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Abstract

This paper introduces an alternative hidden Markov switching model. In particular, an

autoregressive hidden Markov switching model of count data is formulated and applied to

�nancial data. Through application of this new model, a theoretically-motivated repre-

sentation of the dynamics of the number of orders placed per unit of time (referred to as

order-
ow) on the London Stock Exchange is provided. Using the economic arguments of

Rock (1996), the suitability of a 2-state autoregressive hidden Markov switching model is

demonstrated in this context. This model provides the best �t amongst competing discrete-

valued time series models. Moreover, the parameters of this model are found to vary in

a predictable manner according to whether the morning, lunch time, or afternoon trading

sessions are considered.
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1 Introduction

Discrete-valued time series models have existed in the statistical literature for over 20 years.

The vast majority of these models modify the Gaussian autoregressive moving average (ARMA)

model to incorporate discrete-valued data (see, eg., Al-Osh and Alzaid, 1991). More recently, an

alternative class of discrete-valued time series models have been introduced and are commonly

referred to in the statistics literature as hidden Markov switching models. These models assume

the data are generated by a di�erent discrete distribution depending on the value of an underlying

unobservable state variable (see MacDonald and Zucchini, 1997, for a review). A related class

of hidden Markov switching models has recently appeared in the econometrics literature that

incorporates time-dependency amongst adjacent observations. In particular, Hamilton (1989,

1990) introduces continuous-valued models where the parameters of interest are allowed to vary

according to the value of an underlying unobservable state variable. For example, a Gaussian-

based autoregressive model is considered where the constant and the autoregressive parameters

are subject to switching. The purpose of this paper is to introduce a new class of models that

are essentially discrete-valued versions of these autoregressive switching models.

Despite the vast number of applications of existing discrete-valued time series models, few

have been applied in the area of �nance. Those that have been applied have concentrated on

modeling trade-by-trade stock price movements in irregularly spaced transaction data (Engle

and Russell, 1997, 1998, Rydberg and Shephard, 1998, 1999, 2000, and Engle, 2000). For

instance, Rydberg and Shephard (1999) model the activity, direction and size decomposition of

price movements for two stocks listed on the New York Stock Exchange using a multivariate

compound Poisson process. Other aspects of �nancial markets have not been considered for

the application of discrete-valued time series models. It is this apparent gap in the applied

statistics literature that is addressed in this paper. Using a high frequency dataset covering 40

stocks listed on the London Stock Exchange (LSE), the number of orders placed per unit of

time (referred to as order-
ow) on a trading platform is modeled using existing discrete-valued

models and the autoregressive hidden Markov switching model introduced in the paper.

The paper is organized as follows: The next section introduces the new model in the context

of existing (and related) models. Section 3 contains the results of a Monte Carlo experiment
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designed to examine the robustness of selection criterion when applied to the new model. Section

4 outlines the economic issue addressed in this paper and an application is provided. Section 5

concludes.

2 The model

Several authors have modi�ed the Gaussian ARMA model to incorporate discrete-valued

data (see Jacobs and Lewis, 1978a{c, 1983, McKenzie, 1985a,b, 1986, 1987, 1988a,b, Al-Osh

and Alzaid, 1987, 1988, 1991, Alzaid and Al-Osh, 1988, 1990, 1993, Du and Li, 1991, and Al-

Osh and Aly, 1992, for theoretical papers in the area). The nature of the data necessitates

use of the binomial thinning operator of Steutal and Van Harn (1979). The basic �rst-order

autoregressive model with Poisson marginal introduced by Al-Osh and Alzaid (1987) has the

following speci�cation:

yt = � Æ yt�1 + �t (1)

where � 2 [0; 1], �t � Poisson(�) and where the binomial thinning operator Æ is de�ned as

� Æ yt�1 =

yt�1X
k=1

Bk (2)

where Bk is the binary outcome of a Bernoulli process with success probability, Pr[Bk = 1] = �.

For consistency with other notation used in this paper, this particular model will henceforth be

referred to as a 1-state autoregressive hidden Markov model.

The model introduced in this paper augments the model given by (1) to allow state-dependent

parameter values. That is, � and � are each allowed to take M di�erent values according to the

value of some underlying unobservable state st taking a value j 2M , hence (1) becomes

yt = �j Æ yt�1 + �j;t (3)

where �j 2 [0; 1] and �j;t � Poisson(�j). This augmentation of (1) is comparable with the state-

dependent augmentation of the basic Gaussian autoregressive models of Hamilton (1989, 1990).

Following Hamilton, the unobservable state is assumed to evolve according to an irreducible
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homogeneous �rst-order Markov chain.1 The transition matrix associated with this Markov

chain P is given by

P =

2
66666664

p11 p21 : : : pM1

p12 p22 : : : pM2

...
... : : :

...

p1M p2M : : : pMM

3
77777775
: (4)

This matrix implies that Pr(st = jjst�1 = i; st�2 = k; : : :) = Pr(st = jjst�1 = i) = pij and

P
0

1 = 1. As the Markov chain is assumed to be irreducible then there exists a unique, strictly

positive, stationary distribution, denoted by the vector � = [�1; �2; : : : ; �M ].2 For example, for

M = 2 this vector is given by

� �

2
64�1
�2

3
75 =

2
64(1� p22)=(2� p11 � p22)

(1� p11)=(2� p11 � p22)

3
75 : (5)

This vector gives the unconditional probability of being in state 1 and 2, respectively. The

model given by (3) and (4) will henceforth be referred to as an M-state autoregressive hidden

Markov switching model.

To estimate the parameters in (3) and (4) (collectively denoted by �) by (unconditional)

maximum likelihood, the unconditional density of yt is required. Before this can be derived we

require the density of yt conditional on the unobservable random variable st. This is achieved

by augmenting the density given by Al-Osh and Alzaid (1987) for estimation of (1) by inclusion

of state-dependent parameters,

f(ytjst = j;�) =

8>><
>>:

(�j=(1��j))
yt

yt!
e
��j=(1��j) if t = 1,

e
��j

Pmin(yt�1;yt)

i=0

�
yt�i

j

yt�i
(
yt�1
i )�ij(1� �i)

yt�1�i if t = 2; : : : ; T .

(6)

To obtain the unconditional density of yt, we sum (over all M) the above conditional density

1Second-order chains can also be used, however, we describe �rst-order chains only for ease of exposition.
2This vector equals the eigenvector associated with the unit eigenvalue of P and under certain conditions is

referred to as the vector of ergodic probabilities. See Hamilton (1994, p. 681)

3



multiplied by the unconditional probability of being in state j given by (4),

f(yt;�) =

MX
j=1

f(ytjst = j;�) Pr(st = j) =

MX
j=1

f(ytjst = j;�)�j : (7)

To obtain the (unconditional) maximum likelihood estimates of �, the following log-likelihood

is maximized:

L(�) =

TX
t=1

log f(yt;�) (8)

subject to the constraint that �1 + �2 + : : : �M = 1 and �j � 1 for j = 1; 2; : : : ;M .3

To test the signi�cance of the maximum likelihood parameter estimators we make use of the

parametric bootstrap methodology of Efron and Tibshirani (1993). This methodology is used in

favor of an asymptotic test because of a lack of evidence concerning the accuracy of asymptotic

tests covering even restricted versions of the model introduced in this paper. In particular,

by allowing non-zero values of �j , the model given by (3) is in fact a more general version of

the M -state non-autoregressive hidden Markov switching models described in MacDonald and

Zucchini (1997). Though the consistency and asymptotic normality of the estimators of these

models has been established (Ryden, 1994), the accuracy has not. Indeed, for this very reason

the parametric bootstrap methodology is often used in the context of non-autoregressive hidden

Markov switching models (see, eg., Albert, 1991).

Under the assumption that M = 2, the parametric bootstrap technique can be broken down

into the following steps:

1. Having estimated the parameters of the model, b� = (p̂12; p̂21; �̂1; �̂2; �̂1; �̂2), the �rst

stage of the parametric bootstrap technique involves generating T realizations of the �tted

hidden Markov model. The �rst value of the state s
�

1 is calculated from the stationary

distribution � as follows:

s
�

1 =

8>><
>>:
1 if 0 � u1 � �̂1;

2 otherwise,

where u1 is a drawing from a uniform [0; 1] random number. The values of s�t for t =

3Details concerning the algorithm used to maximize (8), the computation time used to estimate the parameters
of the model, and other estimation details can be obtained upon request.
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2; 3; : : : ; T are then calculated using the values of s�t�1 with evolution determined by the

transition probability matrix bP.
2. Having generated a series of T two-state values of fs�tg, the required realization of the

two-state values of fy�t g are generated by drawing from the autoregressive model given by

(3) with coeÆcients f�̂1; �̂1g if s
�

t = 1 and f�̂2; �̂2g, otherwise.

3. Steps 1 and 2 are then repeated B times to give B independent sequences of fy�t g. For

each of these realizations, the parameter estimates are calculated using the same method

used to calculate the original set of estimates b� from the original observations.

4. Having generated B parameter vectors, b��(1); : : : ; b��(B); the parameter bootstrap esti-

mator of the variance-covariance matrix of b� is given by

1

B � 1

BX
b=1

�b
�

�

(b)� b��(:)�0 �b��(b)� b��(:)� ;

where

b
�

�

(:) =
1

B

BX
b=1

b
�

�

(b):

The estimated models considered in this paper are based on B = 100. Before proceeding to an

application of these models the performance of certain selection criteria is considered.

3 Model selection

Selection of the correct number of states in non-autoregressive hidden Markov switching

models is an important issue. Studies by Ryden (1995) and Zhang and Stine (2001) both

�nd that the Akaike Information Criterion (AIC) and the Schwarz Information Criterion (SIC)

perform well in this respect. However, the performance of these criteria in the context of

autoregressive hidden Markov switching models is unknown. For this reason a Monte Carlo

simulation is conducted and the performance of these criteria is assessed.

Five data generating processes (DGP's) are considered. The �rst two are based on the 1-state

autoregressive hidden Markov model (ie. the discrete-valued �rst-order autoregressive model of
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Al-Osh and Alzaid, 1987) given by (1). As these DGP's are not dependent on an unobserved

state they are referred to as 1-state autoregressive hidden Markov processes. The latter three

DGP's are based on the 2-state autoregressive hidden Markov switching model given by (3)

and (5). The parameter values used are based on their empirical counterparts found in the

subsequent empirical section and are given below:

DGP A: � = 0; � = 7

DGP B: � = 0:15; � = 5

DGP C: �1 = �2 = 0; �1 = 4; �2 = 12; �1 =
2
3
; �2 =

1
3

DGP D: �1 = �2 = 0:15; �1 = 3; �2 = 11; �1 =
2
3
; �2 =

1
3

DGP E: �1 = 0:15; �2 = 0:30; �1 = 3; �2 = 10; �1 =
2
3
; �2 =

1
3

During each replication (R) of the data and for each DGP the following (and corresponding)

models are estimated: a 1-state non-autoregressive hidden Markov model (denoted HM(1)), a 1-

state autoregressive hidden Markov model (denoted HM(1)-AR(1)), a 2-state non-autoregressive

hidden Markov switching model (denoted HM(2)), a 2-state autoregressive hidden Markov

switching model with the same AR coeÆcients across states (denoted HM(1)-AR(1)), and a

2-state autoregressive hidden Markov switching model with di�erent AR coeÆcients in each

state (denoted HM(1)-AR(2)).

Upon estimation of the model (by unconditional maximum likelihood) the AIC and SIC are

calculated. These criteria are then used to give an indication of the best model given each

replication of the DGP. The proportion of times each model is selected for each DGP is chosen

as the metric of importance. Moreover, a success is de�ned as selection of the most appropriate

model given each DGP. For instance, the most appropriate model for DGP A is the HM(1)

model. The results of conducting this experiment for R = 100 and T = 500 are given in Table

I. For DGP A the success rates for the AIC and SIC are 88% and 96%, respectively. However,

when an autoregressive term is introduced the AIC and SIC are less successful. In particular,

these criteria select the most appropriate model only 41% and 16% of the time. When the 2-state

hidden Markov switching models are considered, the success rates of the AIC are 50%, 77%, and
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66%, for DGP's C, D and E, respectively. Despite these relatively low success rates, two other

points should be considered in support of the AIC and SIC. First, on no occasion are the 1-state

hidden Markov models selected for these DGP's. Second, when autoregressive hidden Markov

switching processes are considered (DGP's D and E), autoregressive hidden Markov switching

models (HM(1)-AR(1) or HM(1)-AR(2)) are selected 99% and 98% of the time when the AIC

is used. One can conclude that, for these empirically calibrated DGP's, the AIC and SIC are

largely successful.

4 An Application

This section contains a description of the economic issue addressed, motivates use of the

model introduced in this paper, describes the data used, and contains the results obtained when

estimating various hidden Markov models.

4.1 The economic issue

The dynamics of the number of orders placed (termed order-
ow) on the London Stock

Exchange (LSE) are examined in this paper. This issue has previously been investigated using

data from other �nancial markets. For instance, Biais, Hillion, and Spatt (1995), Hamao and

Hasbrouck (1995), and Harris and Hasbrouck (1996) �nd evidence of order-
ow dependence for

the Paris, Tokyo, and New York limit-order exchanges, respectively. Three alternative explana-

tions are posited for this order-
ow dependence: The �rst of these argues that traders indulge in

strategic order splitting. In particular, it is possible that informationally motivated trading will

have less market impact if a large order is split into several smaller orders. Alternatively, traders

may imitate each others behaviour. This is likely to be the case when traders observe the orders

placed by informed traders. Finally, traders may place orders in response to the release of an

important piece of information. However, traders may react to information at di�erent speeds.

This would again imply serial dependence in order-
ow.

The analysis undertaken in this paper innovates on previous empirical studies of order-
ow

dynamics in two distinct ways: First, the discreteness and serial dependence in the order-


ow data is explicitly considered. This is achieved using the 1-state autoregressive hidden
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Markov models described in Section II. Second, alternative models are considered which take

into account the institutional features of the LSE. In particular, these features imply use of a

2-state autoregressive hidden Markov switching model. The �rst of these innovations is rather

obvious but the second requires some explanation.

The motivation for use of a 2-state autoregressive hidden Markov switching model is the

ability of traders to switch between the SETS and SEAQ trading platforms available on the

LSE.4 This motivation is based on the arguments of Rock (1996) who focuses on the level of

the unobservable fundamental price of the stock with respect to the prices quoted by market

makers and the prices placed in competing limit-orders. The adverse selection problem faced

by market makers may result in obsolete orders and hence a transition in trading from SETS

to SEAQ. In addition to the arguments of Rock (1996), the empirical �ndings of Biais, Hillion,

and Spatt (1995) and the theoretical arguments of Parlour (1998) are used. In particular, both

of these papers �nd that a thick order book results in a large number of trades while a thin

order book results in a large number of orders. This is because when the order book is thick,

the likely of a trade via a limit-order is small because of `crowding out'. Thus, traders can only

trade by placing market orders. Meanwhile, a thin order book o�ers traders the possibility that

preferential prices will be obtained through the time-preferencing nature of limit-order markets.

The argument can be summarized as follows: Traders can trade immediately through a

market maker on SEAQ or can hope to obtain a better price by placing a limit-order on SETS.

For example, assume that a trader places a bid limit-order on SETS with a speci�ed price of

$9:80 and that this represents the best order currently o�ered. Meanwhile, assume that the

best ask o�ered speci�es a price of $10:20, that the (unobservable) fundamental price of the

stock is $10:00, and that a market maker quotes bid and ask prices of $10:20 and $9:80,

respectively. Consider the situation where market makers revise their assessment of the true

fundamental price of the stock. If the new fundamental price is downwardly revised then the

4A fundamental change to the UK equity market occurred when the LSE introduced the Stock Exchange
Electronic Trading Service (SETS) on October 20, 1997. The most important aspect of SETS was the introduction
of an order-driven trading system alongside the existing quote-driven Stock Exchange Automatic Quotation
(SEAQ) trading system. Under the current dual trading system o�ered by the LSE, market makers post quotes
but these are only indicative. Competition for order 
ow is increased by allowing members to post orders on the
electronic order book via a computer terminal. Under this order-driven system, members can post a variety of
�rm orders, including limit-orders and `at best' (or market) orders. Limit-orders allow members to post orders
with a speci�ed price and volume. Only when a corresponding order is placed with a matching price will a trade
occur.
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revised quotes o�ered by the market maker may now result in obsolete best prices o�ered on

SETS. For example, assume that the downward revised bid and ask quotes o�ered by the market

maker are now $9:60 and $9:40. The new situation implies that the trader placing the original

bid limit-order with price $9:80 can purchase the stock more cheaply via the market maker on

SEAQ. The redundant bid orders on SETS are then deleted over a (short) period of time to

avoid being hit by the ask orders still on the order book. As these bid orders disappear so to do

the ask orders as they have very little chance of being executed because they contain prices far

away from the fundamental price. Thus, after a period of time a thin order book is observed.

At this point in time traders will start placing large numbers of orders on SETS with prices set

around the new fundamental price.5

The above argument implies that order-
ow takes one of two discrete distributions at each

point in time. If the majority of traders are making use of SETS then order-
ow on SETS is

likely to be high. However, if SEAQ is the primary platform used by traders then order-
ow (on

SETS) is likely to be low. Moreover, the argument implies that this intensity will switch over

time according to the state of the order book. The `state' in the current context is de�ned as

the relationship between the fundamental price of the stock and the range of prices placed on

SETS. This follows from the arguments of Rock (1996) where trading platform transition occurs

when the fundamental price lies outside the range of prices placed on SETS. As the fundamental

price cannot be observed then the `state' must necessarily be unobservable. Moreover, if the

fundamental price follows a random walk then there is likely to be persistence in the process

followed by the state.

All of these features suggests use of a 2-state hidden Markov switching model. Moreover,

the autoregressive version of this model as given by (3) and (5) is used to allow for �rst-order

dependence in order-
ow within each state. This latter feature will incorporate the e�ects of

strategic order splitting and/or traders imitating each others behaviour.

5This argument rather subtly relies on another feature of the fundamental price. In particular, it has been
assumed that the fundamental price on SEAQ more eÆciently responds to information. For instance, when there
is a change in the fundamental price this is more rapidly revealed on SEAQ via the market makers assessment
of the fundamental price. Otherwise, there would be no reason for switching trading platforms. Such eÆciency
on SEAQ has been documented in a recent study by Ellul (2000). Using a Kalman smoothing technique to
generate the fundamental stock price, he �nds that price volatility on SEAQ is lower than on SETS. From this
he concludes that the price on SEAQ more eÆciently tracks the unobservable fundamental price.

9



4.2 Data description

Order-
ow data covering 40 stocks over the period August 3rd, 1998 to October 31th, 1998

were obtained from the London Stock Exchange Data Service. The stocks and the sectors to

which they belong are listed in Table A in the Appendix. These stocks are FTSE100 companies

randomly selected from each of the major sectors. We use a frequency of 15 minutes which is

suÆciently low to avoid use of stale information and high enough to capture short-run movements

in the variable of interest.6 The resulting sample consists of 1920 observations per stock.

4.3 Empirical results

Five models are estimated for the order-
ow associated with each stock. The models con-

sidered are; the HM(1) model, the HM(1)-AR(1) model, the HM(2) model, the HM(1)-AR(1)

model, and the HM(1)-AR(2) model. Space limitations preclude detailed presentation of model

estimates for each stock. Instead, results are given for a typical stock and a summary of the

estimates is supplied for all stocks.

It is apparent from the data that order-
ow exhibits intraday periodicity.7 This can be

observed from Figure 1 which shows the mean intraday order-
ow for all stocks in the sample.

In particular, order-
ow tends to be high during the morning period between 9.00 and 12.30,

and the afternoon period between 14.30 and 16.30.8 By contrast, the lunch time period between

12.30 and 14.30 tends to be characterized by low order-
ow. For this reason each model is

estimated separately for each of these time periods. On each occasion, the HM(1)-AR(2) model

provides the best �t of the data according to the AIC and the SIC. The parameter estimates

associated with this model for a typical stock, in this case 3I Group, are given below:

6The trading day starts at 9.00am and ends at 4.30pm. However, the way that the variables are constructed
means that the variables observed at 9.00am are the same as the variables observed at 4.30pm on the previous
day. To avoid this duplication we only consider variables observed between 9.15am and 4.30pm (inclusive) during
each trading day.

7Such intraday periodicity is often found in �nancial data. See Baillie and Bollerslev (1989), Schwert (1990),
Harvey and Huang (1991), Gallant, Rossi, and Tauchen (1992), and Bollerslev and Ghysels (1996), for empirical
examples.

8The increase in order-
ow observed at 14.30 is due to the opening of the major US markets at this time.
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Time Period: 9.00 to 12.15

yt = 0:2523

(0:0482)

Æ yt�1 + �1;t; with �̂1 = 5:3452

(0:3627)

and p̂12 = 0:0454

(0:0833)

; (9)

yt = 0:4176

(0:0303)

Æ yt�1 + �2;t; with �̂2 = 15:1621

(0:8941)

and p̂21 = 0:0913

(0:1174)

: (10)

Time Period: 12.30 to 14.15

yt = 0:1382

(0:0547)

Æ yt�1 + �1;t; with �̂1 = 1:6300

(0:1486)

and p̂12 = 0:0645

(0:0986)

; (11)

yt = 0:3011

(0:0479)

Æ yt�1 + �2;t; with �̂2 = 6:2829

(0:4837)

and p̂21 = 0:1385

(0:1606)

: (12)

Time Period: 14.30 to 16.30

yt = 0:1280

(0:0631)

Æ yt�1 + �1;t; with �̂1 = 2:9421

(0:2388)

and p̂12 = 0:0543

(0:0938)

; (13)

yt = 0:3180

(0:0444)

Æ yt�1 + �2;t; with �̂2 = 10:3919

(0:7897)

and p̂21 = 0:0997

(0:1502)

: (14)

where numbers in parentheses are the parametric bootstrap standard errors.

The intraday periodicity in order-
ow intensity is apparent from equations (9){(14). In

particular, �̂1 and �̂2 are higher for the morning and afternoon periods than the lunch time

periods. For all periods, these parameter estimates indicate a large degree of heterogeneous

order-
ow intensity across states. This heterogeneity is most likely due to traders switching

between SETS and SEAQ, with high intensity order-
ow representing the state where traders

make primary use of SETS. The switching probabilities are given by p̂12 and p̂21. These estimates

indicate a large degree of persistence in the state value. Moreover, from these probabilities

one can calculate the stationary distribution of the states using equation (5). The resulting

probabilities associated with state 2 (ie. traders using SETS) for each time period are �2 =

f0:3321; 0:3177; 0:3526g. Thus it would appear that SETS is not the primary trading platform

11



used by traders. This observation is backed up by anecdotal evidence that SETS has failed to

attract a signi�cant amount of trading activity. The �nal parameter estimates of interest are the

autoregressive coeÆcients within each state. For each time period considered, these coeÆcients

are signi�cantly greater than zero. Moreover, the degree of serial dependence is greater when

in state 2 (ie. traders use SETS) than when in state 1 (ie. traders use SEAQ). This suggests

that some form of order splitting, or related behaviour, is more prevalent when traders make

primary use of SETS.

A similar picture emerges when the cross-sectional means (and there associated standard

errors) are calculated across all stocks. There results are given in Table II. Of the �ve models

considered the HM(1)-AR(1) model and the HM(1)-AR(2) model provide the best �t of the data

for each stock. Moreover, the latter of these models universally provides the best �t during the

morning and afternoon periods when the AIC is used. Only during the (quiet) lunch time period

does the former model seem to �t the data (approximately) as many times of the latter model.

The parameters of the latter model indicate heterogeneous intensities across states, positive

autocorrelation within states, and less use of SETS (ie. state 2) than SEAQ (ie. state 1).

5 Concluding remarks

The model introduced in the paper is capable of modeling count data where the intensity of

the process is expected to switch across states and where positive �rst-order serial dependence

is expected within each state. Such a model is particular useful when describing order-
ow on

the LSE. The particular design of the trading platforms available on the LSE necessitates use

of a model that is capable of allowing for the above dynamics.

Future research is likely to concentrate on generalizing the model in two ways. First, the

model considered in this paper is based on a Poisson marginal distribution. However, it is

a trivial matter to augment the model by allowing alternative discrete marginal distributions

such as the negative binomial or geometric distribution. This has already been achieved in the

context of discrete-valued ARMA models (see McKenzie, 1986, Al-Osh and Aly, 1992). Second,

only �rst-order dynamics were considered in this paper. However, higher order autoregressive

dynamics with inclusion of moving average components can be incorporated into the model.
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This can be achieved by augmenting the discrete-valued ARMA model of Alzaid and Al-Osh

(1993) to a hidden Markov switching model context in a similar fashion to that achieved in this

paper.

13



References

Albert, P. (1991). A two-state Markov mixture model for a time series of epileptic seizure

counts. Biometrics 47, 1371{1381.

Al-Osh, M. and Aly, E. (1992). First-order autoregressive time series with negative binomial

and geometric marginals. Commun. Statist.-Theory Meth. 21, 2483{2492.

Al-Osh, M. and Alzaid, A. (1987). First-order integer-valued autoregressive (INAR(1)) process.

J. Time Ser. Anal. 8, 261{275.

(1988). Integer-valued moving average (INMA) process. Statist. Papers 29, 281{300.

(1991). Binomial autoregressive moving average models. Stoch. Models 7, 261-282.

Alzaid, A. and Al-Osh, M. (1988). First-order integer-valued autoregressive ((INAR(1)) process:

Distributional and regression properties. Statist. Neerl. 42, 53{61.

(1990). An integer-valued pth-order autoregressive structure (INAR(p)) process. J.

Appl. Prob. 27, 314{324.

(1993). Some autoregressive moving average processes with generalized Poisson

marginal distributions. Ann. Inst. Statist. Math. 45, 223-232.

Baillie, R. and Bollerslev, T. (1989). The message in daily exchange rates: A conditional

variance tale. Journal of Business and Economic Statistics 7, 297{305.

Biais, B., Hillion, P. and Spatt, C. (1995). An empirical analysis of the limit-order book and

the order-
ow in the Paris Bourse. Journal of Finance 50, 1655{1689.

Bollerslev, T. and Ghysels, E. (1996). Periodic autoregressive conditional heteroscedasticity.

Journal of Business and Economic Statistics 14, 139{151.

Du, J. and Li, Y. (1991). The integer-valued autoregressive INAR(p) model. J. Time Ser.

Anal. 12, 129{142.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall,

New York.

Ellul, A. (2000). As you like it: An investigation of trading behaviour and price volatility on

auction and dealership market architectures. Working paper, London School of Economics,

London.

Engle, R. (2000). The econometrics of ultra-high frequency data. Econometrica 68, 45{67.

Engle, R. and Russell, J. (1997). Forecasting the frequency of changes in quoted foreign

exchange prices with the autoregressive conditional duration model. Journal of Empirical

Finance 12, 187{212.

(1998). Autoregressive conditional duration: A new model for irregularly spaced

transaction data. Econometrica 66, 1127{1162.

Gallant, A., Rossi, P. and Tauchen, G. (1992). Stock prices and volume. Review of Financial

Studies 5, 199{242.

14



Hamao, Y. and Hasbrouck, J. (1995). Securities trading in the absence of dealers: Trades and

quotes of the Tokyo Stock Exchange. Review of Financial Studies 8, 849{878.

Hamilton, J. (1989). A new approach to the economic analysis of nonstationary time series

and the business cycle. Econometrica 57, 357{384.

Hamilton, J. (1990). Analysis of time series subject to changes in regime. Journal of Econo-

metrics 45, 39{70.

Hamilton, J. (1994). Time Series Analysis. Princeton University Press, Princeton.

Harris, L. and Hasbrouck, J. (1996). Market vs. limit-orders: The SuperDot evidence on order

submission strategy. Journal of Financial and Quantitative Analysis 31, 213{231.

Harvey, C. and Huang, C. (1991). Volatility in the foreign currency futures market. Review of

Financial Studies 4, 543{569.

Jacobs, P. and Lewis, P. (1978a). Discrete time series generated by mixtures I: Correlation

and runs properties. J. R. Statist. Soc. B 40, 94{105.

(1978b). Discrete time series generated by mixtures II: Asymptotic properties. J.

R. Statist. Soc. B 40, 222{228.

(1978c). Discrete time series generated by mixtures III: Autoregressive processes

(DAR(p)). Technical report NPS55-78-022, Naval Postgraduate School, Monterey, Califor-

nia.

(1983). Stationary discrete autoregressive moving average time series generated by

mixtures. J. Time Ser. Anal. 4, 19{36.

MacDonald, I. and Zucchini, W. (1997). Hidden Markov Models and Other Models for Discrete-

valued Time Series. Chapman and Hall, New York.

McKenzie, E. (1985a). Contribution to the discussion of Lawrance and Lewis (1985). J. R.

Statist. Soc. B 47, 187{188.

(1985b). Some simple models for discrete variate time series. Water Resour. Bull.

21, 645{650.

(1986). Autoregressive moving average processes with negative-binomial and geo-

metric marginal distributions. Adv. Appl. Prob. 18, 679{705.

(1987). Innovation distributions for gamma and negative binomial autoregressions.

Scand. J. Statist. 14, 79{85.

(1988a). The distributional structure of �nite moving-average processes. J. of Appl.

Prob. 25, 313{321.

(1988b). Some ARMA models for dependent sequences of Poisson counts. Adv. Appl.

Prob. 20, 822{835.

Parlour, C. (1998). Price dynamics in limit-order markets. Review of Financial Studies 11,

789{816.

Rock, K. (1996). The specialist's order book and price anomalies. Review of Financial Studies

9, 1{20.

15



Ryden, T. (1994). Consistent and asymptotic normal parameter estimates for hidden Markov

models. Ann. Statist. 22, 1884{1895.

Ryden, T. (1995). Estimating the order of Hidden Markov models. Statistics 26, 345{354.

Schwert, W. (1990). Indexes of US stock prices from 1802 to 1987. Journal of Business 63,

399{426.

Steutal, F. and van Harn, K. (1979). Central limit theorems for �nite Walsh-Fourier transforms

of weakly stationary time series. J. Time Ser. Anal. 6, 261{267.

Zhang, J. and Stone, R. (2001). Autocovariance structure of Markov regime switching models

and model selection. J. Time Ser. Anal. 22, 107{124.

16



APPENDIX: Stock Sample Details

Table A: The sub-sample of FTSE100 stocks

This table gives the stocks examined and their respective sectors.

Stock Sector

3I Group Investment Trusts

Abbey National Banks

Alliance and Leicester Banks

Allied Domecq Alcoholic Beverages

Asda Group Food Retailers

Associated British Foods Food Manufacturers

Bank of Scotland Banks

British Gas Oil and Gas
BOC Group Chemicals

Boots General Retailers

British Energy Electricity

British Land Properties

Cable and Wireless Telecommunications

Cadbury Schweppes Food Manufacturers

Carlton Communications Media

CGU Insurance
EMI Group Media

General Electric Electricity

Great Universal Stores General Retailers

Halifax Banks

Hays Support Services

Imperial Chemical Industries Chemicals

Ladbroke Group General Retailers
Land Securities Properties

Legal and General Insurance

Lucasvarity Engineering

Marks and Spencer General Retailers

National Power Electricity

National Westminster Bank Banks

Norwich Union Insurance

Orange Telecommunications
Pearson Media

Peninsular and Orient Steam Transport

Powergen Electricity

Prudential Corporation Insurance

Railtrack Group Transport

Reckitt and Coleman Household Goods

Reed International Media

Reuters Group Media
Rolls-Royce Engineering
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Table I: Model selection performance

This table contains the proportion of times the Akaike and the Schwarz Information Criterion select the correct

model given one of �ve data generating processes. The data generating processes considered are: A. 1-state

non-autoregressive hidden Markov model with f� = 7; � = 0g, B. 1-state autoregressive hidden Markov model

with f� = 5; � = 0:15g, C. 2-state non-autoregressive hidden Markov switching model with f�1 = 4; �2 =
12; p12 = 0:4; p21 = 0:2; �1 = 0; �2 = 0g, D. 2-state autoregressive hidden Markov switching model with f�1 =

3; �2 = 11; p12 = 0:4; p21 = 0:2; �1 = �2 = 0:15g, and E. 2-state autoregressive hidden Markov switching

model with f�1 = 3; �2 = 10; p12 = 0:4; p21 = 0:2; �1 = 0:15; �2 = 0:30g. The models considered under these

data generating processes are: 1-state non-autoregressive hidden Markov model (HM(1)), 1-state autoregressive

hidden Markov model (HM(1)-AR(1)), 2-state non-autoregressive hidden Markov switching model (HM(2)), 2-

state autoregressive hidden Markov switching model with the same AR coeÆcients across states (HM(1)-AR(1)),

and 2-state autoregressive hidden Markov switching model with di�erent AR coeÆcients in each state (HM(1)-

AR(2)).

Data Generating Process

Estimated Model A B C D E

Panel A: Akaike Information Criterion

HM(1) 0:88 0:48 0:00 0:00 0:00

HM(1)-AR(1) 0:11 0:41 0:00 0:00 0:00

HM(2) 0:00 0:05 0:50 0:01 0:02
HM(2)-AR(1) 0:01 0:02 0:26 0:77 0:32

HM(2)-AR(2) 0:00 0:04 0:24 0:22 0:66

Panel B: Schwarz Information Criterion

HM(1) 0:96 0:82 0:00 0:00 0:00

HM(1)-AR(1) 0:04 0:16 0:00 0:00 0:00
HM(2) 0:00 0:01 0:73 0:14 0:08

HM(2)-AR(1) 0:00 0:00 0:23 0:78 0:60

HM(2)-AR(2) 0:00 0:01 0:04 0:08 0:32
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Table II: Model estimates

This table gives the cross-sectional mean parameter values across all 40 stocks. The models estimated are:

I. 1-state non-autoregressive hidden Markov model, II. 1-state autoregressive hidden Markov model, III. 2-

state non-autoregressive hidden Markov switching model, IV. 2-state autoregressive hidden Markov switching
model with the same AR coeÆcients across states, and V. 2-state autoregressive hidden Markov switching

model with di�erent AR coeÆcients in each state. The cross-sectional mean Akaike Information Criterion

(AIC) and Schwarz Information Criterion (SIC) are also given along with the number of times these criteria

select the models estimated across the 40 stocks considered (#AIC� and #SIC�, respectively). Numbers in

parentheses are the cross-sectional standard errors of the parameter estimates.

Model

Parameter I II III IV V

Panel A: Sample period: 9.00am to 12.15pm

� 9:56 7:97

(2:30) (1:76)

� 0:20

(0:02)

�1 6:02 5:22 4:68

(1:10) (1:71) (1:14)

�2 12:05 10:93 14:04

(4:32) (3:41) (2:34)

�1 0:26 0:19

(0:07) (0:02)

�2 0:26 0:37

(0:07) (0:04)

�1 0:49 0:50 0:70
(0:24) (0:24) (0:04)

�2 0:51 0:50 0:30

(0:24) (0:24) (0:04)

AIC 8:65 8:30 8:93 7:61 6:70

SIC 8:66 8:31 8:95 7:64 6:73

#AIC� 0 0 0 0 40

#SIC� 0 0 0 0 40
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Table II: Model estimates (continued)

Model

Parameter I II III IV V

Panel B: Sample period: 12.30pm to 2.15pm

� 6:50 5:42

(1:40) (1:09)

� 0:16

(0:03)

�1 3:88 2:96 2:94

(1:09) (0:94) (0:73)

�2 11:88 10:60 9:84
(2:36) (1:89) (1:72)

�1 0:16 0:15

(0:04) (0:04)

�2 0:16 0:29

(0:04) (0:08)

�1 0:66 0:67 0:67

(0:09) (0:08) (0:05)

�2 0:34 0:33 0:33

(0:09) (0:08) (0:05)

AIC 7:02 6:85 5:88 5:79 5:75

SIC 7:02 6:87 5:91 5:83 5:79

#AIC� 0 0 0 10 30

#SIC� 0 0 0 23 17
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Table II: Model estimates (continued)

Model

Parameter I II III IV V

Panel C: Sample period: 2.30pm to 4.30pm

� 12:06 10:00

(2:80) (2:26)

� 0:17

(0:03)

�1 6:67 6:35 6:16

(0:85) (1:22) (1:55)

�2 10:13 9:53 15:80
(4:33) (3:77) (2:65)

�1 0:28 0:10

(0:12) (0:04)

�2 0:28 0:30

(0:12) (0:07)

�1 0:33 0:35 0:62

(0:21) (0:19) (0:05)

�2 0:67 0:65 0:38

(0:21) (0:19) (0:05)

AIC 9:10 8:85 11:39 8:82 7:00

SIC 9:11 8:86 11:41 8:85 7:04

#AIC� 0 0 0 0 40

#SIC� 0 0 0 2 38
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Figure 1: Intraday order-
ow periodicity
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