a) =

8>>>><>>>>:
Á+ (1¡ Á)a 1

¾(1¡Á) for ° · a · 1
Á+ (1¡ Á)a 1

¾(1¡©) ¡ Á nlnh
µ
1¡

³
a
°

´ 1
¾(1¡Á)

¶
for ¯ · a · °

Á
³
a
¯

´ nl
¾(1¡Á)nh for 0 · a · ¯

:

where Á in this case is implicitly de…ned by the following expression:

(1¡ Á) ¯ 1
¾(1¡Á) ¡ Á nl

nh

Ã
1¡

µ
¯

°

¶ 1
¾(1¡Á)

!
= 0:

Under the aggregate assumption, the system determining the steady state values of k; nh and Á may be

expressed as follows:

F (k; nh; Á) =

0BB@
f1 (k; nh; Á)

f2 (k; nh; Á)

f3 (k; nh; Á)

1CCA =

0BB@
0

0

0

1CCA ;
where

f1 (k; nh; Á) = (1¡ sh) (½+ (1 + ¾ (1¡ Á))¸nh)¡ ¸® (1¡ ®)L1¡®k®

f2 (k; nh; Á) = ½+ ¾ (1¡ Á)¸nh + ± + ¿k ¡ ®2L1¡®k®¡1

f3 (k; nh; Á) = (1¡ Á)¯
1

¾(1¡Á) ¡ Á nl
nh

Ã
1¡

µ
¯

°

¶ 1
¾(1¡Á)

!
:
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The Jacobian of this function is given by

JF (k; nh; Á) =

0BB@
¡¸ (1¡ ®) ³ (1¡ sh) (1 + ¾ (1¡ Á))¸ ¡ (1¡ sh)¾¸nh

(1¡®)³
k ¾ (1¡ Á)¸ ¡¾¸nh
0 ¡Á(1¡°¿)½!

¸n2h
ª

1CCA ;
where ! =

µ
1¡

³
¯
°

´ 1
¾(1¡Á)

¶
and

ª = ¡¯ 1
¾(1¡Á)

µ
1¡ ln¯

¾ (1¡ Á)
¶
¡ nl
nh
! + Á

nl
nh

µ
¯

°

¶ 1
¾(1¡Á) ln

³
¯
°

´
¾ (1¡ Á)2 ¡ Á! (1¡ °¿)¾

Notice that ª is negative. Consequently, the determinant of the Jacobian, given by

det (JF ) = ¡ (1¡ ®) ³
µ
¸ª

µ
¾ (1¡ Á)

µ
1¡ sh
k

+ ¸

¶
+
1¡ sh
k

¶
¡
µ
1¡ sh
k

+ ¸

¶
¾Á (1¡ °¿) ½!

nh

¶
;

is positive: In order to compute the derivatives for comparative statics we need the inverse of the Jacobian,

that is

[JF ]
¡1 =

¡1
det (JF )

0BB@
a11 a12 a13

a21 a22 a23

a31 a32 a33

1CCA ;
where

a11 = ¡¾ (1¡ Á)¸ª+ ¾Á (1¡ °¿) ½!
nh

a12 = (1¡ sh)
·
(1 + ¾ (1¡ Á))¸ª+ ¾Á (1¡ °¿) ½!

nh

¸
a13 = (1¡ sh)¸2¾nh
a21 =

(1¡ ®) ³ª
k

a22 = ¸ (1¡ ®) ³ª

a23 = ¸¾nh (1¡ ®) ³
µ
¸+

1¡ sh
k

¶
a31 =

µ
(1¡ ®) ³

k

¶µ
Á (1¡ °¿) ½!

¸n2h

¶
a32 =

(1¡ ®) ³Á (1¡ °¿) ½!
n2h

a33 = (1¡ ®) ³¸
µ
¾ (1¡ Á)

µ
¸+

(1¡ sh)
k

¶
+
(1¡ sh)
k

¶
:

Consider now the derivatives of the component functions with respect to the relevant parameters.

JF (¸; ¾; ¿k) =

0BB@
¡(1¡sh)½

¸ (1¡ sh) (1¡ Á)¸nh 0

¾ (1¡ Á)nh (1¡ Á)¸nh 1

¡Á(1¡°¿)½!
¸2nh

X 0

1CCA ;
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where

X = ¯
1

¾(1¡Á)

µ¡ ln¯
¾2

¶
+ Á (1¡ Á) (1¡ °¿)! + Á nl

nh

µ
¯

°

¶ 1
¾(1¡Á)

0@ ¡ ln
³
¯
°

´
¾2 (1¡ Á)

1A ;
is positive. Applying the rules of implicit di¤erentiation, we obtain the derivatives needed to establish

the results of the proposition. With respect to the productivity of research the relevant derivatives are

dk

d¸
=

(1¡ sh)¾Á (1¡ °¿) ½!
³
¾ (1¡ Á)¡ ½

¸nh
¡ 1
´
+ ~¼¾ (1¡ Á)¸ª

det (JF )

dÁ

d¸
= ¡(1¡ ®) ³

det (JF )

Ã
(1¡ s)Á (1¡ °¿) ½! (½+ ¸nh (1 + ¾ (1¡ Á)))

¸2n2hk

!
;

where ~¼ = ¼(t)
Amax(t) : The derivative of capital intensity with respect to ¸ gives us the e¤ect on growth

because from f2 (k; nh; Á) = 0; we know that g = ®2L1¡®k®¡1 ¡ ± ¡ ¿k ¡ ½ and therefore,
dg

d¸
= ¡ (1¡ ®)®2L1¡®k®¡2 dk

d¸
:

The sign of dÁd¸ is immediate. With respect to the sign of
dk
d¸ ; it will be negative if ¾ (1¡ Á)¡ ½

¸nh
¡1 · 0:

Recall that we are assuming that the subsidy structure must be such that the research intensity of lagging

sectors will never be larger than the research intensity of high-tech sectors. This implied an upper bound

for °¿ of 1. Thus, if °¿ · 1 then nl
nh
· 1 which implies ¾ (1¡ Á) · 1 and consequently dk

d¸ is negative

and dg
d¸ is positive.

The derivatives with respect to ¾ are as follows:

dnh
d¾

=
nh (1¡ Á)

¡
1¡sh
k + ¸

¢ ³
¯

1
¾(1¡Á) + nl

nh
!
´

ª
³
¸¾ (1¡ Á) + (1¡sh)

k (1 + ¾ (1¡ Á))
´
¡
³
(1¡sh)
k + ¸

´
¾Á(1¡°¿)½!

¸nh

dÁ

d¾
=
(1¡ ®) ³

³
(1¡Á)Á(1¡°¿)½!

nh

³
(1¡sh)
k + ¸

´
+X¸

³
¾ (1¡ Á)

³
¸+ (1¡sh)

k

´
+ (1¡sh)

k

´´
det (JF )

dg

d¾
= ¸nh (1¡ Á) + ¾¸ (1¡ Á) dnh

d¾
¡ ¾¸nh dÁ

d¾
:

The derivative of research intensity with respect to ¾ is negative and dÁ
d¾ is positive. Thus, the sign of

dg
d¾

is not immediate. Nevertheless, notice that

nh + ¾
dnh
d¾

=
¾ (1¡ Á) ¡¸+ 1¡sh

k

¢³
ª+ ¯

1
¾(1¡Á) + nl

nh
!
´
+ ª(1¡sh)

k ¡ ¡1¡shk + ¸
¢ ¾Á(1¡°¿)½!

¸nh

ª
³
¸¾ (1¡ Á) + (1¡sh)

k (1 + ¾ (1¡ Á))
´
¡
³
(1¡sh)
k + ¸

´
¾Á(1¡°¿)½!

¸nh

;

is negative because

ª+ ¯
1

¾(1¡Á) +
nl
nh
! = ¯

1
¾(1¡Á)

ln¯

¾ (1¡ Á) + Á
nl
nh

µ
¯

°

¶ 1
¾(1¡Á) ln

³
¯
°

´
¾ (1¡ Á)2 ¡ Á! (1¡ °¿)¾
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is negative. Hence, dgd¾ is also negative.

The derivative of nh with respect to ¿k is negative while
dÁ
d¿k

is positive. Therefore, dg
d¿k

is negative.

Let us consider now the e¤ect of the two subsidies. The derivatives of the component functions with

respect to sh and sl are given by

JF (sh; sl) =

0BB@
¡ (½+ (1 + ¾ (1¡ Á))¸nh) 0

0 0

¡ (½+(1+¾(1¡Á))¸nh)Á!° @¿
@sh

¸nh
¡ (½+(1+¾(1¡Á))¸nh)Á!° @¿

@sl

¸nh

1CCA :
Notice that @¿

@sh
= ¡ 1

1¡sl ; therefore,
dnh
dsh

> 0: The derivative of Á with respect to sh is not so immediate

but it can be shown that it is equal to

dÁ

dsh
=

µ
(½+ (1 + ¾ (1¡ Á))¸nh)

det (JF )

¶0@(1¡ ®) ³Á!
h
1
k

³
nl
nh
+ ¾ (1¡ Á)

´
+ ¾(1¡Á)¸°¿

1¡sh

i
nh

1A :
The derivative of the growth rate with respect to this subsidy is given by

dg

dsh
= ¡

µ
¾¸ (½+ (1 + ¾ (1¡ Á))¸nh) (1¡ ®) ³

det (JF )

¶
Â;

where

Â =
(1¡ Á)¯ 1

¾(1¡Á)
³
ln¯

1
¾(1¡Á) ¡ 1

Á

´
k

¡ Á (1¡ Á) (1¡ ¾) °¿!
¡
¸+ 1¡sh

k

¢
1¡ sh +

+

µ
Á

k

¶
nl
nh

Ãµ
¯

°

¶ 1
¾(1¡Á)

Ã
ln

Ãµ
¯

°

¶ 1
¾(1¡Á)

!
¡ 1
!
+ 1

!
:

The …rst two terms are negative but the last term is positive, which implies that the sign of this derivative

will generally be ambiguous. However, the last term goes to zero as ¯ approaches ° while the …rst term

is increasing (in absolute value) in ¯: Therefore, if ¯ is “su¢ciently” close to °; the whole derivative will

be negative.

Regarding the steady state e¤ects of an increase in sl; we observe that

dnh
dsl

< 0;
dÁ

dsl
< 0 and

dg

dsl
> 0:

The sign of the …rst two derivatives is immediate and the sign of the derivative of the growth rate with

respect to this subsidy is obtained from

dg

dsl
= ¾¸

µ
(1¡ Á) dnh

dsl
¡ nh dÁ

dsl

¶
=
¾¸Á!°¿2 (½+ (1 + ¾ (1¡ Á))¸nh) (1¡ ®) ³

k det (JF )
;

therefore, a subsidy to lagged sectors will make the economy grow faster and reduce the mass of the

lagging group.
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B Dynamics

Proposition 8 The dynamic system under the average assumption, de…ned by equations (13) and (14),

presents local saddle path stability.

Proof. In order to analyze the dynamics of the system let us express equations (13) and (14) as

follows:

¢
k (t) = '(k (t) ; c (t))
¢
c (t) = Ã(k (t) ; c (t)):

With this notation, we can compute the Jacobian of the system and evaluate it at the steady state. The

derivatives needed are the following:

'k (k; c) = ®L
1¡®k®¡1 ¡ 1

E (a)

µ
dnh(k)

dk
+
dnl(k)

dk

¶
+
[nh(k) + nl(k)]

dE(a)
dk

[E (a)]2
¡

¡ (± + g)¡ k(dg(k)
dk

)

'c (k; c) = ¡1

Ãk (k; c) = c(¡®2(1¡ ®)L1¡®k®¡2 ¡
dg(k)

dk
)

Ãc (k; c) = 0:

The determinant of the Jacobian is equal to Ãk (k; c) which is negative since
dg(k)
dk = µ¸dnh(k)dk and dnh(k)

dk

is positive. Recall that nh(k (t)) was de…ned by equations (9) and (11) as

nh(k (t)) =
(1¡ ®)®L1¡® [k (t)]®

1¡ sh ¡ ®
2L1¡® [k (t)]®¡1

¸
:

Therefore,

dnh(k (t))

dk (t)
=
(1¡ ®)®2L1¡® [k (t)]®¡1

1¡ sh +
®2 (1¡ ®)L1¡® [k (t)]®¡2

¸
;

is positive for every positive value of k:

Given that the determinant of the Jacobian is negative, the system presents local saddle path stability.

Proposition 9 The dynamic system formed by equations (13) and (14) under the aggregate assumption

presents local saddle path stability.

Proof. Since the equations of the system are the same as in Proposition 8, we know that the system

will be local saddle path stable if the determinant of the Jacobian is negative. The determinant is given

by

Ãk (k; c) = c(¡®2(1¡ ®)L1¡®k®¡2 ¡
dg(k)

dk
);
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where

dg(k (t))

dk (t)
= ¾¸ (1¡ Á (k)) dnh(k (t))

dk (t)
¡ ¾¸nh (k) dÁ(k (t))

dk (t)
:

Thus, if dÁ(k(t))dk(t) is negative, dg(k(t))dk(t) will be positive, and Ãk (k; c) will be negative as we want to prove.

The implicit function that de…nes Á as a function of k is given by (29), so let

F (k; Á) = (1¡ Á)¯ 1
¾(1¡Á) ¡ Á

µ
¯

°

¶ 1
¾(1¡Á) Z t2

t1

¸nl (t) exp

µZ t

t1

¸nh (s) ds

¶
dt = 0:

Then

dF

dÁ
=

µ
¯

°

¶ 1
¾(1¡Á)

µ
¡° 1

¾(1¡Á) + °
1

¾(1¡Á)
ln °

¾ (1¡ Á) ¡
Z t2

t1

¸nl (t) exp

µZ t

t1

¸nh (s) ds

¶
dt

¶
and

dF

dk
= ¡Á¸

µ
¯

°

¶ 1
¾(1¡Á)

Z t2

t1

µ
dnl (t)

dk
exp

µZ t

t1

¸nh (s) ds

¶
+ nl (t) exp

µZ t

t1

¸nh (s) ds

¶Z t

t1

¸
dnh (s)

dk
ds

¶
dt:

Since dnl(k(t))
dk(t) and dnh(k(t))

dk(t) are both positive, dFdk is negative, and so is
dF
dÁ which implies that

dÁ(k(t))
dk(t) as

given by

dÁ(k (t))

dk (t)
= ¡

dF
dk
dF
dÁ

;

is negative. Consequently, Ãk (k; c) is negative.
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