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1 Introduction

This paper examines a general problem exemplified by post-auction (third generation—

‘3G’) mobile telecommunications markets. A potential entrant to these (or other) mar-

kets must make a variety of decisions. Where to locate in product space and what price

to charge are two examples. Issues of location and pricing in horizontally and verti-

cally differentiated markets have received considerable attention (see e.g. Beath and

Katsoulakos (1991)). This paper is about another decision faced by potential entrants:

their level of market coverage. Entry decisions in models of product differentiation are

typically modelled as involving an exogenously fixed cost, with resulting market shares

arising as the result of post-entry competition. Yet they will also be determined by the

extent of entry by the new firm—by the amount of the market it chooses to cover.

It is easy to think of situations where a firm might make a roll-out decision prior to

entry. However, some interesting recent examples can be found in utilities regulation:

in particular in telecommunications. Thus, in the UK, following the granting of a

fifth licence for UMTS (3G) mobile operation following spectrum auctions in 2000,

the winner (TIW UMTS (UK)) must now decide how fast to roll out its network.

Although it faces externally-set targets here, the interim decisions on coverage are its

own. Similar issues face post-auction entrants in other countries. Another example can

be found in UK postal services, where the regulator (Postcomm) has recently licenced

Hays plc to compete with the incumbent monopolist Consignia. Hays have agreed

short-term coverage levels. Another company (Deya) is reportedly keen to enter this

market with different coverage levels (100%). The fact that, in all these cases, the

entrants have stressed the differentiated nature of their product, relative to incumbent

facilities, makes them strong examples of the issues our paper aims to address.

Apart from the privately optimal level of coverage for an entrant into a differen-

tiated market, these examples raise another question: what is the socially optimal

level of coverage? Perhaps the entrant will opt for low coverage in order to relax

downstream price competition, but this may not satisfy regulatory preferences. In the

above examples, this question relates to the universal service obligations present in

both telecommunications and postal services (see Cremer et al. (2001)). We therefore

seek to compare the socially and privately optimal levels of coverage.

A variety of authors have looked at issues relating to our work. Thus, Kreps and

Scheinkman (1983) and Davidson and Deneckere (1986), look at existing duopolists’

capacity decisions in advance of Bertrand pricing games. In each case, they deal with

homogeneous products and established competitors. Similarly, Valletti et al. (2001)

asks about the optimality of universal service obligations when output is homoge-

neous. Dixit (1980) looks at an incumbent’s capacity decision in advance of a potential

entrant’s arrival and the prospect of Cournot competition with homogeneous outputs.
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It is interesting that, in our paper, the entrant has the ability (through its roll-out

decision) to influence the downstream retail price equilibrium (as Dixit’s incumbent

can). Other authors have looked at entry decisions with differentiated products, where

the scale (and cost) of entry is fixed (see Beath and Katsoulakos (1991)). Prescott and

Visscher (1977) and Mason and Weeds (2000) extend these models to look at the tim-

ing of entry (or of product introduction). Several authors have examined incentives for

investment in telecommunications markets with exogenous entry costs (see Wildman

(1997), Gans and Williams (1999), Carter and Wright (1999)). Laffont et al. (1998a)

discuss the problem we consider below, but do not solve it. They indicate how market

coverage may be modelled and describe the two-stage game we study, but they do not

derive the variety of potential equilibria or compare this with a benevolent regulator’s

choice of coverage.1

The paper proceeds as follows. The main part is divided into two sections aimed

at analysing markets with inelastic and elastic consumer demands. In Section 2, we

examine a variant of a simple Hotelling model, in which consumers have unit demands.

This limiting case of inelastic demands is convenient because it has a well-defined

monopoly solution. In order to address the question of roll-out, we imagine the total

market as a unit square and assume that price competition takes place on that portion

of the square the entrant chooses to cover. In this way, we endogenise the entry cost

and give entry a geographical interpretation. Here we identify three downstream price

equilibria: two in pure strategies (Bertrand competition and ‘local monopoly’, where

each firm behaves as a standard monopolist within its market area) and one in mixed

strategies. Restricting ourselves to situations where a pure strategy equilibrium exists,

we show that the entrant will never invest beyond that level which guarantees local

monopoly, where both entrant and incumbent tacitly collude on market share. We

show that this level of entry will never be socially optimal: the regulator will either

wish for sufficient entry to stimulate price competition, or none at all (because entry

costs are too great).

Section 3 relaxes the assumption of unit (inelastic) demands and examines the case

of elastic demands. We cannot derive closed form solutions for this case, but simula-

tions illustrate several important effects of these more elastic demands. In particular,

the entrant may now invest sufficiently for price competition to take place because,

depending on the relative elasticities for the two products, this may stimulate inroads

into the incumbent’s market. Again, regulatory preferences may differ from this re-

sult, with excessive or insufficient roll-out taking place. Section 4 concludes the paper,

and considers what our results mean for the need to include coverage targets when

1In general, Armstrong (2001), p. 67, observes that modelling investment in network industries is
an important next step for literature in this area.
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regulators allow new entry into geographical markets.

2 The model with inelastic demands

2.1 Market coverage

The market consists of a unit square, corresponding to a geographcal area (see Fig-

ure 1). Consumers are uniformly distributed across the square and, in particular, on

[0, 1] along every horizontal axis in the square (each axis therefore forms a sub-market

corresponding to a Hotelling model of horizontal product differentiation). Firm 1 (the

incumbent) is situated (exogenously) at point 0 in each of these sub-markets and, by

assumption, already covers the whole geographical market. Firm 2 (the entrant) must

decide whether to enter (at point 1 in each of the sub-markets) and what proportion

of the total market to cover (the value of µ in Figure 1). If entry takes place, the firms

compete for market share within the common sub-markets with α (to be determined)

of each market segment going to Firm 1; the incumbent retains a monopoly in the

remaining 1 − µ of the market. Thus, we envisage a two-stage process where Firm 2

chooses its level of coverage (µ), then price competition takes place (determining α).

Clearly, µ = 1 corresponds to universal competition.

Figure 1: The market square

We derive the shares in each sub-market in the conventional way. In a representative

sub-market, consumers derive a gross surplus of s when consuming from either firm

and have (for now) unit demands (they buy ‘one or none’). As mentioned earlier, this

case can be thought of as the limit when elasticities tend to zero (and consumers have a
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maximum willingness to pay, s). Its advantage over other inelastic cases is that it has a

well-defined monopoly price so we can allow for a variety of possible market outcomes.

Consider a consumer at point x ∈ [0, 1] on the horizontal axis. Then the net surplus

when consuming from Firm 1 (located at x = 0) at price p1 is s − p1 − tx, while that

from Firm 2’s product is s − p2 − t(1 − x); t is the transport (or ‘utility’) cost of

consuming away from the supplier. Market shares at x = α (if both firms can service

the whole sub-market) are found from the indifference condition:

s − p1 − tα = s − p2 − t(1 − α)

⇒ α = α(p1, p2) =
1

2
+

p2 − p1

2t
(1)

Thus, Firm 1’s market share in the contested region is α and Firm 2’s is 1−α (assuming

full coverage in this sub-market), as in Figure 1. Then, given Firm 2’s initial coverage

decision (µ), the respective shares for Firm 1 (the incumbent) and Firm 2 (the entrant)

become

α1 = 1 − µ(1 − α), α2 = µ(1 − α)

We assume that investment is costly to the entrant, with the cost function being

d(µ) = γµ2/2, γ > 0. Each unit produced has marginal cost of c.2

2.2 Retail prices

The firms play a two-stage game in which the entrant first sets µ, then price competition

ensues in the retail market.3 We therefore solve by backwards induction, beginning with

prices conditional on µ. Profit functions for α ≥ 0 (post-investment) are

π1 = (p1 − c) [1 − µ (1 − α)] , π2 = (p2 − c) µ (1 − α) (2)

and it is straightforward to show that the reaction functions are

p1(p2) =
1

2

[
t

µ
(2 − µ) + c + p2

]
, p2(p1) =

1

2
(t + c + p1) (3)

2Thus, our assumption that Firm 1 will cover the whole market in the absence of competition is
equivalent to s ≥ c + 2t. To see this, note that an incumbent monopolist would choose market share
β to solve maxβ π1 = (s − tβ − c)β. The solution β = (s − c)/2t ≥ 1 if the above inequality holds.

3For convenience, we restrict attention linear pricing, with no third-degree price discrimination
(either along a given sub-market or across the incumbent’s monopoly and non-monopoly markets). In
this respect, our analysis departs from common practice in the telecommunications sector, although
it is representative of many other settings. See Gabszewicz and Thisse (1992), Laffont et al. (1998a)
and Laffont et al. (1998b) for examples relaxing these assumptions on a conventional ‘Hotelling line’.
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Solving these yields the Bertrand equilibrium prices

pB
1 =

t

3

(
4 − µ

µ

)
+ c, pB

2 =
t

3

(
2 + µ

µ

)
+ c (4)

Notice that, when µ = 1, we have pB
1 = pB

2 = t + c, i.e. marginal cost pricing with the

firms also able to exploit the transport cost that provide an element of market power.

Also pB
2 < pB

1 ∀µ < 1; i.e. the entrant undercuts the incumbent.4 Finally,

∂pB
1

∂µ
= − 4t

3µ2
< 0,

∂pB
2

∂µ
= − 2t

3µ2
< 0

Thus, a larger entrant generates more price competition and pushes down retail prices.

Profit functions (2) hold for α ≥ 0. However, the retail prices may be such that

this cannot be guaranteed so we must allow for the possibility of local monopoly as

well. To consider this, recall (1) and the fact that α ≥ 0 when

p2 − p1

2t
≥ −1

2
(5)

This condition may not hold because the entrant undercuts the incumbent in Bertrand

equilibrium. Using (4) we have

pB
2 − pB

1

2t
=

µ − 1

3µ
(6)

so that (5) holds when µ ≥ 0.4. From (1) α can be expressed as a function of µ

α =
1

2
+

µ − 1

3µ
(7)

and thus α ∈ (0, 1
2
] for µ ∈ (0.4, 1]. Then, for investment levels µ ∈ (0, 0.4], the

firms have the prospect of behaving as local monopolies, able to charge their monopoly

prices (assuming full coverage of their own market segments):

pM
1 = s − t, pM

2 = s − t (8)

In fact, the prospect of a local monopoly equilibrium needs closer examination. If

Firm 2 chooses pM
2 , it may be profitable for Firm 1 to deviate from pM

1 in order to

make inroads into 2’s market share. In this case, Bertrand equilibrium should be the

result but with µ < 0.4 we know that a pure strategy Nash equilibrium on the reaction

functions cannot exist. Accordingly, we need to establish two things. First, what is the

4This undercutting result can also be found in Laffont et al. (1998a).
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retail equilibrium if a profitable deviation away from pM
1 is available to the incumbent?

Second, what condition(s) characterise which of the possible equilibria will prevail?

As we have no Bertrand equilibrium for µ < 0.4, when Firm 1 deviates from pM
1

the entrant needs to find a lower price (than pM
2 ) to maintain its local monopoly over

µ. This is the ‘limit price’, pL
2 : the lowest price that makes the consumers who have

the choice of buying from either of the two firms and who are located furthest from

the entrant, indifferent between buying from the incumbent or the entrant; i.e.

s − p1(p
L
2 ) = s − t − pL

2 ⇒ pL
2 = p1(p

L
2 ) − t

Substituting this into (3), tells us that

pL
2 =

2 − 3µ

µ
t + c (9)

Notice that this is unique. Firm 1’s price in this case is

p1(p
L
2 ) =

2 − 2µ

µ
t + c (10)

We now ask whether this is the best price that Firm 2 can charge. Clearly it is

not because, given a local monopoly, it would rather charge its full monopoly price

pM
2 . However, it can only do this if Firm 1 is prepared to set pM

1 . When will this

happen? A convenient way to approach this is to compare pM
1 with p1(p

M
2 ). If we have

pM
1 < p1(p

M
2 ) then Firm 1 will set pM

1 by definition of its monopoly price (given µ).

Alternatively, if we have pM
1 > p1(p

M
2 ) then by definition of Firm 1’s best response

function, it must gain by deviating from pM
1 (after all, pM

1 is one possible response to

pM
2 ). The lemma below compares the relevant prices.

Lemma 1 pM
1 < p1(p

M
2 ) iff

µ <
2t

s − c
≡ µ (11)

Proof Substitute pM
2 into (3) to give p1(p

M
2 ) and compare this with pM

1 . Next, note

that if the inequality holds for µ = 0.4 (the level of coverage at which local monopoly

becomes a possibility) it also holds for lesser coverage levels. Q.E.D.

Thus, when µ < µ, a local monopoly pure strategy equilibrium {pM
1 , pM

2 } exists.

Note that µ > 0 if s > c, which is ensured by our assumption that s ≥ c + 2t. Further

µ < 0.4 if s > c + 5t, which is stronger than our assumption.

We can now state our first result:

Result 1 For µ ∈ [0, 0.4], when (6) holds (i.e. µ < µ) , the retail equilibrium

(conditional on µ) is {pM
1 , pM

2 }. For µ ∈ (0.4, 1], the retail equilibrium is {pB
1 , pB

2 }.
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We now consider what happens when µ ∈ (µ, 0.4), should this range exist. One

possibility here might be a ‘commitment equilibrium’ where the entrant commits to

charging pL
2 , so the incumbent sets pM

1 . However, in the absence of any credible com-

mitment mechanism for the entrant, it would wish to respond to this by setting pM
2 .

Yet Firm 1’s best response to this is p1(p
M
2 )—given µ < 0.4—and Firm 2 then re-

grets setting pM
2 . Thus, the commitment equilibrium breaks down. We can, however,

demonstrate the existence of a mixed strategy Nash equilibrium for this case, as the

following result proves.

Result 2 For µ ∈ (µ, 0.4), should this range exist, there exists a mixed strategy

equilibrium in retail prices, consisiting of strategies: Firm 1 plays pM
1 with probabil-

ity x∗ ∈ (0, 1) and p1(p
M
2 ) with probability 1 − x∗; Firm 2 plays pM

2 with probability

y∗ ∈ (0, 1) and pL
2 with probability 1 − y∗.

Proof See Appendix.

Figures 2 and 3 illustrate these results. The relationships depicted are easily derived

from (4) and (8).

Figure 2: p2 when s > c + 5t Figure 3: p2 when c + 2t < s < c + 5t

Hence, in the case where the two firms assume full coverage of their own market

segments, they will either choose local monopoly prices or, if a profitable deviation

from this is available to Firm 1, price competition will be ‘too severe’ to produce a

pure strategy equilibrium. Lemma 1 tells us that the incumbent will be happy to

charge its monopoly price provided the entrant is sufficiently small—there is not much

market share to attract from the entrant. ‘Smallness’ here is determined by t and s−c.

When t is high, so the two firms’ products are not very substitutable, there is little to
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be gained from price competition to attract custom and the incumbent is prepared to

set pM
1 . Similarly, when the net surplus from attracting another customer (s − c) is

low, this also deters competitive behaviour by the incumbent.

2.3 Investment

For the remainder of this section, we restrict attention to c + 2t < s < c + 5t and thus

rule out the complexities of a mixed strategy equilibrium.

We first ask the question of whether the entrant will want to compete with the

incumbent firm.5 To consider this, we begin by calculating the reduced-form profit

function in the case where Bertrand competition prevails. This is given by

πB
2 = (pB

2 − c)µ[1 − α(pB
1 , pB

2 )] − d(µ) =
t

18

(2 + µ)2

µ
− γµ2

2
(12)

Using this, we can derive our second result:

Result 3 The entrant never invests beyond µ = 0.4.

Proof From (12) we have

∂πB
2

∂µ
=

t

18

µ2 − 4

µ2
− γµ =

t

18

(µ − 2)(2 + µ)

µ2
− γµ < 0 ∀µ ∈ [0, 1]

Thus, the entrant prefers as little investment as possible in the presence of price com-

petition. In particular, it will not want to invest past the local monopoly level. Q.E.D.

We now need to know whether the entrant chooses to invest as far as µ = 0.4.

Under monopoly prices the entrant’s profit net-of-investment is

πM
2 = (pM

2 − c)µ − d(µ) = (s − t − c)µ − γµ2

2
(13)

Maximizing πM
2 with respect to µ we have the first-order condition for optimal invest-

ment µ∗

∂πM
2

∂µ
= s − t − c − γµ∗ ≥ 0 ⇒ µ∗ ≤ s − c − t

γ
(14)

where the inequality holds at the boundary µ∗ = 0.4. We can now state a result

characterizing the entrant’s choice of coverage and the type of retail equilibrium that

will prevail in the market6:

5The entrant behaves in analogous fashion to the incumbent in Dixit (1980): investment in the
current period takes place in anticipation of its effect on the subsequent market game.

6To reiterate, we are assuming c + 5t > s ≥ c + 2t > c + t throughout.
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Result 4 The entrant will choose

µ∗ =

{
0.4 when s−c−t

γ
≥ 0.4

∈ (0, 0.4] when s−c−t
γ

< 0.4

The only retail equilibrium involves local monopoly prices.

Proof This follows first from (14). We must check that πM
2 (µ∗) > 0 when µ∗ < 0.4

and that πM
2 (0.4) > 0 when µ∗ > 0.4. Substituting for µ∗ from (14) in (13) gives

πM
2 (µ∗) = µ∗

2γ
> 0. Further, placing µ = 0.4 in (13) gives πM

2 (0.4) = s−c−t−0.08γ. This

is clearly positive when µ∗ > 0.4. Finally, we also need to check that πM
2 (µ∗) > πB

2 (0.4).

Clearly, this is true since πM
2 (µ∗) ≥ πM

2 (0.4) ≥ πB
2 (0.4): the first inequality holds by

definition of µ∗ and the second holds by definition of monopoly prices. Q.E.D.

Result 4 tells us that the entrant may be willing to give up market share (i.e. restrict

its local monopoly area) if the costs of investment are too high. Factors that increase

µ∗ are listed as follows:

Result 5 Investment rises towards µ∗ = 0.4 as s rises and c, t and γ fall, ceteris

paribus.

Proof Differentiating (14) gives each of these. Q.E.D.

Clearly, factors that increase the monopoly price or margin, ceteris paribus, make

extra investment (and local market share) worthwhile, while an increase in the cost

of investment has the opposite effect. For this reason, products with high consumer

value (s) raise µ∗. Similarly, projects that are highly capital-intensive or geographically

difficult to build (two interpretations of high γ) reduce investment in coverage, as does

significant product differentiation (high t), where monopoly power is less needed.

2.4 Regulator’s investment choice

The regulator seeks to maximize the sum of consumers’ expected surplus plus industry

profit net of investment costs.7 In fact, the unit demands of the current framework

mean that she is not worried about price (there are no deadweight losses), but does

care about the expected transport costs faced by consumers—see Tirole (1988).

7We assume that the regulator does not directly choose prices, an assumption mirrored by the
current plans for 3G mobile telecommunications. Also, note that we solve the regulator’s problem
without the firms’ zero profit constraints that would usually accompany the regulator’s problem; we
check these are in fact satisfied for our subsequent simulations.
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Once the regulator has chosen (and enforced) a level of investment, Result 1 tells us

the resulting price equilibrium, given µ > 0.4. Thus, we must examine the regulator’s

welfare function across the local monopoly and Bertrand equilibria. In the first of these

cases, we have

WM = s − c − t

2
− γ(µM

R )2

2

Clearly, this means that the regulator will choose µM
R = 0 whenever a monopoly equi-

librium would arise from encouraging entry. The reasoning is straightforward: since

(monopoly) prices are of no interest to the regulator, her chief concern is to economise

on investment costs.

Now assume that the regulator chooses µR > 0.4 (call this µB
R) so that a Bertrand

equilibrium would result. Welfare is now

WB = s − c − t

2
+ µB

R

t

2
{1 − [α2 + (1 − α)2]} − γ(µB

R)2

2

Why might the regulator choose such an investment level? Although investment costs

are incurred, there is now the prospect that investment will push down prices and lower

α, thereby reducing expected transport costs. This channel was not available under

monopoly, where α = 0 by definition.

In order to examine the regulator’s decision more closely, consider

∆W (µB
R) ≡ WB − WM = µB

Rtα(1 − α) − γ(µB
R)2

2
(15)

(where we have used µM
R = 0 and 1−α2−(1−α)2 = 2α(1−α)). Notice that maximising

∆W is equivalent to maximising WB; we work with the former. Straightaway we see

that since µB
R = 0.4 ⇒ α = 0, we have ∆W (0.4) < 0: the regulator will never set

µB
R = 0.4. Further, it is easy to show that any positive choice of µB

R will be unique

since ∆W (µ) is concave.8

Combining our observations so far with Result 4, we have

8 We have the first order condition

∂∆W

∂µ
= tα(1 − α) +

t

3µB
R

(1 − 2α) − γµB
R = 0 (16)

using ∂α
∂µ = 1

3(µB
R)2

(from (7)). Notice that both of the first terms are positive here, the second as a

result of α ≤ 1
2 . The second order condition is

∂2∆W

∂µ2
= tα′(1 − α) − tαα′ +

[
3µB

Rt(−2α′) − 3t(1 − 2α)
9(µB

R)2

]
− γ = −2tα′

3µB
R

− γ < 0

where we have again used ∂α
∂µ = 1

3(µB
R)2

to get to the last line. Thus, if (16) has an interior maximum,

it is unique. A corner solution (at µB
R = 1) will obviously be unique.
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Result 6 Whenever the regulator chooses positive investment, this will involve µB
R >

0.4 and Firm 2’s independent choice of coverage will be too low (since it is never above

0.4). Whenever the regulator chooses zero coverage, Firm 2’s choice will be too high.

From (15), note that ∆W (1) = 1
2
[ t
2
− γ] (since α = 1

2
when µ = 1) . Hence, a

sufficient condition to ensure that the regulator chooses µ > 0.4 (so that the entrant’s

choice implies under-investment) is t
2

> γ. Thus, the prospects of (some) coverage

being socially optimal increase with transport costs (t) and decrease with investment

costs (γ)—both of these are intuitive. Further, we can say that full coverage (µ = 1,

i.e. ‘universal service’ ) is socially optimal if ∆W ′(µ) > 0,∀µ ∈ (0.4, 1].

Next, suppose that µB
R is an interior solution to (16). Then we can use the implicit

function theorem on (16) to perform comparative statics. In particular, because s and

c do not feature in (16), we have

∂µB
R

∂s
=

∂µB
R

∂c
= 0

Further,

∂µB
R

∂t
=

α(1 − α) + 1−2α
3µ

2tα′
3µ

+ γ
> 0 (17)

∂µB
R

∂γ
=

−µ
2tα′
3µ

+ γ
< 0 (18)

the first inequality being due to α ≤ 1
2

(recall (7)). Thus, again, the regulator prefers

greater coverage as ‘transport costs’ grow and as investment costs fall.

How does the entrant’s investment choice compare with that of the regulator? Fig-

ures 4 and 5 indicate this by plotting both parties’ optimal coverage as t and γ change

respectively.9 Figure 4 shows that, for our parameter values, Firm 2 enters the market

but at too low a level for the regulator, who prefers a Bertrand equilibrium: there is

under-investment. As t rises, the effect on expected transport costs leads the regulator

to prefer increasingly extensive roll-out (see (17)). Accordingly, Firm 2’s roll-out is

increasingly sub-optimal.

Now consider Figure 5. For very low values of the investment cost parameter (γ)

the regulator chooses over 50% market coverage for Firm 2 (and Bertrand equilibrium),

but the firm prefers its maximum 40% coverage. As investment costs rise, however,

the regulator prefers no entry (see (18)), and Firm 2’s entry decision becomes one with

over-investment. As γ increases past 8, the entrant gradually lowers its coverage level

9Our baseline parameters are s = 5, c = 0.5, t = 1, γ = 1; hence, s > c + 2t and µ > 0.4. For
convenience, the figures denote the regulator’s choice of investment by µR regardless of whether a
Bertrand or local monopoly equilibrium occurs.
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( s−c−t
γ

= 0.38 < 0.4 when γ = 9). As the investment cost parameter continues to

rise, µ∗ falls and the level of over-investment decreases (in the limit, µ∗ → µB
R = 0 as

γ → ∞).

Figures 4 and 5 confirm Result 6 and make an important point that is worth

summarising as follows:

Result 7 It is possible for the entrant to engage in excessive roll-out (over-investment)

or insufficient roll-out (under-investment) from a social perspective. Either case implies

a role for regulation in entrants’ roll-out decisions.

3 Elastic demands

The assumption of unit demands is a convenient way to model inelastic demands when

monopoly equilibria may be of interest, as we have said. However, it will not always be

realistic. Further, there are reasons to believe that increasingly elastic demands may

influence our results. For example, unit demands may be responsible for the entrant’s

incentive to avoid Bertrand competition: unit demands limit the gains available from

heavy investment which pushes down prices. Similarly, the regulator’s ambivalence

towards the direct price effects of investment (as opposed to the indirect effects on

transport costs through α) hinges on the unit demands assumption. Thus, it seems

important to investigate the effects of more elastic demands.10

10Laffont et al. (1998a) and Armstrong (1998) both suggest that an existence problem may arise
in the pricing equilibrium game when elastic demands are present. The reason involves the interplay
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We retain our earlier framework but, instead of s − pi, we assume a representative

consumer’s net surplus when consuming from Firm i at price pi is

v(pi) =
p
−(ηi−1)
i

ηi − 1

so that
∂v(pi)

∂pi

= −qi, qi = p−ηi

i , i = 1, 2

In order to allow for the possibility of monopoly prices, it is necessary to assume that

ηi > 1, i = 1, 2. Using ‘hats’ to denote values for the elastic case, we have an immediate

analogy with (1):

α̂ =
1

2
+

v(p̂1) − v(p̂2)

2t
(19)

so that market shares are α̂1 = 1 − µ̂(1 − α̂) and α̂2 = µ̂(1 − α̂). The new profit

functions are

π̂1 = (p̂1 − c)[1 − µ̂(1 − α̂)]q̂1, π̂2 = (p̂2 − c)µ̂(1 − α̂)q̂2

while the Bertrand reaction functions are given implicitly by

p̂B
1 − c

p̂B
1

=
α̂1

µ̂
2t

p̂B
1 q̂B

1 + α̂1η1

,
p̂B

2 − c

p̂B
2

=
α̂2

µ̂
2t

p̂B
2 q̂B

2 + α̂2η2

(20)

It is readily apparent that, in general, these are highly non-linear with no straightfor-

ward closed-form solution. For our purposes, this presents no great problem because we

seek to illustrate significant changes brought about by moving to more elastic demands.

We do this by numerical examples.

Again it may not always be the case that α̂ ≥ 0 or, in terms of prices

(p̂B
1 )−(η1−1)

η1 − 1
− (p̂B

2 )−(η2−1)

η2 − 1
≥ −t

In fact monopoly situations will arise when the above is reversed. Clearly, we can no

longer say that this inequality will be satisfied by µ̂ ≥ 0.4. In such cases, we should

in principle allow for local monopoly and mixed strategy Nash equilibria. The former

involves
p̂M

1 − c

p̂M
1

=
1

η1

,
p̂M

2 − c

p̂M
2

=
1

η2

We again restrict attention to parameter values for which p̂M
1 < p̂1(p̂

M
1 ), where p̂M

1

between retail prices and interconnection charges (both papers model two-way access in telecommu-
nications, something not in our model).
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is implicitly defined using (20), reducing the equilibria to either local monopoly or

Bertrand. Investment decisions can be characterised as before. Analysis of the various

profit functions makes clear that we can no longer rule out a Bertrand equilibrium

since the entrant’s Bertrand profit function need not be monotonically decreasing in

µ̂. This may confirm our earlier intuition: it may be possible to find examples where

the entrant chooses to compete under more elastic demands.

Now consider the regulator’s welfare function. For monopoly and Bertrand equilib-

ria respectively, we have

ŴM = (1 − µ̂M
R )v(p̂M

1 ) + µ̂M
R v(p̂B

2 ) + (1 − µ̂M
R )(p̂M

1 − c)q̂M
1

+ µ̂M
R (p̂M

2 − c)q̂M
2 − t

2
− γ(µ̂M

R )2

2

ŴB = α̂1(p̂
B
1 , p̂B

2 )v(p̂B
1 ) + α̂1(p̂

B
1 , p̂B

2 )(p̂B
1 − c)q̂B

1

+ α̂2(p̂
B
1 , p̂B

2 )v(p̂B
2 ) + α̂2(p̂

B
1 , p̂B

2 )(p̂B
2 − c)q̂B

2

− t

2
{(1 − µ̂B

R) + µ̂B
R[(α̂(p̂B

1 , p̂B
2 ))2 + (1 − α̂(p̂B

1 , p̂B
2 ))2]} − γ(µ̂B

R)2

2

Figures 6–9 illustrate several features of the equilibria that may now emerge, main-

taining the same baseline parameters as before, with the addition that η1 = η2 = 1.5.

The first thing to note about all the figures is that, now, α̂ > 0 in all cases: as suggested

earlier, more elastic demands make price competition more attractive to the entrant

because of the extra responsiveness to demand that they imply.11 This observation is

illustrated (for changes in t) in Figure 6. An interesting feature of Figure 6 is that

higher values of t cause the entrant and the regulator to lower α̂—i.e. to raise the

entrant’s market share in those areas where it rolls out its service. This is achieved

by lower retail prices (unlike in (4), where less substitutable products raise Bertrand

prices). The reason is that elastic demands can cause higher transport costs to push

down firms’ sales even if they do not lose custom (with unit demands, no custom is

lost when t changes—see (7)—and each consumer’s purchases remain the same, by

definition). Thus, the firms now have an incentive to lower price even though they

appear to have less need to compete with each other.

Figure 7 demonstrates the effects of changes in t on the entrant’s roll-out decision

and that of the regulator: both involve lower roll-out as t rises. Both are influenced

here by the above argument that higher transport costs can (and in the current case

do) push down retail prices and increase the entrant’s market share. Thus, both have

11As a result of this, our figures now relate to a different market structure than Figures 4 and 5.
Hence, the two sets of figures are not directly comparable.
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an incentive to economise on entry costs by lowering µ̂. The regulator is also worried

about the direct effect of transport costs, however, and this accounts for her lower

curve in Figure 7. In order to reduce expected transport costs, she needs to lower α̂.

Under certain conditions, this can be achieved by lowering µ̂R. From (19) we have

∂α̂

∂µ̂R

=
1

2t

(
q̂2

∂p̂2

∂µ̂R

− q̂1
∂p̂1

∂µ̂R

)

If we now assume that ∂p̂1/∂µ̂R ≈ ∂p̂2/∂µ̂R ≡ z, z > 0 and p̂1 > p̂2, then we have

∂α̂

∂µ̂R

≈ z

2t
(q̂2 − q̂1) > 0

Although we cannot confirm that the above assumptions hold generally, numerical so-

lutions confirm that they hold for the current range of parameter values. Thus, the

regulator economises on transport costs by reducing entrant roll-out and increasing its

share in the contested market segment. The entrant does not internalise this external-

ity.12
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Figure 6: Contested market shares
with elastic demands
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Figure 7: Changes in transport
costs (t) with elastic demands

Figure 8 shows that desired coverage falls for both regulator and firm as invest-

ment costs (γ) rise, with both over-investment (for low γ) then under-investment (for

high γ) taking place. Figure 9 considers the effects of one of the elasticity parameters

introduced in this section, η2. It shows that increases in the entrant’s elasticity of

demand reduce coverage for both itself and the regulator; with excessive roll-out oc-

12These arguments seem unlikely to hold in general. For instance, at some point, one would expect
the regulator’s concern for transport costs in the 1 − µ̂ segment to dominate as µ̂ falls.
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curring over the range we select. The negative slopes reflect that fact that more elastic

demands sharpen price competition and, therefore, permit a reduction in investment

costs while still allowing reasonable market share (for the entrant) and low prices (for

the regulator).
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Figure 8: Changes in investment
cost (γ) with elastic demands
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Figure 9: Changes in the entrant’s
elasticity of demand (η2)

We finish this section by stating its main finding:

Result 8 When demands are elastic, the entrant may be prepared to invest in sufficient

roll-out to generate Bertrand price competition. Relative to the social optimum, both

under-investment and over-investment can occur.

4 Conclusions and further work

We have amended the standard Hotelling framework to allow an interpretation of geo-

graphical coverage and to endogenise a firm’s costs of entry into this market, dependent

on it chosen level of coverage. We find entry can result in several possible pricing equi-

libria. Which in fact arises is sensitive to the structure of consumer demands. With

unit demands (or, perhaps more generally, relatively inelastic demands) entry will only

take place when the entrant and incumbent tacitly collude to produce a local monopoly,

with both firms charging normal monopoly prices, or (possibly) with a mixed strategy

equilibrium involving local monopoly and limit pricing. Relatively elastic demands,

however, make Bertrand competition more likely, because they encourage the entrant

to enter and price away the incumbent’s business. In both cases, the entrant’s scale of

entry may be too large or too small from a social perspective.
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Two general, opposing, effects govern this result. Investment involves duplication

of facilities which suggests that over-investment may occur. However, it also increases

competition and can lower prices (and expected transport costs), which is beneficial

for consumers/regulators but not for firms; this may induce under-investment. The

total impact of these effects on actual private investment depends, as we have shown,

on the nature of demands and the costs of investment.

Our results suggest that it may be inappropriate for regulators to leave the market to

determine investment levels by a new entrant (as is the case in, say, the 3G mobile phone

context). If contractual clauses regarding roll-out are to be enforced, the regulator

needs credible sanctions to encourage the entrant to abide by these. Further, to the

extent that aspects of roll-out are non-verifiable/non-contractible, our results suggest

that unregulated roll-out may not achieve first-best levels of coverage. Depending on

the properties of consumer demands, our results also suggest that downstream pricing

may be less competitive than the entry of a second firm might suggest. Thus, the idea

(implicit in the plans for regulating 3G mobile operators) that downstream competition

may push retail prices down needs careful scrutiny.

It is interesting that none of our numerical examples lead to universal service cov-

erage by the entrant being socially optimal (or event close to being so). This has been

true for a large variety of parameter settings and suggests that the model may need

modification to make gains from such provision worthwhile. Thus, for example, within

a model of homogeneous consumer demands, the introduction of network externalities

may help encourage this.

There are a variety of ways in which the paper can be developed. Within the cur-

rent, we might consider endogenous location, price discrimination (say, between the

incumbent’s monopolised customers (1− µ) and those for which it competes (µα) and

allowing two-part tariffs (see Laffont et al. (1998a)) and more general non-linear tariff

schemes (see Wilson (1993)), all of which can be shown to influence the results from

Hotelling’s original analysis. Other interesting developments could be introduced to

model particular markets (and issues) more closely. Thus, thinking about telecommu-

nications networks, the introduction of access charges (to be bargained over before,

say, investment in coverage) would allow us to see how the incumbent can use its nego-

tiating strategy to influence a potential opponent’s scale of entry. On the same theme,

one could examine a dynamic version of this set-up, where the timing as well as the

scale of investment became the focus of attention. This would allow us to compare

privately optimal roll-out speeds with socially optimal ones.

Each of these would shed light on current policy toward the 3G mobile market in

the UK. However, as noted in the Introduction, there are also close analogies with

these issues in the postal sector as it is gradually deregulated. Because it allows for an
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endogenous scale of entry, and a geographical interpretation of coverage, these are be

natural application for our model. Indeed, as governments/regulators continue to seek

ways to encourage competition and entry into formerly monopolised industries, it is

likely that others will emerge. Further, being extensions towards issues in network eco-

nomics, they confirm that our model may be fruitful in addressing Armstrong (2001)’s

call for work on investment in such industries; a key issue for future research.

Appendix

Proof of Result 2 Consider the following mixed strategy: Firm 1 plays pM
1 with

probability x and p̃1 ≡ p1(p
M
2 ) with probability 1−x; Firm 2 plays pM

2 with probability

y and pL
2 with probability 1 − y. Some algebra yields

{π1(p
M
1 , pM

2 ), π2(p
M
1 , pM

2 )} = {(1 − µ)(s − t − c), µ(s − t − c)}
{π1(p

M
1 , pL

2 ), π2(p
M
1 , pL

2 )} = {(1 − µ)(s − t − c), (2 − 3µ)t}
{π1(p̃1, p

L
2 ), π2(p̃1, p2)} = {(1 − µ)

[
t
1 − µ

µ
+

s − c

2

]
, (2 − 3µ)t}

{π1(p̃1, p
M
2 ), π2(p̃1, p

M
2 )} = { µ

2t

[
(1 − µ)

t

µ
+

s − c

2

]2

,

[
1 + µ

2
− µ(s − c)

4t

]
(s − t − c)}

It is straightforward to show that

π1(p̃1, p
M
2 ) > π1(p

M
1 , pM

2 ) = π1(p
M
1 , pL

2 ) > π1(p̃1, p
L
2 ) (A.1)

π2(p
M
1 , pM

2 ) > π2(p
M
1 , pL

2 ) = π2(p̃1, p
L
2 ) > π2(p̃1, p

M
2 ) (A.2)

In a mixed strategy Nash equilibrium Firms 1 and 2 maximize the following respec-

tively:

Eπ1 = x{yπ1(p
M
1 , pM

2 ) + (1 − y)π1(p
M
1 , pL

2 )}
+(1 − x){yπ1(p̃1, p

M
2 ) + (1 − y)π1(p̃1, p

L
2 )}

= xπ1(p
M
1 , pM

2 ) + (1 − x){yπ1(p̃1, p
M
2 ) + (1 − y)π1(p̃1, p

L
2 )}

Eπ2 = y{xπ2(p
M
1 , pM

2 ) + (1 − x)π2(p̃1, p
M
2 )}

+(1 − y){xπ2(p
M
1 , pL

2 ) + (1 − x)π2t(p̃1, p
L
2 )}

= y{xπ2(p
M
1 , pM

2 ) + (1 − x)π2(p̃1, p
M
2 )} + (1 − y)π2(p

M
1 , pL

2 )

Hence Firm 1 chooses x = 0 or x = 1 according to yπ1(p̃1, p
M
2 ) + (1 − y)π1(p̃1, p

L
2 ) R

18



π1(p
M
1 , pM

2 ), i.e. x = 0 or x = 1 according to

y R π1(p
M
1 , pL

2 ) − π1(p̃1, p
L
2 )

π1(p̃1, pM
2 ) − π1(p̃1, pM

2 )
= y∗

Similarly for Firm 2, y = 0 or y = 1 according to

x R π2(p̃1, p
L
2 ) − π2(p̃1, p

M
2 )

π2(pM
1 , pM

2 ) − π2(p̃1, pL
2 )

= x∗

From (A.1) and (A.2) x∗ and y∗ ∈ (0, 1): the Nash equilibrium is at (x∗, y∗). QED
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