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Abstract

This paper proposes Bayesian methods for estimating the cointegration rank in an
automatic way using Bayes factors. First, we consider natural conjugate priors for com-
puting Bayes factors for the adjustment term. Since using conjugate priors requires that
we assign the prior parameters of which we often do not have prior information, and test-
ing by Bayes factor is very sensitive to the parameters, we propose in this paper using
the maximum likelihood estimators for the prior parameters. Then, we show the case
of using non-informative priors. Since normal Bayes factor cannot be computed with
non-informative priors, we apply the intrinsic Bayes factor (IBF) proposed by Berger and
Pericchi (1996). Monte Carlo simulations show that using Bayes factor with conjugate
priors and the IBF with non-informative priors produce fairly good results. The methods
proposed here are also applied for selecting the appropriate lags, or other tests for a VAR
model.
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1 Introduction

This paper introduces Bayesian analysis of cointegrated VAR systems. For cointegration anal-
ysis, Johansen’s likelihood ratio test has been the most popular method among applied econo-
metricians. One of the drawbacks is that classical methods such as the Johansen test involves
the pre-testing problem: before conducting cointegration tests, one has to check for unit roots
for all variables in the systems. The results of the unit roots tests depend upon the significance
levels. Also, even though one fails to reject the null of unit root at the 5 per cent significance
level, it does not mean the process has a unit root since the process might be stationary as the
coefficient is very close to 1. In a Bayesian framework, the posterior probabilities for the unit

roots and stationarity are taken account, and thus the pre-testing problem can be avoided.

*The author thanks Luc Bauwens, Mike Clements, Richard Paap and audiences at the workshop “Recent
Advances in Bayesian Econometrics (2001)” in Marseilles for their useful comments on an earlier version of this

paper.



Several researchers have proposed Bayesian inference with Markov Chain Monte Carlo
(MCMC) methods in cointegrated VAR systems. These include Kleibergen and van Dijk
(1994), who propose using a Jeffrey’s prior instead of diffuse prior for the cointegrating vectors
since the marginal posteriors may be nonintegrable with reduced rank of cointegrating vector.
Geweke(1996) develops general methods for Bayesian inference with noninformative reference
priors in the reduced rank regression model. Kleibergen and Paap (1999) use a singular
value decomposition of the unrestricted long-run multiplier matrix, II, for identification of the
cointegrating vectors and for Bayesian posterior odds analysis of the rank of II. Although their
method is rather complicated and requires heavy computation, it has proven to be versatile
when computing the Bayes factors. Bauwens and Lubrano (1996) reduce the ECM to the
form of a multivariate regression model to identify the parameters. The cointegrating rank is
assumed to be known a priori, based on a theoretical economic model that defines equilibrium
economic relations. If we are interested in identifying the cointegration rank, they suggest
checking the plot of the posterior density of the eigenvalues of generated sample II'Il, which
are equal to the square of the singular values of II. However, this informal visual inspection

! Bauwens, et al (1999) suggest using the trace test of Johansen,

gives ambiguous results.
since “on the Bayesian side, the topic of selecting the cointegrating rank has not yet given very
useful and convincing results”(p.283).

In this paper we propose simple methods of determining of the cointegration rank by Bayes
factors. The methods are very straightforward. First, we consider using the conjugate priors
for some parameters. If there exist r cointegrating vectors in the system, the adjustment term
« has rank r. Applying the Bayes factor to «, which has r rank, against the null of «, which
has rank 0, for each rank gives the posterior probabilities for rank. The procedure for obtaining
the posteriors has some similarities with Bauwens and Lubrano method. However, instead of
using diffuse priors for all parameters, the conjugate priors for both « and 8 and diffuse priors
for others are chosen to be able to compute the Bayes factors. A problem in choosing the
conjugate priors is that the Bayes factor is very sensitive in the choice of prior parameters
(location, scale, degree of freedom, etc), and also that appropriate subjective choices of prior
specifications for those prior parameters for all parameters of all models are often not feasible.
Actually, in cointegration rank test, selection of the rank by Bayes factor depends upon what
prior parameters we assign. For example, if we choose fairly large prior variance for the speed
of convergence (or the cointegrating long-run matrix), it tends to give lower rank by the Bayes
factor. Or, if we choose an inverted Wishart distribution as a prior for variance in the system
such that p(¥) o |S|*2|3|~(+r+D) exp {—%tr (E*IS)}, the question is choosing the values
of S and h (the degrees of freedom) since these values have enormous effects on the Bayes
factors. It is not easy to assign the appropriate prior mean and variance and thus one way to
assign them is in an ad hoc fashion or manipulate the parameter until the results look nice.
To circumvent this problem, we propose that those parameters are derived from the MLE.

Although the use of data in priors is not Bayesian in a strict sense, it gives quite satisfying

!Tsurumi and Wago (1996) use a highest-posterior-density-region (HPDR) test to II , then derive the
posterior pdfs for singular values to see whether 99% highest-posterior-density-interval (HPDI) contains zero.



results without taking care of choosing the prior parameters.

We then consider using the diffuse priors for the adjustment term «. Since the normal
Bayes factor cannot be computed with improper non-informative priors, we apply the intrinsic
Bayes factor (IBF) proposed by Berger and Pericchi (1996). The IBF aims to select model in
a fully automatic way, and thus can be used as a reference.

The plan of this paper is as follows. Section 2 presents the prior specifications and derives
the posterior densities for estimation of the cointegrated VAR systems. In Section 3 the Bayes
factors for cointegration rank is introduced. Section 4 illustrates Monte Carlo simulations with
DGPs of 100 iterations for each rank to compare the performance of the proposed Bayesian
methods with the classical Johansen test. In Section 5, an illustrative example of 'great ratios’
is presented. Section 6 concludes. All computations in this paper are performed using code
written by the author with Ox v2.20 for Linux (Doornik, 1998).

2 Bayesian Inference in Cointegration Analysis

In this section we present Bayesian analysis of cointegration. Let X; denote an I(1) vector of
n-dimensional time series with r linear cointegrating relations, then the ECM representation
is:
p—1
AXt = U + Otﬁ’Xt,1 + Z ‘IJZ’AXt,Z' + & (1)
i=1
where t =p,p+1,...,T, p is the number of lags, and the errors, £;, are assumed N (0, ")
and independent over time. The dimensions of the matrices are y and ¢ (n x 1), U(n x n), &
(n xn, PDS), a(n xr), B(nxr).

Equation (1) can be rewritten in matrix format as:

Y =XT +ZBd + E=WB+E 2)
where
AX) X, 4 Ep ©
v AX) g X, o €ni1 o 4
AXY, Xh_4 el A
1 AX) , -+ AX]
1 AX, - AXy T
B R R w=lx z]p=| |
AN, e AXp.,

Let ¢ be the number of columns of Y, so that t =T —p + 1, then X ist x (1 +n(p—1)) ,T
(I+n(p—-1))xn), W (t xk), where k = 1+n(p—1)+r, and B (k xn). Thus, equation (2)
represents the multivariate regression format of (1). This representation is a starting point.

We then describe the prior and likelihood specifications in order to derive posteriors.



First, we consider the case of applying the conjugate priors for some parameters. Our
strategy to select priors is to choose a conjugate prior only for the parameters that are used in
computing Bayes factor. For other parameters except for the cointegrating vector, we consider
non-informative priors.

The conjugate prior density for B conditional on covariance ¥ follows a matrix-variate

normal distribution with covariance matrix ¥ ® A~! of the form

p(B | %) o |5 H2| A2 exp [—%tr (3 (B-PyAB- P)}] 3)

where A is (k x k) PDS and P (k xn), k =n(p—1) + r+ 1 (the number of columns in W ).
This conjugate prior is needed for computation of the Bayes factor for a, which is a partitioned
matrix in B. Choosing hyperparameters, P and A, in (3) should be careful since these have
direct effect on the value of Bayes factor. Kleibergen and Paap (1996) choose the prior mean
of IT = af’ to be zero. However, this choice generates the Bayes factors which favors no
cointegration, thus the posterior probabilities tend to show less rank in cointegration. One
method for choosing these hyperparameters is to use data Y, although using data in priors is
not a Bayesian in a strict sense. In this paper we use P = (W'W)~1W'Y and 4 = (1/t)(W'W),
where W = ( X Z Bmle ), and Bmle is the MLE of 8. The idea of using data in priors is
similar to a g-prior proposed by Zellner (1986).

For the prior density for the covariance ¥ in (2), we can assign either an inverted Wishart
p(Z) o< |8)M/2| |~ (htntD) exp {—%tr (Z*IS)} where h is a degree of freedom, S an n x n PDS;,
or a diffuse prior

p(E) oc ST (4)

If the inverted Wishart prior is chosen, we have to specify the prior parameters S and h. Those
specifications in general do not have an effect on estimations but do have a strong effect on
the Bayes factors. To avoid this, we choose a diffuse prior for the covariance ¥ unless we have
an appropriate subjective prior information.

The prior for 8 can be given as a matrix-variate normal

n () o<|QI 2 |H 2 exp -3 { @ (5-5) 1 (5-B) | (5)

where f = ( I, B, ) is a prior mean of 3, Q is r x r ,Hisnxn . Note that =
here B X £8,Q PDS, H PDS. Note that 72

restrictions for identification are imposed on 3 such that 8/ = ( I, p. ),2 where Bs is (n —r)
X r unrestricted matrix.

We do not have to worry about the prior mean and variance in (5) since they have little
effects on the Bayes factors if we give enough large variance, say H = 10~'°. However, we do
not know whether or not this H is large enough , and it depends on the data. Thus, as in the

case of choosing prior parameter for B|%, we use the MLE as 3, =0, Q = a;nlei;n}eaml& and

2The restrictions imposed on 3 need not to be I, but can be any r? restrictions. This flexibility is an
advantage over Kleibergen and Paap (1999) method, which restricts the restriction to be I,. See Bauwens and
Lubrano (1996, page 14)



H = Z'Z/t. These are derived from the asymptotic distribution of the MLE. Ahn and Reinsel
(1990) provide the theorem.

If we assume that B, ¥ and 8 are mutually independent, then the joint prior of the
parameters in (2) is p(B, ,%) « p(B|X)p(8)p(X) and thus can be derived as

k+n+1

p(B.E) ocm (B AN e [—Jur (BB - PYAB =P} (©)

Next, we consider improper diffuse priors for the speed of adjustment « and covariance .
Here, we assume that p(8) is independent of p(«), and thus, p(8, B, %) « 7(8) - |E|_(”+1)/2,
where 7(8) is the prior for 3, which can be Jeffreys, normal, or ¢ density prior® . Another non-
informative prior that should be worth considering is the reference prior proposed originally
by Bernardo (1979), and developed by Berger and Bernardo in their series of papers (1989,
1992)*. In this paper we do not consider the reference priors since the derivations are not
straightforward.

To derive the conditional posterior distributions, we need to derive the likelihood functions.
The likelihood function for B, 3, and f is given by:

L(Y|B,%,B)
= (21)" 5 S ® L] 7 exp [—% {Vec(Y ~WB)(Z ' ® I, 1) Vec(Y — WB)}]

oc || 72| "2 exp [—%tr [z -way(y - WB)}]

= |22 exp {—%tr (= {S+ (B - BYwW(B - B)}] } (7)

where B = (W'W) W'Y, and § = (Y — WB)'(Y — WB).

Next we derive the posteriors from the priors and the likelihood function specified above.
The joint posterior distribution for the conjugate priors for « is proportional to the joint prior
(6) times the likelihood function (7), thus we have

P(B,%,81Y) xg(8)p(B,%,8)L(Y | B,%,f)
x m (B) |AJF |z

X exp [—%tr {57 [(B- PYAB - P)+§+ (B~ BYWW(B - B] }]

x 7 (8)|Z] 5 exp [—%tr {871 [§+ (P~ BY[A + (W'W) | /(P - B)
+(B — B,)'A«(B — By)]}]
— (B[S Fexp |-y ST S + (B - BYAB - B} (8)
3For discussion about using Jeffreys instead of diffuse prior on 4 in cointegrated VAR systers, see Kleibergen

and van Dijk (1994).
“For the discussion of the selection of priors, see Kass and Wasserman (1996).




where c=t+k+n+1, A, = A+ W'W, B, = (A+ W'W) L(AP + W'WB),
and S, =5 + (P — B)/[A~" + (W'W)~']"}(P — B).

From (8), the conditional posterior of ¥ is derived as an inverted Wishart distribution, and
the conditional posterior of B as a matrix-variate normal density with covariance, ¥ ® A!
that is,

P21 8,Y) ox S.]72[8) 7D exp [‘%“ (2‘15*)] (9)

P(BIE,6Y) o AP M exp |- sur {571 (B - BYAB-B)}| (o)

Thus, by multiplying (9) and (10), and integrating with respect to ¥, we obtain the posterior

density of B conditional on 3, which is a matrix-variate Student-¢ form,

PBI8Y) x [p(S]B8Y)0(B|%,6,Y)ds
1.2 A28, + (B = BLYAL(B — B[~ (1)

The joint posterior of B and f can be derived by integrating (8) with respect to %,

pB.AIY) o [p(B,58]Y)dE
x / B) |78 exp [—%tr{ n-1 [S*+(B—B*)'A*(B—B*)]}] dx.

o« w(B)|Ss+ (B — B,)'A(B — B,) |~tFk+t1)/2 (12)

By integrating (12) with respect to B we obtain the posterior density of the cointegrating

vector 3,

PBIY) o [p(B,8|Y)dB
- / )| S, + (B — B,)A,(B - B,)

oc ()| S [TV AL T (13)

For the case of non-informative prior on «, the posteriors are obtained by the same pro-
cedure as shown above. The posterior of ¥ conditional on B and § is given as an inverted
Wishart density, that is,

p(ZIB,B,Y) o w(B) - [~ EHHI/2 exp [—%tr (== (v -wBY (v - WB))] (14)

The posterior of B conditional on § is obtained as a matrix-variate Student-¢



p(B|B,Y) x|S+ (B - B)W'W (B - B)|~" (15)
The posterior of § is given as a poly-t form as Bauwens and Lubrano (1996) derived, that is,

m(B) - |B'Z' M, 2|t k-2

PIBIY) < G 2,1, — Y (VM Y)Y 7| M, 23| PP

(16)

where M, = I; - X(X'X)~1X".

The last line is the posterior kernel of 8, which is the product of the prior for 8 and inverse
of the integrating constant of the matrix-variate Student-¢ density. An interesting point to
note is that either posterior for 8 in (13) or (16) can be generated only from the data and
independent of other parameters such as a or X.

The properties of (13) and (16) are not known, so that we have to resort to numerical
integration techniques as Bauwens and Lubrano (1996) use importance sampling to compute
poly-t posterior results on parameters. Other feasible methods are the Metropolis-Hastings
algorithm and the Griddy-Gibbs sampling. The Metropolis-Hastings® algorithm requires as-
signment of a good approximating function, the candidate-generating function, to the posterior
to draw random numbers, as importance sampling requires the importance function. Since
the Griddy-Gibbs sampling method does not require such an approximation, we employ the
Griddy-Gibbs sampler for estimation of the cointegrating vector as Bauwens and Giot (1998)
use the sampler for estimation of two cointegrating vectors. The Griddy-Gibbs sampler that is
proposed by Ritter and Tanner (1992) approximates the true cdf of each conditional distribu-
tion by a piecewise linear function and then sample from the approximations. The algorithm

is provided in the Appendix for convenience.

3 Bayes Factors for Cointegration Tests

This section introduces the computation of the Bayes factors for cointegration rank. Subsection
3.1 describes briefly the basic concept of the Bayes factors and some computation techniques.

Subsection 3.2 presents the computation of the Bayes factors for cointegration rank.

3.1 Computation of the Bayes Factors

The Bayes factor, which is defined as the ratio of marginal likelihood of null and alternative
hypothesis, has been used for model selection. The Bayes factors can be used to construct
posterior probabilities for all models that seemed plausible. In classical hypothesis test, one
model represents the truth and the test is based on a pairwise comparison of the alternative.
For a detailed discussion of the advantages of Bayesian methods, see Koop and Potter (1999).
Kass and Raftery (1995) provide an excellent survey of the Bayes factor.

Suppose, with data Y and the likelihood functions with the parameters ©, there are two
hypotheses Hy and H;. The Bayes factor BFy; is defined as follows:

5For more details, consult Chen, et al (2000), Evans and Swartz (2000). For tutorial for the M-H algorithm,
see Chib and Greenberg (1995).




Pr(Y|Hy)
Pr(V|H,)
J p(©0|Ho)L(Y |00, Hy)dOy

= [p(©1H)L(Y|O1, H1)dO, (17)

BFy =

With the prior odds, defined as Pr(Hy)/Pr(H;), which are often taken to be 1 if we do not
know which hypothesis is correct, we can compute the posterior odds, which are
Pr(HolY) Pr(Y[Hp) Pr(Ho)

PosteriorOddso; = = ' !
osteriorOddsg; Pr(H,|Y) Pr(Y|H,) Pr(H)) 1)

In words,

Posterior Odds = Bayes Factor x Prior Odds.
When several models are being considered, the posterior odds yield the posterior probabili-
ties. Suppose g models with Hy, Hy,...,Hy_1 are being considered, and each hypotheses of
Hy,H,,...,H,;_; is compared with Hy. Then the posterior probability for model 7 under H;

1S

PosteriorOdds;g

Pr(H;|Y) =
r(HilY) ;1.:0 PosteriorOdds g

(19)

where PosteriorOddsgo= 1. These posterior probabilities are used to select the cointegrating
rank, model selection, or as weights for forecasting.

There are several methods to compute the Bayes factors given in (17). For example, the
Laplace approximation method (Tierney and Kadane, 1986), or using numerical integration
techniques such as importance sampling (Geweke, 1989) or the Metropolis-Hastings algorithm.
See Kass and Raftery (1995) for details. Chib (1995) proposes a simple approach to compute
the marginal likelihood from the Gibbs output.

In the case of nested models computation of the Bayes factor can be simplified by using
the generalised Savage-Dickey density ratio, proposed by Verdinelli and Wasserman (1995).
Suppose we wish to test the null Hy : & versus Hy : £ # &, where £ can be scalar, vector, or
matrix. If p(©|&) = po(©), then the Bayes factor can be computed with the Savage-Dickey
density ratio

p(&o|Y)
(o)

If p(®|&) # po(©), then the Bayes factor is equal to the Savage-Dickey density ratio times a

BFy =

(20)

correction factor, that is,

Y

BFy = p(€0| )E [ po(e) :| (21)
p()  Lp(©%)

The equation (21) is the generalized Savage-Dickey density ratio. The denominator, the

marginal prior for £ evaluated at & = &p, in (20) or (21) is trivial to calculate. The nu-

merator, the marginal posterior for ¢ evaluated at & = &g, can be calculated by integrating out



the other parameters, such as:

p&lY) = [p&le V)@

1

1 N
~ Y p(l0:,Y) (22
=1

where ©; is a sample from the posterior.

If (22) cannot be computed because the conditional posterior density is not available, Verdinelli
and Wasserman (1995) suggest that, using Chen’s (1992) method with w(£|©), which is the
normal approximation with sample mean and sample covariance of (£1,01),...,(én,On), we
estimate p(&y|Y’) by

5056 |Y)
¢(&, 0i]Y)

where (£, 0|Y) is proportional to the joint posterior density p(¢, ©[Y).

N
§0|Y Zw £z|® (23)
z:l

Chen (1992) argues that choosing w as a normal is not always good approximation, although
it is a reasonable choice in most cases.

For a rough approximation of Bayes factor, Kass and Raftery (1995) show that the Bayesian
information criterion (BIC) can be used as reference since BIC does not require the introduction
of the prior densities. The BIC is defined as BIC(H;) = —2log L(Y|O;n15) + qlogt, where

q denotes the dimension of ©;, and then the Bayes factor can be approximated by computing

BFy ~ exp (% (BIC(H)) — BIC(HO))) (24)

In this paper, we compute the Bayes factor approximated by the BIC evaluated at the posterior
mean instead of the maximum likelihood estimator. Phillips (1996) and Phillips and Ploberger
(1996) extend this BIC for model selection.

The Bayes factor assumes that the priors are proper. In case of using non-informative
improper prior distributions, one cannot compute Bayes factor since Bayes factor depends
on an undefined ratio of constant cp/c;. Several methods have been proposed to avoid this
problem with the idea of using a training sample of data. These include Spiegelhalter and Smith
(1982), who considered an imaginary training sample. O’Hagen (1995) proposed fractional
Bayes factors that uses a fractional part of the entire likelihood. Berger and Pericchi (1996a)
proposed the intrinsic Bayes factor, which uses a minimal training sample to compute the
arbitrary ratio c¢g/c; and remove the ratio by multiplying the Bayes factor by the inverse of
ratio. Consider 2 (©;) be any non-informative improper prior under the hypothesis 4, then
using ¥ (0;) in(17) would yield
m¥ (Y) f(p] L;j(Y|©,)dO;

Bl = orw) = Ter @ z> V16,0,

(3

(25)

Next we compute the Bayes factors that uses the minimal training samples, Y (/) for 7 and j,



by replacing Y in (25). By using the training samples, Y (1), the non-informative prior, ¢ (0;),
can be converted to proper posterior distributions ¢ (0;Y (1)) = ¢N (0;)Li(Y (1)|0;)/m¥N (Y (1)),
where mY (Y(1)) = [N (©;) L; (Y (1)|©;) d©;. With the remainder of the data, the Bayes
factors are computed using the ¢ (0;|Y(I)) as priors. The minimal training sample size is
max{dimension(©;)}. For multiple hypothesis tests, minimal training samples are defined rel-
ative to all the models simultaneously. Then take the average the Bayes factor of the minimal
training samples over all possible training samples. Berger and Pericchi (1996) demonstrate
two methods of averaging - the arithmetic (AI) and the geometric (GI) intrinsic Bayes factor.
Here we use the geometric intrinsic Bayes factor to take an advantage of its symmetric relation,

that is, IBFj; = 1/IBF;;. The geometric intrinsic Bayes factor is defined by

L 1/L
IBFy = BF)) - (H BF) (Y(m) (26)
=1

The arithmetic (AI) intrinsic Bayes factor sums the Bayes factor for the minimal training
samples over the all /s and then divided by N.

Computing the products over [ in (26) can be enormous if the total sample size is large.
As Berger and Pericchi (1996) suggest, one method to avoid this problem is to use only over
a subset of Y, selecting randomly from Y. In case of small sample sizes, they recommend to

use the expected intrinsic Bayes factors.

3.2 Bayes Factor for Cointegration Rank When Prior for « is Conjugate

The Bayes factors are used for model selection, and thus can also be used for rank selection of
the cointegration. Kleibergen and Paap (1999) propose a cointegration rank test by Bayes fac-
tors using a decomposition derived from the singular value decomposition. In this subsection,
we propose a much simpler method for rank test using Bayes factors.

In a cointegrated system with n variables which are I(1), if there are r cointegrating vectors,
then the error correction term II has reduced rank of 7. II can be decomposed as products of
a and A, both of which have reduced rank r. Since f is restricted to be g’ = [ I, S,] for
identification, we should not compute the Bayes factors for . Instead, since « is unrestricted
and also is given a rank reduction when cointegration exists, we compute the Bayes factor for
« that is against the null a = 0 for determining the number of the rank using inverted form
of (20) for each possible rank (r =0,1,...,n).

[/ p(,8,T,8)L(Y | o, 3,1, %) dvdBdTd%
(1/07") ) fffp(a,ﬂ,r, 2) |rank(a):0 L(Y | a,ﬁ,P,E) |rank(a):0 dpdl'dx
p(a' = Orxn)

N (1/07") -p(a’ = Orxn|Y) (27)

BF,

where G = [ [ [p(a, 8,1, %) |rank(a)—o @PdI'dY is the correction factor that is required for
reduction of dimension.

If there exists r cointegrating vectors, the Bayes factor for al(rxn) in (27) is the most

10



unlikely to be zero and thus should have the highest value in Bayes factors for other possible
ranks. Note that the Bayes factor for rank 0 equals to 1. In case of no cointegration, the Bayes

factors for a’( where r # 0, are less than 1. If we assign an equal prior probability to each

rXn)’
cointegration rank, the posterior probability for each rank can be computed as in (19)

Pr(r|Y) = —rrl0
Yo BFjo

(28)
where BFj, is defined as 1.

The posterior probabilities given by (28) can be used for solutions of the prediction, de-
cision making and inference problems that take account of model uncertainty. Generally, the
hypothesis that has the highest posterior probability can be selected as the 'best’ model, only
if it dominates the others. Otherwise, analyses will fail to take uncertainty into account.

To compute the Bayes factors using (27), we use (22) with samples from the posteriors.
Since o is a partitioned element of B in (2) and thus the prior for alpha is a matrix-variate

normal distribution as shown in (3), so the numerator of (27) is:

1 & ,
pla=a0) = [pla=a)p(E)ds = o Y pla=aols)
i=1
1Y ) 1 )
= N Z(Zﬂ)_nT/2|ZZ|_T/2|A22|R/2 exp [—itrzz_l(af) — PQ)IAQQ(a6 — PQ)}QQ)
i=1
A A .
where A = ;Annis (n(p—1)+1) x (n(p—1) +1)) , Az (n(p—1) +1) x7) ,
A Az
. . . P,
A9y (rx(n(p—1)+1)), A (r xr) , P, is obtained by partition of P as P = l ] , where
2

Pis((n(p—1)+1) xn), P, (r xn).

The posterior for alpha, which is a matrix-variate Student-¢ from (11), can be estimated by
(22) as follows:

—~—

1 & ;
(e = ApuunV) = [ pla = oglB,Y)p(BY)dB ~ 5= 3 pla = 8", Y)
=1

N . . | n T (o=
- Z”_%|Si\%|A122,1|5{HM}
=1

N = ()
x|S% + (016 - Biz)lAim.l (a() - 12) \_HTT (30)

where 3, S¢, and A% are obtained from the i th iteration of the Gibbs sampler, As91 =

A A .
x11 A2 ]’ Ay is ((n(p—1)+1) x (n(p—1)+ 1)) , Ao
A*21 A*22

(np—=1)4+1)x7r), A1 (r x(n(p—1)+1)), Awo (r X ), By is obtained by partition of

Asor — Asn A Avre , Ax = l

11



B*l

*2
To compute the value of C, in (27), Chen’s method in (23) can be used as

B, as B, = l ], where By is ((n(p — 1) + 1) x n), By (r X n).

c, = / / / (e, B,T, %) |aco dBdTdS

1 & i1 ai i wi) P(a=0,pT" %
sz(a |57F52) p(az’ﬁz’l“z’zz)

1R

1 X p(a=0,p,T%T)
- Z ﬂz I Zz)

z 1

(31)

where p(a, 8,1, %) and p(B, B,X) are derived from (6).

The Bayes factor for alpha can be obtained by dividing (29) by (30) and (31). When
the posterior probabilities are considered, we assign equal prior probabilities to the possible
cointegration ranks such that Pr(apenk—r) = 1/(n + 1) for r = 0,1,...,n. With these n + 1

Bayes factors, we can compute the posterior probabilities for each rank by using (19).

3.3 Bayes Factor for Cointegration Rank When Priors are Improper

As showed in subsection 3.1, the intrinsic Bayes factor can be used for approximation when
priors of interest are non-informative. Computation of (25) and (26) with a model (2) can
be done by applying the derivation by Denham (1995), which leads to, with default priors for
(B;,%;) of the form 7Y (B,,%,) = |5, (244)/2 \yhere r denote model with rank rank = r,

ppy _ mERn T Ttk g2 n—m)/2}] (W
2@z | AL T{(t—ki+ i +2—n—m)/2} |W’ w;|n/2

- — /2
¥V - W,B)(Y - W,B,)["

X

(32)

=== ~ ~ |n/2

‘(Y - W;B;)' (Y — Wij)‘

where W, = ( X ZB ) 3 is the MLE of B, and B; = (W; W;)~'W, Y.
With diffuse priors, the intrinsic Bayes factor is obtained by

1 n/2 o~ = ~ (t—n+1)/2
mOP (k42— s)/2) (Y —W.By(Y - W,B)
IBF; = <]] R —— ——
s T{E—ki+2—5)/2} ‘A’A” (v = W;B))(Y — W;B)|




where k; is the number of columns in W, and m = max{k;} + 1.

With equal prior probability to each model, posterior probability for ¢ is computed as

—1
q
Pr(r|Y) = (Z BFJ-T> (34)
7j=1

4 Monte Carlo Simulation

To illustrate the performance of Bayesian tests for the rank of cointegration described in the
previous section, we perform some Monte Carlo simulations. The data generating processes
(DGPs) consist of a four-variable VAR with an intercept term and two lags having various
number of cointegrating vectors (0, 1, 2, 3 and 4). We demonstrate the performance of the test
by varying the true rank. Each simulation of DGPs for various ranks is repeated 100 times. All
coefficients except for the cointegrating vectors are generated by uniform distributions with a
range between -0.4 to 0.4. Disturbance terms are generated by a standard normal distribution.

The cointegrating vectors are fixed as follows:

100 —1
100 —1

100 —1 010 -1
0,(100—1), o100 -1,

010 —1 001 -1

001 -1 000 1

The sample size t is 150, of which the first 50 are used for the first experiment and the rest
of 100 are used for the second experiment. The number of lags is assumed to be known
throughout the experiments.

We consider three methods of Bayesian cointegration test and Johnasen’s LR trace test
for reference. The first test is computed using the Bayes factor (BF) for o and the natural
conjugate prior for B. Then we demonstrate the simulation using the intrinsic Bayes factor
with the diffuse priors. The third simulation is computed using the Bayes factor approximated
by the BIC. The prior parameter specifications for the natural conjugate prior in (3) are given
with P = (W'W) " 'W'Y and A = (1/t)(W'W), where W = ( X ZB ) , where f is the
MLE of 8. We also specify the prior parameters for 3 in (5) with 8, =0, Q = a;nlei:;n}eamle,
H = Z'Z/t. These specifications for 8 do not have direct effect on the Bayes factor. The
intrinsic Bayes factors (IBF) are computed using (33) with conjugate prior for 8 with the
same specification in BF. The column labelled by BIC is the average posterior probabilities
using (24) for reference. For Johansen’s LR trace test, the cointegrating rank for each iteration
is chosen by p-value with the 5 per cent significance level and then the number of each selected
rank is counted over iterations to obtain the rates of selection for each rank®.

Table 1 summarizes the results of Monte Carlo simulation with the sample size ¢ is 50. The
values in the columns are the average posterior probabilities of 100 iterations for each true
rank. For each iteration, the Griddy-Gibbs sampling is performed with 5,000 draws and the
first 1,000 discarded. The table illustrates that the BF provides correct rank with sample size

5The results of the Johansen tests in this paper are obtained by using Pcfiml class of Ox v2.20. The source
code of the class was modified and recompiled for the simulations.
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Table 1: Monte Carlo Results: The Average Posterior Probabilities with ¢ = 50

Pr(r]Y) | Pr(z[Y) | Pr(r|Y) | Johansen’s

DGP rank r | by BF | by IBF | by BIC | trace test
True rank 0 0.891 0.808 0.986 0.558
r=0 1 0.072 0.189 0.013 0.412
2 0.019 0.003 0.000 0.030
3 0.018 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000
True rank 0 0.157 0.093 0.610 0.101
r=1 1 0.836 0.854 0.250 0.627
2 0.005 0.049 0.089 0.221
3 0.002 0.003 0.003 0.033
4 0.000 0.000 0.047 0.018
True rank 0 0.000 0.000 0.008 0.003
r=2 1 0.000 0.052 0.081 0.213
2 0.869 0.931 0.563 0.617
3 0.130 0.017 0.084 0.116
4 0.001 0.000 0.264 0.051
True rank 0 0.000 0.000 0.098 0.001
r=3 1 0.000 0.053 0.192 0.038
2 0.052 0.207 0.339 0.427
3 0.939 0.731 0.013 0.294
4 0.009 0.009 0.357 0.240
True rank 0 0.000 0.000 0.044 0.000
r=4 1 0.000 0.003 0.077 0.004
2 0.005 0.070 0.148 0.221
3 0.043 0.289 0.015 0.067
4 0.952 0.638 0.717 0.708

50. The IBF also produces fairly good indication of the evidence except when the true rank is
full. Using the BIC to compute the Bayes factor needs more samples for better approximation,
however, as Kass and Raftery (1995) suggest, even with very large samples, the BIC does not
produce the correct value. The last column shows the results by Johansen’s trace test. The
results show that the test apparently suffers from the shortage of samples. To improve the
finite sample properties for the likelihood ratio test, Johansen (2000) proposed using Bartlett
correction for a VAR with small sample.

Increasing the sample size to 100 improves the performances of all tests as shown in Table
2. All highest average posterior probabilities indicate the true rank. Even with a sample size
of 100, the Bayes factor approximated by BIC often shows the incorrect rank with a higher
rank. This is due to the fact that the correction factor for different dimension is not taken
account in the BIC.

In sum, the Bayes factor with prior parameters by the MLE is the most robust indicator
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Table 2: Monte Carlo Results: The Average Posterior Probabilities with £ = 100

DGP rank r | Pr(r|Y) | Pr(z]Y) | Pr(r]Y) | Johansen’s
by BF | by IBF | by BIC | trace test
True rank 0 0.993 0.856 0.998 0.824
r=0 1 0.007 0.141 0.002 0.166
2 0.000 0.003 0.000 0.010
3 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000
True rank 0 0.000 0.000 0.188 0.007
r=1 1 0.933 0.947 0.728 0.813
2 0.065 0.043 0.082 0.155
3 0.002 0.009 0.002 0.012
4 0.000 0.000 0.045 0.013
True rank 0 0.000 0.000 0.000 0.001
r=2 1 0.000 0.000 0.000 0.004
2 0.930 0.991 0.878 0.856
3 0.069 0.009 0.035 0.101
4 0.001 0.000 0.087 0.038
True rank 0 0.000 0.000 0.000 0.000
r=3 1 0.000 0.005 0.000 0.007
2 0.006 0.133 0.444 0.063
3 0.988 0.852 0.523 0.704
4 0.006 0.000 0.033 0.226
True rank 0 0.000 0.000 0.000 0.000
r=4 1 0.000 0.000 0.000 0.000
2 0.002 0.066 0.171 0.000
3 0.006 0.229 0.188 0.012
4 0.992 0.705 0.642 0.984

for the correct rank in cointegration models with small or medium sample size. For the IBFand
the BIC, it seems to have less power especially when the true rank is higher than the
middle of the numbers of full rank. Since our Bayes factor uses the MLE for automatic method

as the IBF, it can be used as a reference.

5 Illustrative Example - Cointegration Test for ’Great Ratios’

In this section, we illustrate an example of cointegration analysis using the methods that are
presented in previous sections. The focus is to show the usefulness of our methods with a
relatively small sample size and to compare two methods of computing Bayes factors and
Johansen’s likelihood ratio test. The example is cointegration test for ’great ratios’.

King, et al (1991) (KPSW) examine cointegrating relationships between US output (Y),
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consumption (C), investment (I), and three other variables. In this section we investigate
a three-variable model containing the real variables, C, I, and Y. The data are quarterly
and taken from the KPSW data sets, which are: C (real per capita consumption, in logs), I
(investment per capita, in logs), and Y (real private output per capita, in logs). We choose
the shorter estimation period of 1968(1)-1988(4), with a sample size of 83. From economic
theory, two cointegrating relations are expected to be found among these variables, given by
C—Y and I — Y, which are known as the 'great ratios’.

Before analyzing the application, we briefly explain Bayesian hypothesis testing for the
number of lags in VAR. Since we do not know the actual lag length for the VAR and choice
of the appropriate lag length affects the cointegration analysis, we apply our methods that
explained in Section 3 to select the lag length. Let’s consider a VAR model, Y = XB + F,
where B = ( po®y - @ ), and X consists of vectors of lagged Y and 1s in the first
column. With conjugate and/or diffuse priors, we have the posteriors which are similar to
our posteriors that are given in Section 3. Then compute the Bayes factor for each ®; = 0
to select the appropriate lag length. Note that for this test we do not assign the correction
factor C' in Bayes factor. This procedure is similar to classical methods which test lag length
first then cointegration rank test as the selected lag is true. It is, however, possible to perform
joint tests for lag length and cointegration rank using the Bayes factors with ®; = 0 as a null.
We choose the joint test for selection of lags and rank in this example.

Table 3 presents the results of cointegration tests by both Bayesian with various lag length
and Johansen tests with 2 lags” in VAR for the three-dimensional vector of time series Y} =
[ C; I; Y; | with an intercept term. The prior specifications are given by the MLE as
explained in previous sections. We assign equal prior probability to each rank. The Bayesian
test shows that the posterior probability when the rank is 1 with lag length p = 2 is the
highest with 60.2 per cent using the conjugate prior and 50.8 per cent using diffuse prior for «,
although there is some evidence to support of no cointegration. The posterior probability for
no cointegration is Pr(r = 0|Y) = Y¢_, Pr(r = 0,p = i|Y") = 0.273 for the BF and 0.324 for
the IBF. From the table we find that the Bayes factor for cointegration rank is very sensitive to
the choice of the lags in VAR. There is almost no evidence of » = 2 and full rank. Thus, there
is a relatively strong evidence to support the cointegration relationship between consumption
and income, however, no cointegration between investment and income. On the classical side,
Johansen’s LR trace statistics cannot reject r = 0 at either 5 or 10 per cent significance level.
Therefore, Johansen test chooses r = 0 , while the Bayesian test selects dominantly r = 1,
that is, consumption-income relation. Both tests do not support r» = 2 which economic theory
suggests.

Table 4 shows the posterior results of f* and a with the conjugate prior for a. If the
rank is 1, we expect one cointegrating vector would be the first 'great ratios’, which is the

consumption-income relation, that is,

g=[1 8 ps]=][10 1 (35)

"Both AIC and BIC for the appropriate lag selects the order 2 with the subset of their data.
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Table 3: Joint Posterior Probabilities for the cointegration rank with various lag length p

using the Bayes Factors (BF), the intrinsic Bayes Factors (IBF), and the Johansen’s trace

test.

Pr(r,p|Y) by BF r=0|r=1|r=2|r=3
p=1 0.002 | 0.108 | 0.000 | 0.000
p=2 0.050 | 0.602 | 0.001 | 0.000
p=3 0.085 | 0.006 | 0.000 | 0.000
p=4 0.136 | 0.010 | 0.000 | 0.000

Pr(r,p|Y) by IBF r=0|r=1|r=2|r=3
p=1 0.014 | 0.156 | 0.002 | 0.001
p=2 0.012 | 0.508 | 0.000 | 0.000
p=3 0.195 | 0.000 | 0.000 | 0.000
p=4 0.103 | 0.009 | 0.000 | 0.000

| Johansen, p-valw/p =2 ] 0.122 | 0.651 | 0.804 | — |

Table 4: Posterior results for 8* and «
e [ s [ e | e | s |
Mean | -0.0802 | -0.9467 | 0.1350 | 0.3271 | 0.2134
S.D. | 0.1442 | 0.1904 | 0.0310 | 0.0567 | 0.0400

Figure 1: Posterior Densities of 8* (the left column) and « (the right column)
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The posterior means and medians are close to this economic relation. The left column of
Figure 1 is the posterior densities of §* , which shows that the expected cointegrating vector,

T =0 and 85 = —1, lies within the 95 per cent highest posterior density regions. The right
column of Figure 1 shows the posterior densities of each element of «, which are skewed and lie

far from zero. Figure 2 plots the cointegration relationship, which is slightly upward trending.

6 Conclusion

This paper shows simple methods of Bayesian cointegration analysis, which is robust with a
small sample size. The Bayes factors are used for computing the posterior probabilities for
each rank. Monte Carlo experiments show that the methods proposed in this paper provide
fairly good results. The Bayes factors are also applied to select the appropriate lag length in
a VAR either independently or jointly with a different number of rank.

One of the disadvantages of the Bayes factor is that it is very sensitive to the prior spec-
ifications. This issue, however, can be overcome by specifying appropriate priors that can
be obtained by, for example, using the MLE if one wishes to use the conjugate priors. Or,
the intrinsic Bayes factor can be applied to compute the Bayes factor if one wished to use
non-informative priors.

Another disadvantage of Bayesian method is computing time. Computing time depends
upon the algorithm we choose for estimating the cointegrating vectors. In this paper the
Griddy-Gibbs sampler, which requires heavy computations, is chosen simply because we do not
need to assign an approximation function that is needed in Metropolis-Hastings or importance
sampling. However, it will not be a problem in the future with much faster computers.

In this paper, a matrix-variate normal density for the cointegrating vector is chosen as a
prior. Instead, Jeffrey’s or reference priors are also worth considering. The expected intrinsic
Bayes factor, proposed by Berger and Pericchi (1996a), is also worth considering to improve a

performance when the sample size is small.

Appendix : Griddy-Gibbs Sampler

The Griddy-Gibbs sampler is proposed by Ritter and Tanner (1992). This sampler can be
implemented when the conditional posterior density is unknown to researcher. The advantage
of using this sampler over the importance sampler or the Metropolis-Hastings algorithm is
that researcher does not have to provide an approximation of function. The disadvantage
is that this sampler demands more computing time. The procedure for implementing the
Griddy-Gibbs sampler is as following;:

1. Before we begin the chain, we must choose the range of the grid and the number of the

grid. The range should be chosen so that the generated numbers are not truncated.

2. Let vec(B) = (B1, B2 ---,Bm). With an arbitrary starting value (within the upper and
the lower bound of the grid), compute f(81]5%,8%,-..,8%,,Y), where i denotes the i-th
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loop, over the grid (81,1, 81,2,---,81,0), where 311 is the lower bound of the grid of g1,
and 1y is the upper bound of the grid of 3.

. Compute the values G = (0, @2, P3,..., D) where

B1,; . .
(i] = ~/ﬂ f(ﬂl|/8%a5§aaﬁ:nay)dﬁl
1,1
j=2....U

. Compute the normalized pdf values G¢ = G;/®y of ((B1|6%, 55, ..., 85, Y).

. Draw the random numbers from the uniform density with the lower bound as zeros and

the upper bound as ®; and invert cdf G by numerical interpolation to obtain a draw S}

from C(IB1|/B§aB§a - 7ﬁ’fnay)

. Repeat steps 2-5 for Bs, ..., Bp-

Set 4 =4+ 1 (increment 4 by 1) and go to step 2.

Note that integration at step 3 can be done by the deterministic approximation such as the

Simpson’s rule or the Trapezoidal rule.
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