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1. Introduction

The global uniqueness, the smoothness of the demands and the negative semi-
definiteness of the substitution matrix are among the main theoretical restrictions
in consumer theory. The strong quasi-concavity of the utility function (SQC)! is
a sufficient global condition for these restrictions. It is a cornerstone of consumer
and general equilibrium theories. As a matter of fact, global concavity assump-
tions in economic models are often responsible for many crucial properties of these
models. They play an essential role in that they largely express the structure of
the model, without which a direct empirical approach without theory could as
well be pursued. Global conditions are important because, as opposed to local
conditions, one can impose or check them a priori without any knowledge of the
optimal decisions. In practice, applied economists often specify their models by
using functional forms for objective, constraint or decision functions, such that
desirable global conditions can easily be imposed or checked.

Although theoretical properties can also be developed for demand correspon-
dences?, the uniqueness of the demands considerably simplifies the analysis. It

enables one to separate considerations related to the inaccuracy of choices, from

Arrow and Enthoven (1961), Debreu (1972, 1976) discuss these quasi-concavity
assumptions.
2Ellis (1976).



the study of decision changes with characteristics of agents and environment. In
consumer theory, the uniqueness of the demands is global. The same legitimate
desire of focusing on the law of decisions is valid for general models. However,
global uniqueness is not necessarily appropriate for a decision problem with several
constraints. Consider for example the consumption of a person who can obtain
his consumption from two distinct domestic technologies. Assume that only the
production frontier is observed. Assume also that one technology is enjoyable
but has low productivity, while the other technology has opposite characteristics.
Then, if the arguments of the person’s utility are the penibility of domestic work
and consumption, she may be indifferent between two solutions corresponding
each to one of these technologies. One does not wish to artificially eliminate this
reasonable situation by imposing a unique global solution. Then, what is required
is that the decisions are locally unique. The smoothness of the decision functions
is also important since it allows an easy study of the comparative statics and
other variational properties of decisions. All this explains why SQC or similar
assumptions are fundamental in consumer economics.

The negativity of the substitution matrix is also a major theoretical restriction.

In theoretical analysis, many authors® stress the importance of the negativity and

Se.g. Barten (1977), Afriat (1983), Varian (1984), Takayama (1985), Beavis and



symmetry restrictions of the Slutsky matrix in consumer theory. Other authors?
use the negativity of the Slutsky matrix, or similar properties, to derive sufficient
conditions for the law of aggregate demand, which supports the existence of the
competitive equilibrium of the whole economy. In the study of price dynamics in
general equilibrium, negativity restrictions or related conditions ensure globally
stable equilibria®. In applied work, these restrictions are used to incorporate
theoretical results in estimated models®.

Unfortunately, the strong quasi-concavity of the utility function that delivers
all these restrictions has few theoretical or empirical bases. The quasi-concavity
of the utility is related to preference by individual of ‘mixtures’ of commodities to
unbalanced consumption structures. However, various authors have expressed a

strong dissatisfaction with the hypothesis of strict convexity of preferences (equiv-

Dobbs (1990), El-Hodiri (1991). Shapiro and Braithwait (1979) begin their article with
a quotation of Samuelson (1961): “The assumption that [the Slutsky matrix is| ...
symmetrical and negative semi-definite completely exhausts the empirical implications
of utility analysis. All other demand restrictions can be derived as theorems from this
single assumption”.

te.g. Hildenbrand (1983), Grandmont (1987), Quah (1997).

5Khilstrom, Mas-Colell, Sonnenschein (1976).

6See Samuelson (1947), Kalman and Intriligator (1973), Chichilnisky and Kalman
(1978), Deaton and Muellbauer (1980), Varian (1984), Chung (1994). Kodde and Palm
(1987) discuss a parametric test of the negativity of the substitution matrix. In the
context of cost function estimation, Gallant and Golub (1984), Diewert and Wales (1987)
propose methods for imposing curvature conditions on specific flexible functional forms.
The latter ones insist on the importance of imposing concavity globally, consistently
with economic theory. Imposition or verification of the negativity in applied demand
systems is common practice.



alent to the strict quasi-concavity of the utility function, itself very close to SQC)".
Also, experimental evidence® contradicts the convexity of preferences. In fact, the
convexity of consumer preferences is intuitive only when comparing standard av-
erage baskets with extreme consumption choices concentrated only in a few com-
modities. When comparing two rather balanced commodity baskets, the intuition
is somewhat lost and SQC looks rather arbitrary.

Even if we admitted SQC for the consumer case, this would be much less
tolerable for other models. The presence of heterogenous arguments in the ob-
jective function may generate the possibility of different ‘life styles’ or strategies,
which may imply nonconvexities in preferences. For example, this is the case
for the fertility choice between having a large family with limited human capi-
tal, or a small family with educated and healthy members. Collective settings
for aggregate household decisions’ may also contradict the convexity of household
preferences. In trade theory or in macroeconomics, a country objective function is
not necessarily quasi-concave. Finally, in some models the decisions are the char-

acteristics of contracts and there is no reason why the objective function should

Te.g. Kirman (1982). Other ‘technical’ conditions on preferences have been attacked
as altering the empirical content of models (Ghirardato and Marinacci, 2001).

$Tversky and Kahneman (1991).

9Chiappori (1988), Browning and Chiappori (1998).



be quasi-concave!'” in these cases. Clearly, it is desirable to dispose of alternative
conditions to the SQC.

In this paper, we provide a new global generalised concavity condition adapted
to models with several constraints, possibly nonlinear. These models are used in
several economic fields. The New Household Economics!! and agricultural house-
hold models'? involve production and budget constraints. Models with nonlinear
budget constraints arising from quality effects!?, nonlinear taxation'*, productive
consumption'?, nonlinear wage schedules'®, rationing!”, and nonlinear pricing by
firms with monopoly power, are also characterised by nonlinear constraints. Fi-
nally, international trade theory, the study of first-best and second-best optima'®,
collective household models'?, or other types of bargaining or incentive models,

may include several nonlinear constraints for agents’ optimal choices.

In general settings®’, no global generalised concavity condition is known that

We.g. Stiglitz and Weiss (1992).

UBecker (1965), Lancaster (1966).

12Sen (1966), Barnum and Squire (1980), Pitt and Rosenzweig (1985), Singh, Squire
and Strauss (1986), Benjamin (1992).

13 Houthakker (1952), Edlefsen (1981, 1983).

M Hausman (1985), Weymark (1987).

15Suen and Hung Mo (1994).

16Blomquist (1989).

1"Madden (1991).

18Ben-Israel, Ben-Tal, Charnes (1977), Dixit (1985).

19 Chiappori (1988, 1992), Browning and Chiappori (1998).

2 8Silberberg (1974), Hatta (1980), Caputo (1999) and Drandakis (2000) study prob-
lems with several constraints by using dual methods, although they do not deal with



would be as weak as possible for the negativity of the substitution matrix and the
smoothness and local uniqueness of decisions. Is there such a condition and what
are its properties? The aim of this paper is to answer these questions so as to
improve the specification of general economic models. In Section 2, we present the
general optimisation problem. In Section 3, we recall the consequences of SQC
in consumer theory and we analyse a new global generalised concavity condition
for optimisation programmes with several constraints. In Section 4, we study the
properties of the decision functions under this condition. We provide an example
of application in Section 5. Finally, we conclude in Section 6. The proofs are

given in the appendix.

2. The Optimisation Problem

General behavioural models with several constraints can be represented by the

following programme:

max U(z,0) subject to: g(z,0) < 0, (2.1)

global concavity conditions.



where U is the objective function, which is often assumed to be strictly quasi-
concave (or strictly concave, e.g. in Varian, 1984). x € R" is the n-dimensional
vector of decision functions, § € RP is the vector of parameters that may be
prices and incomes as well as any characteristics of the environment or of the
agent. We allow for parameters common to the objective and the constraints®!.
However, these parameters will be omitted for the presentation when they are
not necessary. ¢ is a g-dimensional vector of constraint functions. The decisions
may be of any type, including possibly negative values, as for variables such as
netputs or net trading positions. Positive decisions can be accounted for in the
constraints. The set of choices, X, defined by the constraints, is often assumed
to be convex. Appendix 1 contains the definitions of the generalised concavity
notions that we use in this article, with their properties that are employed.

To be able to use the first-order Kuhn-Tucker conditions (KTC) as necessary
for the existence of a solution, one must assume a constraint qualification condi-

tion. We follow the common practice of assuming that the gradient vectors of the

21Often, exogenous variables or random effects influence preferences as well as con-
straints. This is useful for applied agricultural household models (Singh, Squire and
Strauss, 1986, Pitt and Rosenzweig, 1985), for evolutionary economics (Lesourne, 1993,
Young, 1993) and for models in which preferences depend on random states of Na-
ture that may also affect constraints (Viscusi and Evans, 1990). Finally, for Pareto
optima, bargaining and incentives models, objective and constraints that all include
utility functions, may incorporate the same common characteristics of preferences.



components of g are linearly independent. Despite their intrinsic interest, changes
in regime may correspond to discrete discontinuity jumps of decisions, which would
justify not paying much attention to negligible marginal substitution effects. In
these situations, the negativity property as well as the smoothness of decisions lose
most of their appeal as theoretical restrictions. At solutions where the strict com-
plementarity slackness fails, comparative statics may be problematic because the
set of binding constraints may change as the parameter changes, destroying the
differentiability of the solutions. To avoid these problems, practitioners generally
assume that non-negativity constraints would not bind, but all other constraints
always bind. Moreover, researchers are often concerned only with the solutions of
one specific regime of interest (one set of binding constraints). This leads us to
focus on the following Lagrange conditions, which are the KTC associated with

such a specific regime.

Us—9g. A=0,

g(z,0) =04
where 0, is the g-dimensional vector null and X is the g-dimensional vector of
the Lagrange multipliers. The Lagrange function associated with the problem is
L =U- Ng.We now discuss global concavity conditions for behavioural models,

8



first by examining the link of global condition and local properties of decisions.

3. Global Concavity Conditions

Theoretical restrictions for the decisions similar to those obtained with SQC
in demand theory can be obtained from the sufficient second-order conditions
(SSOC) of the optimisation programme, for example in Blackorby and Diewert
(1979). However, without a global concavity condition this approach involves
several shortcomings. Firstly, the derived decision functions may not satisfy de-
sirable global properties. For example, flexible functional forms used in consumer
analysis have been criticised on the grounds that they did not easily allow the
imposition of the convexity of preferences (Diewert and Wales, 1987). Secondly,
the consistency of the local duality structures presupposes some global concavity
properties (Blackorby and Diewert, 1979). For example, for the consumer problem
one needs to assume that the expenditure function is concave in prices over its
domain or that the direct utility function is quasi-concave over its domain. With-
out these global concavity conditions there is no correspondence of the respective
second-order approximations of the expenditure function and of the direct utility

function. Moreover, the global conditions alleviate difficulties that may arise for



the coincidence of the domains of the local utility function and of the other local
dual representations of preferences. Therefore, even if local approximations are
useful tools, they do not permit a precise control of global properties of objec-
tive and constraints and of the consistency of the dual. Thirdly, global concavity
conditions are used to incorporate decision models in general equilibria frame-
works describing the economy by a unique and stable solution. On the whole, we
need global generalised concavity conditions on the optimisation problem, even
for obtaining desirable local properties of decision functions. This has been a fer-
tile approach in the literature, notably to obtain local uniqueness and differential
properties of decisions??. Besides, local uniqueness, smoothness and semi-definite
negativeness of decisions are global properties when they must be satisfied a priori
for the whole domain.

In the consumer problem, the only constraint (to simplify the exposition we ig-

nore any positivity constraint) is the linear budget constraint, p'x = m, where z is
the vector of consumption, p is the vector of prices and m is the exogenous income.
The utility function U is generally assumed to be of type C?, strictly increasing

in the consumption of every commodity and strictly (or strongly) quasi-concave.

22¢.g. Debreu (1972), Arrow and Enthoven (1961), Laroque (1981), Smale (1982),
Dana (1999).
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Under these assumptions, the vector of demands z(p,m) is derived from the La-
grange first-order conditions of the optimisation programme. From the budget
constraint, one can derive the adding-up and homogeneity restrictions that are
somewhat specific to the consumer problem. The other theoretical restrictions

characterise the Slutsky matrix S and are discussed in Afriat (1983). The sym-

metry property (S is a symmetric matrix) results from the separation structure of
the optimality problem. The negativity property results from the assumption of
strong quasi-concavity of U (Diewert, Avriel and Zang, 1981), which implies the
SSOC: S is orthogonal to the price vector and is negative definite in the hyperplane
orthogonal to the price vector.

For general models, SQC is no longer necessarily appropriate and may be
weakened. Weakest conditions for properties of optimal solutions play important
roles in nonlinear programming®® and in economics®*. We search for a generalised
global concavity condition that is as weak as possible and implies the local unique-
ness and smoothness of decision functions and the negativity of the generalised
substitution matrix. Its specification is inspired from the SSOC.

The necessary (respectively sufficient) local second-order conditions corre-

23 Avriel (1977), Hirriart-Urruty (1996).
24Debreu (1983).
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spond to the local negative semi-definiteness (respectively the local negative def-
initeness) of the Hessian matrix of the Lagrange function with respect to deci-
sions at the optimum (respectively, at the optimum for directions in the tangent
space to the constraints). To our knowledge, they have never been interpreted
in terms of global properties of objective and constraint functions. Moreover,
because each constraint function and objective function is separately specified in
economic models and sometimes separately estimated from different datasets, we
look for a condition that can be explicitly expressed in terms of these functions,
rather than in terms of the Lagrange function. Next, we recall the definition of

the strong quasi-concavity.

Definition 3.1. Let U be a directionally differentiable real function defined over

a convexr subset X of R*. U s called Strongly Quasi-Concave over X if and
only if

(2% € X, v'v=1,t>0,2° + tv € X, D,U(2°) = 0] =

[3e > 0,3a > 0,e <, Vt € [0,¢], U(z" +tv) < U(2?) — at?],

where D, denotes the directional derivative operator in direction v.

Equivalent notions have been used®®. If U is twice differentiable, an equivalent

ZDhrymes (1967), Barten, Lempers and Kloek (1969), Newman (1969), Ginsberg

12



definition is the following (Diewert, Avriel and Zang, 1981).

Definition 3.2. Let U be a twice differentiable real function defined over a convex

subset X of R*. U is

Strongly Quasi-Concave (SQC) if and only if V(z,y) € X?, such that = # y,

(VU(z)(y —2) = 0) = (y — 2)'V*U(2)(y — z) < 0.

We now introduce a new notion of generalised concavity by changing the

premises of this definition.

Definition 3.3. The twice differentiable objective function U subject to a differ-
entiable vector of constraint functions g,
is called "Constraint — Strongly Quasi — Concave” (CSQC) with respect

to g if and only if U is twice differentiable on X convex subset of RY, and

Y(z,y) € X? suchthatx #y and g(z,0) = 0,,
(Vo()y—1) = 0 and VU(x)(y - z) = 0) =

((y—2) VU(2) (y —2) < 0) (3.1)

(1973), McFadden (1978). See also Barten and Bshm (1982) for a discussion of the
properties of strongly quasi-concave utility functions in consumer theory.

13



CSQC must be checked for all points x satisfying the constraints, in particular
for £ non-optimal. This is a crucial requirement, since, at the stage of model
specification, the actual optimum may be unknown. Although it is related to
SSOC as we shall show in Section 4.1, the definition of the CSQC differs by
several elements. First, it is global. Second, an orthogonality condition involving
the gradient VU intervenes in the premises of CSQC and not in that of SSOC.
Third, the negativity condition in the conclusion of CSQC is for V2U, whereas it
is for V2L in SSOC. Also, CSQC differs from SQC by the presence in the premises
of the choice set and of orthogonality conditions with respect to the constraint
gradients.

The fact that the constraints intervene in CSQC is more natural than it may
seem at first sight, because both objective and constraints characterise the op-
timisation problem and they should therefore be considered together. Hotelling
(1935), for consumer theory with a linear budget constraint, affirms that “only the
portions of the indifference curves that are convex to the origin can be regarded as
possessing any importance since the others are essentially unobservable”. Novshek
(1980) states that “the second-order conditions impose constraints on the curva-
ture of level sets for f relative to the curvature of level sets for g [here f describes

the objective and g describes the constraints]. The absolute properties of [fi;(x)]

14



(positive definite, negative definite, corresponding to a saddle point, etc.) are
unimportant. The properties of [fi;(x)] relative to [g%(x)] are important.” These
quotes are consistent with the definition of CSQC in which the curvature proper-
ties of U are considered relatively to g.

The tangent subspace at = to the constraints and to the indifference hypersur-
faces (i.e. the subspace orthogonal to the gradients of functions ¢*(i = 1, ..., ¢) and
U) generates a hypersurface, as = varies along the frontier of the constraints. This
hypersurface is generally nonlinear and is neither a hyperplane as in consumer the-
ory with one linear constraint, nor a sub-vector space as when considering only
local conditions with several constraints. It is along this hypersurface that the
negativity of V2U is imposed by CSQC.

The sole consideration of the frontier of the constraints in the definition of
CSQC is motivated by the search for as weak a condition as possible. Indeed, it
is generally useless to incorporate restrictions occurring at points that are never
reached at the equilibrium because they are not at the frontier, since the objective
function is generally specified as increasing in its arguments. We could define an-
other condition by considering specific families of objective and constraint vectors
with parameter 6 varying and still obtain similar results. To save space, we do

not discuss these variants.

15



Some functions U and g may yield an empty set of directions corresponding to
the premises of the CSQC definition. When that is the case, essentially no arbi-
trary restriction of generalised concavity is imposed on the optimisation problem.
However, this seems unlikely to happen in models of interest. In order to char-
acterise CSQC by the shape of the graph of the objective function, we need an

additional definition.

Definition 3.4. f: X conver set C R — R attains a strong local maximum
(SLM) at ty € X if and only if 3o > 0,3 > 0,Vt € [to —&,to+e]N X, f(t) <

f(to) — Oé(t — t0)2.

Intuitively, a function attains a SLM when its curvature to the origin at the
maximum is at least as strong as that of a quadratic function. Definition 3.1 shows
that a strongly quasi-concave function U is such that for directions v orthogonal
to VU in 2%, h(t) = U (2" +tv) attains a SLM at ¢ = 0. We now show that CSQC

can also be characterised in terms of SLM ins some directions.
Proposition 3.5. Let U be a twice differentiable function over X. Then,

[U CSQC over X] if and only if
[(x° € X v'v=1,t > 0,2°+tv e X,Vi=1,...,q,¢'(z°) =0 and Vg'(2°)v =
0 and VU(2°)'v =0) = h(t) = U(2° + tv) attains a SLM at t = 0 ].

16



The convexity of a function f(z) is equivalent to the convexity of its epigraph,
E,(f), the set of couples (z,y) where y > f(x). The following proposition char-

acterises the epigraph in the case of CSQC.

Proposition 3.6. Let the function U, from X convex set of R" to R, be CSQC
with respect to the vector of constraints g. We consider the hypersurface limiting

the epigraph of U:

OE,(U) = {(xs, .., 2, U(xs,...,20)) | (z1,...,2,) € X},

and we define a “g-U-admissible” direction at x, as d € R"™ such that Vg'(z)'d =
0, for all i and VU (z)'d =0 (i.e. a direction of the domain generated by the tan-
gent space to the constraints and to the indifference hypersurfaces). Then,

(a) the frontier of the epigraph of U is strictly below all its tangent hyperplanes,
m any g-U-admissible direction at the frontier of constraints;

(b) the curvature (to the origin) of the frontier of the epigraph of U in any
g-U-admissible direction at the frontier of constraints is strictly positive;

(c) the dimension of the subspace spanned by the Vg' (i =1,...,q), which is

q because of the constraint qualification condition, is greater than the number of
positive or null eigenvalues of V2U at the frontier of constraints.
Condition (c) clearly illustrates that the more constraints the less restrictive

17



is CSQC. In a von Neumann-Morgenstern framework, CSQC is related to risk
aversion in the domains of choices defined by the constraints and by the indiffer-
ence hypersurfaces. It is worth noting, as the next proposition shows, that CSQC
utility functions can be ordinal and therefore that they correspond to relevant

restrictions on the representation of preferences.

Proposition 3.7. CSQC is an ordinal property of the preferences.

In the next section, we examine the consequences of CSQC for the decisions.

4. The Properties of the Decisions Functions under CSQC

4.1. The Link of CSQC with SQC and Second-Order Conditions

We now turn to the link of CSQC with SQC and SSOC, not only because of
the intrinsic interest of these conditions, but also because SSOC is a convenient
intermediate to derive some properties of decisions. First, CSQC and SQC can

be ranked.

Proposition 4.1.

If function U is strongly quasi-concave, then it is CSQC.

18



The reciprocal proposition is not true because, even at the optimum, VU v = 0
does not generally imply Vg¢*v = 0 for all i. When there are several constraints,
CSQC is a weaker condition than the strong quasi-concavity, because it is as-
sociated with a local curvature that is strictly positive only in a sub-space of
dimension n — q or generally n — ¢ — 1, and only at the frontier of the constraints,
while this curvature must be strictly positive in a whole hyperplane for U strongly
quasi-concave. CSQC is an assumption that does not locally impose any structure
on the preferences in a subspace of dimension ¢ at least, and therefore globally in
a large domain. Moreover, out of the frontier of the constraints, CSQC is tanta-
mount to the absence of restrictions?®. We now turn to the relationship between
the CSQC of the Lagrange function and the CSQC of the objective function, as

a first step towards the second-order conditions of optimality.

Proposition 4.2.

If g 1s quasi-convex, the CSQC of the utility function implies the CSQC of the
Lagrange function associated with the optimisation programme, whether calculated

with optimal or non-optimal Lagrange multipliers.

26The case of families of constraint and utility functions with @ varying instead of
given a priori, leads to obvious generalisations and stronger global conditions, although
still weaker than SQC. These generalisations do not change the core of our results.
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The CSQC of the Lagrange function is important because it characterises
the shape of the optimisation problem under CSQC of the objective function.
However, the Lagrange function cannot be directly used to impose structural con-
ditions, because of its dependence on a priori unknown Lagrange multipliers. The
following proposition shows that CSQC ensures that the second-order conditions

are satisfied when the choice set is convex.

Proposition 4.3. If g is quasi-convex, then U CSQC implies both the necessary

and the sufficient local second order conditions of optimality.

The contention that g is quasi-convex is little restrictive since it is equivalent to
assume that the choice set is convex. By contrast with the necessary second-order
conditions, the SSOC are not necessary the consequences of any optimisation
programme and a condition at least as strong as CSQC is necessary to obtain
them. Locally, SSOC implies the negativity of the generalised substitution matrix
(Pauwels, 1979). However, without global conditions one would have to know the
optimum to a priori check SSOC in a tractable way. We are now ready to examine

the properties of the decision functions under CSQC.

4.2. The Properties of the Decision Functions

20



In consumer theory, the budget set is bounded, therefore compact in finite di-
mension. This implies that there is always a solution to the maximisation of an
upper semi-continuous utility function. In general models, the choice set inside
a given regime is defined as C = {z € R",g(z,0) = 0,} and is no longer neces-
sarily bounded. Firstly, we consider a non-empty choice set C' to avoid absurd
situations. Secondly, the problem optimum is given by the KTC and corresponds
to a tangential contact point of the constraint frontier with an indifference hy-
persurface. CSQC yields strict curvatures that seems to geometrically imply the
existence of the optimum. Surprisingly, this is not the case?” and additional as-
sumptions are necessary to guarantee the existence of the optimum. Since U and
g are continuous, if one assumes that the decisions belong to a bounded set =,
then the choice set C' is compact and is not empty by hypothesis, and an upper

semi-continuous utility function has a maximum in this set. Another possibility is

to assume that U is coercive, upper semi-continuous on a closed feasible set with

at least one point where U is finite.

2"Indeed, in the following example there is no optimum. Let be a 2-dimensional vector
of decisions z = (z1,22)! € R%, and a constraint vector of one dimension described by
the equation: z; + x9 = 1. Assume that the objective function U is strictly increasing
and differentiable in z; and z2, and CSQC. Because the constraint is a unique line, this
is obtained with U strongly quasi-concave. But there exist families of strongly convex
indifference curves that satisfy these conditions and are asymptotically tangent to the
constraint when z; goes to +oo or zz goes to -oo. In that case, there is no optimum
since the contact point is at the infinite.

21



We now present a characterisation of CSQC in terms of a bordered Hessian,
similarly to consumer theory with strong quasi-concavity (Barten & Bshm, 1982).
The non-singularity of another related bounded Hessian will be necessary to the

derivation of properties of decisions.

Proposition 4.4. Let be

Ue 9o -+ 92 Loo gy -+ 92

g 0 0 gl 0 0
H = and J =

. 0 0

7 0 0 v 0 0

(a) If Uis CSQC, then H is non-singular at any solution of the KTC.
(b) If U is CSQC and g is quasi-convex, then J is non-singular at any solution
of the KTC.

The non-singularity of H characterises CSQC at the optimum. The non-
singularity of J enables us to use the implicit function theorem under CSQC

when ¢ is quasi-convex, and we exploit it in the next proposition.

Proposition 4.5. Let (z,, \o,0o) be such that the KTC of Problem 2.1 are sat-

1sfied with U CSQC and g quasi-convex. Then,

22



(a) 3Vh open neighbourhood of 0y, YV C Vi, open and connected neighbour-
hood of 0q, there is a unique function h: V — R?", such that

(zo, No) =h(0y) and Y0 € V,3 (z,\) € R*, (z,)\) = h(0)

and KTC[h(0), 0] = 0, where KTC|.] is the vector of functions defining the

equations in the KTC.

(b) his of type Cin V and its derivative is

() = — [DoAKTC[h(6), 6] o [DKTC|h(9), 0]].

(c) If moreover, U and g are of type CP*'in a neighbourhood of (zo, Mo, 0o),
then h is of type CP in a neighbourhood of 0.

(d) If moreover, U and g are analytic in a neigbourhood of (xo, Ao, 0o), then
h is analytic in a neigbourhood of 0.

The first component of h defines the vector decision functions. Proposition
4.5 proves the local uniqueness and smoothness of the decision functions. It also
justifies the usual calculus of the derivatives of the decision functions. We now

discuss the negativity property.

Proposition 4.6. Under CSQC and the convexity of the choice set, the gener-
alised substitution matrix, S, is negative semi-definite and is negative definite in

23



the tangent space to the constraints.

The negative semi-definiteness of matrix S at the optimum is related to the
local stability of the equilibrium that is ensured when matrix L., is negative
definite in the tangent space to the constraints. At the optimum, CSQC jointly
with the quasi-convexity of ¢ is the weakest available global condition for the

negativity of the substitution matrix.

The definition of CSQC suggests to verify the semi-definite negativity of VU
in a limited domain. Therefore, as opposed to SSOC, this does not require the
knowledge of all decisions and all multipliers, or verifications over the whole spaces
of decisions, multipliers and directions. Clearly, a priori checking SSOC for com-
plex problems is not tractable. By contrast, because firstly multipliers need not
be considered, and secondly decisions and directions need be checked only in re-
duced domains, checking CSQC may be practically possible. Proposition 4.4 (a)
provides a necessary condition on a bordered determinant that could be used for
the test. However, this test would be only valid for the solutions of the KTC,
which may be hard to calculate. The test of CSQC can also be directly imple-
mented by using a grid of the domain of decisions, and for each knot of this grid

by calculating all the eigen-values of V2U in the (U — g)—admissible directions
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and verifying that they are all negative. Statistical tests are available (Kodde and
Palm, 1987) to account for approximations done in the model or with the grid.
Often, a grid may not be necessary if the functional forms used for U and g lead

to simplifications. We give an example of this in the next section.

On the whole, when the KTC are difficult to solve, checking CSQC is likely to
be much less difficult than directly checking the SSOC. It may also be easier to
test than SQC because the domain to explore for this test is much smaller. The

following example makes it clear.

5. An Example

We use as an illustrative example the case of an autarchic community subject
to two different production functions with externalities in the preferences. The

optimisation programme is the following.

— a1, o (3 04
Max U = 21" 25 x5° 1)

subject to 2 a2 a3 alt = 1 (= G(x1, 2, 3, 74))
and z]'z3?z’z)* =v (= H(xy1, 72, 73,74)),

where the x; (i =1, ...,4) are consumptions of goods that may also be inputs or

outputs of the two production processes, ;1 and v describe production constants.
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The «;s can be normalised for example with >, a; = 1. The «;s, 8;s and ~;s can
be of either sign, so that they allow the distinction between inputs and outputs
in the production, but also the possibility of externalities in consumption. We
assume that the investigation of these externalities is the main interest and that
therefore the possibility of some «; < 0, e.g. because of pollution is crucial.
Imposing SQC would imply all o;; > 0 and is therefore not useful in this case. By
contrast, imposing CSQC is possible and relatively easy as we shall show.

G and H describe two implicit production functions. For example, some leisure
indicator may appear as an argument of the utility function with a positive o; and
as an argument of the production functions with positive (; and v, (to express
in a synthetic way that increasing leisure reduces labour input?®). The chosen
specification of the production for the example is particular since it is Kohli input
non-joint. We can think, for example, of a community producing two types of
outputs in a joint way, e.g. on the same site and where the inputs cannot be
distinguished for each output type. Naturally, different specifications are possible,
but we only want to develop an example that is easy to manipulate. This ‘Treble

Cobb-Douglas model’ is appropriate for this purpose.

28 Alternatively, the leisure can be related to labour input by defining it as T — xy,
where T is the total available time. This more accurate specification of the link labour-
leisure yields more complicated expressions, and we do not develop it for the sake of
the simplicity of the exposition.
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To fix ideas we could consider, for example, that z; and x5 are some directly
consumed outputs; x3 is a polluting by-product in one technology that may cause
negative externalities for the other technology and for the consumption; x4 is the
household leisure. Such assumptions would determine the signs of the parameters
of the model. Other interpretations may correspond to different signs. Let us
leave this question of the coefficient signs open since it can always be introduced
later in the analysis if needed. By contrast with SQC, CSQC provides us with

enough flexibility to deal with the question of interest.

Restrictions of a non-empty and convex choice set can be easily imposed by
specifying inequality constraints on combinations of the parameters 3, and v,. To
simplify the exposition we omit these conditions. For the same reason of ease of
exposition, we assume that the two technologies are jointly used for the cases of

interest and we omit the positivity constraints for the z; (i = 1,...,4). Naturally,

all these constraints may be important in practice and several regimes should be
examined to solve a complete applied problem. For the sake of the argument of
the present example we focus here on the regime where the positivity constraints
are not binding. By calculating the first and second derivatives of U, G and H
and simplifying them, it is easy to see that CSQC for this model can be written

as follows:
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81,852,583 8
Tyttt eyt = p

rtrytria)t =v

U U U v, _
QUL+ Qo Ug + gy -us + iy us =0 =

51;%“1 + ﬁz‘g%UQ + ﬁg‘a%ufi + 54;%714 =0

v v v v .
Vig U1+ Yo Uz + Yag Uz + Vg Ua =0

(041 — 1)0&1#(7“)2 + (OéQ — 1)0&2 (1[21)2 (UQ)Q

+(as — Das gy (us)® + (a4 — Doug (ua)?

U U U
+20410£2x1w2 U U + 2041043x1x3 uiusg + 20&10(4x1x4 Uq1U4g

U U U
+2(12(13EU2U3 -+ 2&2&4@1121@1 -+ 20{3&4mU3U4 < 0,

where uq,...,us are the coordinates of the vector u of the directions for the
quadratic form. The conclusion of the CSQC condition is therefore of the type:
for all z and ug, U.u(uy) Q.u(uy) < 0, where uis the vector of u; (i = 1,...,4) and

) is the matrix of the quadratic form in wu.

The last three equations of the premises can be used to eliminate wuy, us, uz by

expressing them as functions on uy4. Because of the substitution, only two con-

straints remain in the premises and a scalar inequality in the conclusion. The
latter is therefore convenient as a condition to impose or to check. After calcula-

tion, one obtains the following condition:

28



%{0‘1 [0a(—Bayvs + Bava) + 2(Byvs — V4Bs) + as(14Bs — Byva))?

+ag [aa(B1vs — B371) + a3(Byyr — 74B1) + (7485 — 54’73)]2
+az [as(=B172 + Bav1) + a1(Byve — 14B2) + (7481 — 5471)]2

+24 [a(Byys — B72) + a2(7185 — Bivs) + as(Byye — 1B’} >0,

where 6 =1 (8273 — B372) + @2(7183 — B173) + a3(B172 — 71582)-

The obtained condition is obviously a global condition on parameters and
decisions. Note that with the chosen functional forms the constraints in the
premises do not interfere with the verification of this conclusion, since any positive
value of z, is possible in these constraints.

Thus, CSQC in the ‘Treble Cobb-Douglas’ model yields a simple expression in
terms of: (1) values of parameters: «;,(3;,7,; (i =1,...,4), which can be obtained
for example from the estimation of demand functions, supply functions and pro-
duction functions; and (2) values of observable decision 4. The expression, which
is a bound on the value of x4, is very easy to check when the parameter values
are known. It can also be used to improve the efficiency of the model estimation.
Finally, conditionally on the knowledge of the values of z4, the condition can be

tested as a joint nonlinear constraint on the parameters.

Let us now see what happens with SSOC. It is clear that the simplifying
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substitutions are not available and therefore the negativity of the Hessian matrix
L. (often unobservable) must be checked for all values of the u; (i = 1,...,4) and
all values of decisions. That is generally a very heavy task that is not normally
undertaken for general specifications even by using a grid. This may explain why
this verification is most of the time replaced by the imposition of much stronger
global restrictions like the strong concavity. The verification of SQC generally
brings about the same difficulties. In general, because only one substitution can
be done by using the premises of the condition, SQC is likely to be much more
difficult to check than CSQC that characterises a smaller set of directions and
decisions. However, in the case of Cobb-Douglas type utility, the condition for
SQC is known and simple. It implies for all 7 : 1 > «; > 0. Not only this condition
covers a smaller set of parameter values but it does not allow the study of the role
of externalities.

The example shows how CSQC can be used in applied work, firstly to weaken
the global condition to impose, and secondly to facilitate its verification. In this
example it is possible to distinguish easily cases where CSQC is satisfied or not.

Another example where CSQC could play an important role is the collective
household model in Browning and Chiappori (1998). Indeed, in this paper the

individual utilities for each household member are strongly concave, a technical
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hypothesis which one may want to relax. If members are ‘egoistic’, i.e. the utility
of a member depends only on her own consumption and not on other members’
consumption, then it can be shown that SQC and CSQC are essentially identical
in this model. By contrast, when members are ‘altruistic’, i.e. the utility of a
member depends on consumptions of all household members, CSQC is generally
strictly weaker than SQC. The optimisation programme for a given member can
be easily rewritten with the household budget constraint and the levels of other
members’ utilities as constraints. Then, it is easy to see that CSQC in that case is
a much weaker condition that SQC of each member’s utility function. Therefore,
there exist members’ utility functions that provide the uniqueness of the demand
functions of the collective household, without satisfying SQC.

In general, beyond the examined examples, with the above method of calcula-
tion, cases can be identified where CSQC is not satisfied and SQC is. In particu-
lar, new values of parameters are allowed with CSQC as compared to SQC. Since
parameters are here to describe additional flexibility, it is likely that additional
functional forms are allowed with CSQC. Indeed, imposing SQC on a functional
form for U restricts this form to be positively curved in directions and domains
that are not relevant for solving the optimisation problem. CSQC allows more

general functional forms by avoiding these unjustified restrictions.
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6. Conclusion

In general models, the strong quasi-concavity of the objective function, which is
sufficient for theoretical properties of demands in consumer theory, is often ar-
bitrary and weaker global concavity conditions are desirable. We propose a new
global concavity condition, the constraint-strong quasi-concavity of the objec-

tive function (CSQC) that implies, for models with several nonlinear constraints,

the local uniqueness and the smoothness of the decision functions as well as the
negativity of the generalised substitution matrix when used jointly with the con-
vexity of the choice set. CSQC is weaker than the strong quasi-concavity and
is parsimonious because it is strictly based on what is required globally for the
negativity of the generalised substitution matrix. Indeed, it does not restrict the
curvature of the objective function in directions that are not compatible with
the constraints or not compatible with the augmentation of the objective level.
Moreover, CSQC is often easier to check or to impose on specific models than
the strong quasi-concavity. Finally, using CSQC allows the extension of the set
of possible functional forms as compared with the strong quasi-concavity, thereby
increasing modelling flexibility.

Several extensions of this paper are possible. Firstly, in consumer theory,
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the negativity of the Slutsky matrix is related to revealed preferences axioms
(Kihlstrom, Mas-Colell and Sonnenschein, 1976). We conjecture that analog re-
sults could be derived by limiting the decisions to the constrained choice set (as
in Chavas and Cox, 1993). Such results would express the curvature properties
embodied in the CSQC hypothesis. Secondly, since imposing strong concavity
globally compromises the flexibility of usual flexible functional forms for cost
functions and utility functions, one could investigate if in the presence of several
constraints, imposing only CSQC permits to conserve the flexibility of such func-
tional forms. Finally, game theory problems and equilibria problems seem likely

to be fertile application fields of CSQC.
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Appendix 1: Definitions of the generalised concavity notions

The generalised convexity properties for a function f are given by the corre-
sponding generalised concavity properties of -f.

Let X be a convex set of RY.

f: X -> R, a differentiable function, is called concave if and only if

V(z,y) € X2, fy) — fz) < Vf(2)(y — 2).

f: X -> R, a differentiable function, is called strictly concave if and only if
V(z,y) € X2, f(y) — f(z) < Vf()(y — ).

f: X -> R, a differentiable function, is called quasi-concave if and only if

V(z,y) € X2, (f(z) < f(y) = Vf(z)(y —z) = 0.

This is equivalent by contraposition to

V(z,y) € X2, (Vf(2)(y — =) <0) = (f(z) > f()).
Moreover, if f is quasi-concave and twice differentiable then
V(z,y) € X2, such that x#£ y, (Vf(z)(y —z) = 0) =

(y — )/ fau(2)(y — ) <0.

f: X -> R, is called strictly quasi-concave if and only if

V(z,y) € X2V €)0,1], (f(y) < f(z)) = f(z) < f((L=Nz+ ).



Then, f is strictly quasi-concave and, if, moreover, it is twice differentiable, it
satisfies the same second-order condition as any quasi-concave function.

f: X -> R, a twice differentiable function, is called strongly quasi-concave if
and only if

V(z,y) € X?, such that x # y,

(Vf(@)(y —z) =0) = (y — 2) fau(2)(y — z) <O.

Then, f is strictly quasi-concave.

f: X -> R, a twice differentiable function, is called constraint-strongly quasi-
concave (CSQC) with respect to g, where g : X -> R is a differentiable vector
function, if and only if

V(xz,y) € X?such that z # y and g(z) = 0, (Vg(z)(y — z) = 0 and
VU(z)(y —z) =0) =

(y — ) fau(z)(y — z) <O.

Appendix 2: Proofs.

Proof of Proposition 3.5:

=] Let U be CSQC over X, let 2° € X,v'v = 1, > 0,2° + tv € X,
Vi=1,...q, g'(z°) = 0y, Vg'(z") v = 0, VU (2°) v = 0.

Let h(t) = U(z° + tv). We calculate j(t) = h(t) — h(0) = U(z" 4 tv) —
U(z?).

A second order Taylor expansion of U(x° + tv) gives

j(t) = (#2/2)v' VU (%) + t2¢(t) because VU (z°)v = 0.

U CSQC implies that for 2% and v such that Vi = 1,...,q, ¢°(z°) = 0y,
Vgi(2°)'v = 0 and VU (2°) v = 0, we have v/ V?U (2°)v < 0. Then, since V2U
is continuous by hypothesis, j(t) < 0 when ¢ is small enough. Therefore, h(t)
attains a SLM at ¢t =0 for any 0 < o < Mz'n{—%v’VQU(:L’O)v cv'v =1}

| Letbex’ e X, vv=1,t>0,2+tv e X, (Vi=1,...,¢,9'(z°) =0
and Vg'(z°)'v = 0) = h(t) = f(2" + tv) attains a SLM at ¢t = 0.

Then, Ja > 0,

j(t) +at? <0. (1)

Besides, a second order Taylor expansion of U(z° + tv) about x° yields
U(x+tv) = U(x%) +t20' VAU (2°) v+ 2 2(t) where £(t) — 0 when t — 0.
Therefore,

j(t) =20 VAf(2%) v + 2 e(t) (2)



because v' VU (2°) = 0. Egs. 1 and 2 imply that v V2U (2°) v < —a—e(t),
which gives for ¢ small enough o' V2U(2°)v < 0, which proves that U is
CSQC. QED.

Proof of Proposition 3.6:

(a) Let d be a (¢ — U)—admissible direction at x at the frontier of the
constraints, then from a Taylor expansion of U at x, we have

U(z+d) = U(z)+ VU (z) d+1 d V2U(z) d+||d||* £(d) where lime(d) = 0
when ||d|| — 0. Because U is CSQC we have at the frontier of the constraints
d' V*U(z)d < 0. Choosing o small enough shows that the hypersurface
O0E,(U) is strictly below all its tangent hyperplane in (¢ — U)—admissible
directions at the frontier of the constraints.

(b) is deduced from the fact that the curvature of the epigraph in di-
rection d at = can be associated with —d’V*U(z)d with a positive factor
of proportionality to adjust for the local metric of the hypersurface. Under
CSQC all points of the frontier of the constraints are ‘elliptic’ for U in any
g — U—admissible direction, while they may be ‘parabolic or hyperbolic’ in
the whole space.

(c) is a direct consequence of the definition of CSQC and of the fact
that since V2U is symmetric there exists an orthogonal basis of eigenvectors
of V2U whose first ¢ vectors generate the subspace spanned by the Vg’
(theorem of the incomplete base). The orthogonality condition with respect
to VU generally enables one to add an unity from the number of possible
positive or null eigenvalues of VU, although not for an optimum since in
that case the KTC are satisfied and VU is a linear combination of the Vg'.

Proof of Proposition 3.7:

V = FoU gives VV = (F'oU).VU,

and V2V = (F'oU)V*U + (F"oU)VUVU'.

Then, with F/ > 0, and moreover ¥i =1,...,q, Vg"v =0 and VU'v =0
at the frontier of constraints impliesv’V*Uv < 0, we have v'V?*Vv < 0.

Therefore, V' is CSQC. QED.

Proof of Proposition 4.1:

The premises of the definition of CSQC imply that of the definition of
SQC. QED.

Proof of Proposition 4.2:

We first give the proof for one constraint function g only. U is CSQC and g
is quasiconvex. Then, for all z and y such that x # y, g(z,6) = 04, Vg(z)(z—



y) =0 and VU(z)(z — y) = 0, we have (z —y)' VU (x)(z —y) <0

and (z — y)'V?g(x)(z —y) > 0. Then, for all vectors A >0, for all x
and y such that g(z,0) = 04, Vg(z)(z —y) = 0 and VU (z)(z — y) = 0, we
have (z — y)'V?L(z,\)(x — y) < 0 and the Lagrange function is CSQC for
any vector of nonnegative multipliers. In particular, this result is true for
optimal solution and with optimal Kuhn-Tucker multipliers. The extension
of the proof to several inequality constraints is straightforward because the
Hessian matrix of a linear combination of functions is the linear combination
of the Hessian matrices of these functions. QED.

Proof of Proposition 4.3: Consequence of Proposition 4.2, applied at

an optimal solution. QED.

Proof of Proposition 4.4:
(a) Assume that H is singular. Then, 3z € R", 3r € RY, such that

q
Um.z—i-Zn.g; =0 (3)

i=1
(z/> 7“/)/ 7é 0n+q (4)
g'z=0Vi=1,...,q (5)
z = 0 and r # 0 is impossible since >, r;.g5 = 0, is a system of n
equations with ¢ unknown variables (r;, i = ..., q), which implies r; = 0 for

all i because of the hypothesis of constraint qualification (Vg is full rank).

z # 0 is also impossible because from egs. 3 and 5 we would obtain
2 Up.z =0 and g7z = 0,Vi = 1,...,q, in contradiction to CSQC for

a solution of the KTC, VU €< Vg). Therefore, no non null vector (2,
exists such that (2/,7").H = 0, which implies that H is non singular.

(b) The proof is similar to that of (a), taking advantage of the fact that
gl.z=0,Vi=1,...,qimplies 2/.g” .2 >0,Vi=1,...,q.
Proof of Proposition 4.5:

The system describing the KTC, has n+q equations whose vector function
is denoted KTC]|.], and 2n+ p variables (z, A, 6 ). Because VU, Vg and g are
of type C1, KTC|.] is of type C!. Since R*"*? is an open set (this is as well the
case if the ‘regime’ of interest is defined by strict inequality for non-binding
constraints) and since |J|, which is the Jacobian determinant associated with



the KTC for their solution in (z, \), is non-singular at a solution of the KTC
when U is CSQC and ¢ is quasiconcave, we can apply the theorem of implicit
functions. This generates all the results of the proposition. QED.

Proof of Proposition 4.6: CSQC implies SSOC and SSOC implies S

negative semidefinite in the tangent space to the constraints and orthogonal
to the constraint gradients (Pauwels, 1979).



