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Abstract

In this paper, we use Weil’s [1989] overlapping infinitely-lived dy-
nasties framework to analyse a microfounded version of the real balance
effect envisaged by Pigou. This effect appears to imply that temporary
monetary expansions in the limit have an unboundedly large impact
on current aggregate demand, thereby eliminating Krugman’s liquid-
ity trap. The circumstances under which such an effect is operative,
however, imply a condition that rules out temporary monetary expan-
sions of this magnitude. For the set of feasible temporary monetary
expansions, rather than eliminating the possibility of liquidity traps oc-
curring, the real balance effect generated by this model makes a trap
perhaps more likely due to the heightened constraints it imposes on
the monetary authority.
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1 Introduction

The theme of this paper is an old one: how can the zero lower bound on

nominal interest rates represent a plausible threat to stabilisation policy

when increases in real balances — regardless of the level of the nominal inter-

est rate — raise household wealth and therefore consumption, as described

by Pigou’s [1943] argument for a “real balance effect”? The traditional cri-

tique of this particular real balance effect, due to Kalecki [1944], concerns

its likely (lack of) empirical significance. As the largest part of private hold-

ings of monetary assets, including bank deposits and so on, have direct or

indirect counterparts in private debt, the net base for this effect will be a

small fraction of the economy’s overall stock of wealth. Nevertheless, from

a purely theoretical perspective, the existence of this simple wealth effect

of monetary policy represents an important challenge to the possibility of

liquidity traps occurring.

Indeed, this challenge appears to have strongly influenced Paul Krug-

man’s decision to employ a dynamic general equilibrium framework in his

initial papers on the topic (Krugman [1998a], [1998b]). The following is a

quote from Krugman [1999]:

Here’s how my initial argument — not that different from the
debates between Keynes and Pigou — went. In the IS-LM model
... to say that increases inM were ineffective beyond some point
was ... equivalent to saying that reductions in P were ineffec-
tive in raising demand — that the aggregate demand curve (was)
downward-sloping over some range but vertical thereafter.

But as Pigou pointed out, that simply cannot be right. If nothing
else, a fall in the overall price level increases the real value of the
public’s holdings of money, and this wealth effect will increase
consumption. If the IS-LM model seems to suggest that no full
employment equilibrium exists, it is only because that model
does not really get the budget constraints right.

To demonstrate the truth of that supposed truism, all that was
needed was to write down a model that got the budget con-
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straints right, that did not fudge the individual’s decision prob-
lem. So I set out to write down the simplest such model I could.
And it ended up saying something quite different.

To Krugman’s evident surprise, his representative agent, cash-in-advance

framework did not generate the real balance effect he anticipated. This re-

sult is not, we should note, a consequence of erroneous budget constraints

or an ad hoc decision problem. The crucial equilibrium condition in his

framework — the Euler equation for the optimal timing of private expendi-

ture — does not in any way contradict the contribution of financial wealth to

the intertemporal budget constraint. Rather, money affects aggregate de-

mand in this set-up only through its effects upon real interest rates and the

incentives that they provide for intertemporal subsitution of expenditure.

This strong conclusion about how the transmission mechanism operates,

we should note, is not a general property shared by all optimising models. As

is well known, both the money-in-the-utility function (MIUF) and shopping

time approaches to modelling money demand can plausibly generate a type

of real balance effect operating through the cross-partial derivative of the

utility function ucm. If utility is obtained from holding money, this must be

because money balances facilitate transactions and it is hardly sensible that

the benefits of such balances should be independent of the real volume of

transactions that a household undertakes. In particular, it is plausible that

the marginal benefit of additional real balances should be higher when real

transactions are greater, implying ucm > 0. This suggests the existence of a

real balance effect as temporary increases in the current supply of money will

directly raise current aggregate demand through the cross partial derivative.

Woodford [2002] and McCallum [2000] discuss this possibility and ar-

gue that reasonable parameterisations of the utility function lead to very

small coefficients on money in the IS equation. To be exact, this last re-

mark applies only to the money coefficient in a log-linearised version of the
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IS curve. Regardless of the quantitative importance of this effect near the

steady state, Woodford [2002] persuasively argues that this real balance ef-

fect would disappear completely in a liquidity trap. When there is satiation

in real balances at some finite level, it would seem perverse to argue that fur-

ther increases in real balances beyond the satiation point make transactions

more convenient.

Real balance effects can also emerge in MIUF economies with alternative

timing specifications for the money balances entering the utility function.

Aikman [2002] demonstrates this for Carlstrom and Fuerst’s recently sug-

gested specification (Carlstrom and Fuerst [2001]), although intriguingly, the

effect works in exactly the opposite direction from that described above: a

temporary increase in the current money supply lowers the marginal utility

of liquidity and this in turn lowers aggregate demand for a given real in-

terest rate. Neither effect, therefore, corresponds closely to the pure wealth

effect envisaged by Pigou.

In this paper, we extend Krugman’s sticky-price, cash-in-advance model

to a framework due to Weil [1989], [1991] hybrid of the representative agent

Sidrauski and overlapping generations (OLG) approaches, in which new dy-

nasties of infinitely-lived agents enter the economy each period. With a

growing population, the model generates a real balance effect that closely

resembles the one advanced by Pigou: a temporary increase in the current

stock of money raises aggregate demand independently of its effect on the

equilibrium real interest rate. Furthermore, this effect operates through net

wealth. Following the work of Sachs [1980], Cohen [1985] andWeil [1991], we

show that the economy’s net per capita stock of monetary wealth is positive

only in the case where new, financially disconnected cohorts are entering

the population. In Krugman’s representative agent framework, therefore,

money is not actually net wealth.

The paper most closely related to our own is Ireland [2001]. Using the
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same Weil [1989] overlapping generations framework, Ireland finds that the

real balance effect completely eliminates the possibility of liquidity traps

occurring. His version of the liquidity trap, however, differs quite substan-

tially from Krugman’s. In particular, rather than examining the constraints

on monetary policy imposed by the zero lower bound when the economy

experiences a large adverse shock, Ireland confines his analysis to the steady

state of an economy in which the central bank is following the Friedman

rule. With steady state zero nominal interest rates, the cash-in-advance

constraint ceases to bind and there exists, in the representative agent model,

multiple equilibrium values of real balances (and hence also multiple equi-

librium time paths for the price level) that are consistent with the steady

state conditions. Hence, the central bank’s choice of an initial value for the

nominal money supply plus a steady state growth rate is not sufficient to

determine a unique equilibrium time path for the price level. Introducing

population growth eliminates this multiplicity by making the steady state

real interest rate depend on the level of real balances. Our paper, we argue,

is closer to being a direct extension of Krugman’s work to an OLG economy.

The rest of this paper is organised as follows. In section 2 will lay out

the basic model, which is nothing but a discrete-time, sticky-price version of

Weil [1991] and in section 3, we characterise the current interest rate-output

conjuncture and describe how the real balance effect operates. The main

part of the analysis is contained in section 4, which examines the possibility

of liquidity traps occurring. To preview the conclusions briefly: with pop-

ulation growth, temporary monetary expansions can have an unboundedly

large impact on demand; expansions of such magnitude, however, are ruled

out as the lump-sum tax required to contract the money supply next pe-

riod will be so high that future generations will be unable to pay the tax

and consume. Within the set of feasible temporary monetary expansions,

liquidity traps are possible and, under our simple calibration of the model,
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more likely with an operative real balance effect!

2 The Model

We begin by presenting a sticky-price, discrete time version of Weil’s [1991]

monetary, overlapping infinitely-loved dynasties framework. The model

builds on the Blanchard [1985] uncertain-horizons framework, which itself

builds on Yaari [1965], and it provides a convenient vehicle for nesting the

representative agent and OLG approaches.

2.1 Demographic Structure

We assume that the economy is composed of distinct, infinitely-lived dynas-

ties that come into being on different dates. Households born in a particular

period υ ≥ 0 belong to cohort υ and the arrival of new cohorts causes the
total number of households to grow at the constant rate n ≥ 0. Define Ns
as the population of households during period s. Then, given a positive

population (normalised to one) at the origin of time, s = 0, we have:

Ns+1 = (1 + n)Ns (1)

∀s ≥ 0. As we discuss, the population growth rate n serves as a measure
of financial disconnectedness and heterogeneity in the population. In the

special case of n = 0, the model collapses to the more familiar infinitely-

lived representative agent model.

Households in a particular cohort are identical, so it is possible to exam-

ine the behaviour of a representative agent within each cohort.
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2.2 Household υ’s Maximisation Problem

An individual born on date υ lives forever and maximises:

Uυ
υ =

∞X
s=υ

βs−υu
µ
cυs ,
Mυ
s

Ps

¶
(2)

subject to the following real flow budget constraint:

Bυ
s+1

Ps
+
Mυ
s

Ps
= (1 + is)

Bυ
s

Ps
+
Mυ
s−1
Ps

+ ys + τs − cυs (3)

This utility function is assumed to be increasing in both arguments, strictly

concave and continuously differentiable. The stock of real balances enters

as a direct argument in the agent’s utility function because of the liquidity

services facilitating transaction making that money provides. This shortcut

for incorporating money into general equilibrium models is widespread and

is adopted for example by two recent graduate texts in this field (Obstfeld

and Rogoff [1996] and Walsh [1998]).

There is one consumption good at each date with price P , cs therefore

being the individual’s real consumption of this good on date s. There are

two assets in the economy: fiat moneyM and bonds B offering a one-period

nominal return i (is ≥ 0 ∀s), and each period the government makes a lump-
sum real transfer of τ to the agent. Notice that both y and τ are taken to be

the same for all agents alive. A note on the timing convention adopted: Bυ
s+1

denotes individual υ’s nominal bond holdings at the beginning of period s+1,

i.e. prior to that period’s interest payment; Mυ
s though represents the same

individual’s nominal cash holdings at the beginning of period s+ 1.

Define household υ’s real cum dividend financial wealth available at the

beginning of period s+ 1, as aυs+1:

aυs+1 ≡
(1 + is+1)B

υ
s+1

Ps+1
+
Mυ
s

Ps+1
(4)
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A key assumption of the model is that new cohorts are not linked to pre-

existing cohorts through operative gifts, as captured by the initial condition

ass = 0 ∀s > 0 (with a00 > 0).
Using (4), the flow budget constraint (3) can be rewritten in terms of a:

aυs+1
1 + rs+1

= aυs + ys + τs − bcυs (5)

where bcυs ≡ cυs + ³ is+1
1+is+1

´
Mυ
s
Ps

represents “full consumption” — the sum of

consumption on goods plus the opportunity cost of holding financial wealth

in monetary form (see Sachs [1980]). Given this set-up, we also require a

condition prohibiting the household from engaging in Ponzi schemes:

lim
T→∞

aυs+TQT
j=s+1 (1 + rj)

≥ 0 (6)

This standard problem in dynamic optimisation yields the following well-

known first order conditions:

uc

µ
cυs ,
Mυ
s

Ps

¶
= β (1 + rs+1)uc

µ
cυs+1,

Mυ
s+1

Ps+1

¶
(7)

um

³
cυs ,

Mυ
s
Ps

´
uc

³
cυs ,

Mυ
s
Ps

´ =
is+1

1 + is+1
(8)

(1 + rs+1) = (1 + is+1)
Ps
Ps+1

(9)

lim
T→∞

aυs+TQT
j=s+1 (1 + rj)

= 0 (10)

Given {ys, τs}∞s=υ and the initial condition of zero financial wealth at birth,
conditions (7), (8), (9), (5) and (10) fully characterise this household’s op-

timal program.
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2.2.1 Household υ’s Consumption Function

In order to derive a closed form expression for this household’s consumption

function we must first specify preferences. We opt for the rather restrictive

additively separable, logarithmic1 form:

u

µ
cυs ,
Mυ
s

Ps

¶
= log cυs + χ log

Mυ
s

Ps
(11)

Additive separability allows us to abstract from an alternative real bal-

ance effect working through the cross derivative term, ucm, as discussed in

the introduction, while logarithmic utility facilitates the algebra involved in

solving for the household’s consumption function.

Combining (11) with (7) and (8) gives:

cυs+1 = β (1 + rs+1) c
υ
s (12)

Mυ
s

Ps
= χ

µ
1 + is+1
is+1

¶
cυs (13)

Notice that under this set of preferences, full consumption will simply be

proportional to goods consumption in equilibrium:

bcυs = (1 + χ) cυs (14)

and as a result its dynamics will also be governed by (12).

Equation (5) can be recursively solved forward from date s ≥ υ to obtain

the household’s lifetime budget constraint:

∞X
i=s

1Qi
j=s+1 (1 + rj)

bcυi = aυs + ∞X
i=s

1Qi
j=s+1 (1 + rj)

(yi + τ i) (15)

1The aggregation procedure we adopt later on restricts us to using homothetic prefer-
ences in any case.
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where
Qs
j=s+1 (1 + rj)

−1 is interpreted as 1,
Qs+1
j=s+1 (1 + rj)

−1 as (1 + rs+1)−1

and so on.

Combining (15) with (12) and (14) leads to household υ’s optimal full

consumption at date s:

bcυs = (1− β) (aυs + ht) (16)

where hs ≡
P∞
i=s

1Qi
j=s+1(1+rj)

(yi + τ i) is the human wealth of cohort υ as

of date s ≥ υ. Given (14), it is a straightforward matter to solve for the

optimal goods consumption function linking consumption to total household

wealth:

cυs = κ (aυs + hs) (17)

where κ ≡ 1−β
1+χ is the marginal propensity to consume out of wealth. Full

consumption is thus simply proportional to the sum of human and nonhuman

wealth, following the permanent income hypothesis.

2.3 Per Capita Relationships

For any variable, xυs , the corresponding per-capita variable at date s, denoted

xs, is simply given by2:

xs =
x0s +

Ps
υ=1 n (1 + n)

υ−1 xυs
(1 + n)s

(18)

Applying this linear aggregation procedure to expressions (16), (13), (4),

(5) and to the relationship between consumption and full consumption (14),

one derives the following:

bcs = (1− β) [as + hs] (19)

2Vintage υ = 0 has N0 = 1 members. Total population next period is N1; of this
total, N1 − N0 = (1 + n) − 1 are of vintage υ = 1. Similarly, vintage υ = 2 contains
N2 −N1 = (1 + n)

2 − (1 + n) = n (1 + n) members, and so on. Total population at date
t equals Nt = (1 + n)

t.
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Ms

Ps
= χ

µ
1 + is+1
is+1

¶
cs (20)

as+1 ≡ (1 + is+1)Bs+1
Ps+1

+
Ms

Ps+1
(21)

at+1 =

µ
1 + rt+1
1 + n

¶
(at + yt + τ t − bct) (22)

bcs ≡ cs + is+1
1 + is+1

Ms

Ps
= (1 + χ) cs (23)

While (19), (20) and (21) are straightforward analogs of (16), (13) and

(4), a comparison of (22) to (5) reveals that per capita financial wealth grows

at a slower rate than each individual household’s financial wealth, as newly

born households start their lives without money and bonds by assumption.

This property (also present in Blanchard [1985]) plays a crucial role in our

results.

2.3.1 The Per Capita Consumption Euler Equation

When we attempt to convert the household consumption Euler equation

(12) into per capita terms using our aggregation method, however, the con-

sumption of the newly born cohort does not drop out:

β (1 + rs+1) cs = cs+1 + n
¡
cs+1 − cs+1s+1

¢
(24)

This equation has a simple interpretation. Notice, first of all, that for

n = 0, (24) simply reduces to the standard consumption Euler equation for

representative agent models. Such a result would also occur, were it the case

that average consumption in the population, cs, were equal to consumption

of the newborn, cs+1s+1. This cannot be the case, however, as the new cohort
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are born with no nonhuman wealth by assumption and as a consequence,

their consumption must be less than the average level in the population.

This “disconnectedness” — to use Weil’s term — depresses the growth rate of

aggregate consumption and gives rise to non-Ricardian results.

We derive the per capita consumption Euler equation in terms of only

per capita variables in two steps: we inially derive the Euler equation for

full consumption and then relate this expression directly to c. Using the per

capita full consumption function (19) to solve out for a in (22) yields the

following equation:

· bcs
1− β

− ht − (bcs − ys − τs)

¸
1 + rs+1
1 + n

=
bcs+1
1− β

− hs+1 (25)

Upon further simplification, this equation can be transformed into a

relationship linking the optimal time path of full consumption to the stock

of human wealth:

β

1− β

µ
1 + rs+1
1 + n

¶bcs = bcs+1
1− β

− n

1 + n
hs+1 (26)

For our purposes in this paper, it is more useful to work with this rela-

tionship in terms of nonhuman wealth, however. Substituting out for ht+1

using (19) yields the per capita Euler equation for full consumption:

β (1 + rs+1)bcs = bcs+1 + n (1− β)as+1 (27)

The per capita Euler equation for goods consumption then follows di-

rectly from (23):

β (1 + rs+1) cs = cs+1 +
n (1− β)

1 + χ
as+1 (28)

This is the central equation in the paper. Comparing (28) with (24), we

see that the difference between average consumption and consumption of the
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newly born is simply the marginal propensity to consume times aggregate

nonhuman wealth. The higher the level of nonhuman wealth, the greater the

difference cs and cs+1s+1 and the lower the optimal growth rate of aggregate

consumption.

2.4 Pricing Assumptions

We model the supply side in an extremely simplistic fashion. Denote the

current period as s = t. The current price level is assumed to be fixed

exogenously, Pt = P t, whereas the sequence of future price levels, {Ps}∞s=t+1,
are assumed to be perfectly flexible. In addition to this, there exists each

period an exogenous, constant, “full capacity” level of output, y, which the

economy needs to reach to prevent a recession. One may thus imagine the

current supply curve as a horizontal line at P t, with full capacity chosen

exogenously; clearly, nothing prevents current output deviating from this

level and so yt, in period t is endogenous. For all future periods, however, the

supply curve will be vertical at the full capacity level (hence the output gap

will be zero) and the price level rather than the output gap is endogenous.

2.5 Policy Regime

In order to close the model, it remains to specify the government’s fiscal

and monetary policy. Govenment activity here is restricted to the printing

of (or destruction of) money; both government consumption and the stock of

public debt are assumed to be zero at every point in time3. More specifically,

monetary policy is specified by a positive, exogenous sequence of per capita

money supplies {Ms}∞s=t. Fiscal policy in turn is specified so that each

3We make these assumptions in order to focus on the monetary aspects of the model. As
the Ricardian debt neutrality proposition does not hold in this overlapping generations
set-up, however, the zero public debt assumption is not an entirely innocuous one. In
particular, the equivalence between transfers or Friedman-style helicopter-drops and open
market operations breaks down here as we discuss in more detail later on.
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element of the sequence {Bs}∞s=t equals zero. The government’s flow budget
constraint, in nominal per capita terms, is therefore given by:

Psτs =Ms − Ms−1
1 + n

(29)

∀s ≥ t.

3 Macroeconomic Equilibrium

3.1 Aggregate Consistency Conditions

In equilibrium, the goods and asset markets must clear:

cs = ys (30)

as =
Ms−1
Ps

(31)

∀s ≥ t. As, by assumption, output is not storable and the government

does not issue debt, the latter condition states that all aggregate nonhuman

wealth must be held in the form of real balances. Through (31), we therefore

abstract from the usual critique of the Pigou effect, originally due to Kalecki

[1944], that, being dwarfed in relative magnitude by other outside assets,

increases real balances of all but extremely large magnitudes will fail to

have a sizeable impact on aggregate financial wealth. Our framework would

thus seem to be heavily biased towards finding in favour of the Pigovian real

balance effect.

Combining (28) and (20) with the market clearing conditions (30), (31)

and our assumptions on pricing and technology gives:

β (1 + it+1)
P t
Pt+1

yt = y + nκ
Mt

Pt+1
(32)
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Mt

P t
= χ

µ
1 + it+1
it+1

¶
yt (33)

3.2 Perfect Foresight Equilibrium

A perfect foresight equilibrium is a set of solutions yt, {Ps,is}∞s=t+1 satisfying
(32), (33), non-negativity constraints on real balances, Ms

Ps
≥ 0 ∀s ≥ t, and

each cohort’s consumption at birth, css ≥ 0 ∀s ≥ t, and the exogenous set of
sequences {Ms, y}∞s=t.

The solution method we employ is to first of all solve for the sequence

of flexible prices, {Ps}∞s=t+1, and future nominal interest rates, {is}∞s=t+2,
and then use the solution for Pt+1 to find current values of output and the

nominal interest rate.

3.2.1 Solving for the Path of Future Prices and Interest Rates

Combining (32) with (33) and a little algebra (see part 1 of the appendix

for details), we arrive at the basic law of motion governing the dynamics of

real balances, m ≡ M
P (or equivalently the price level) in periods t+1, t+2

and so on:

mt+1 = χy + βmt+2y

·µ
µt+2
1 + n

¶
y + nκmt+2

¸−1
≡ θ

¡
mt+2, µt+2

¢
(34)

where µs ≡ (1 + n)Ms/Ms−1 denotes the gross growth rate of the aggregate

nominal money stock between periods s − 1 and s. As mt+1, like Pt+1, is
a nonpredetermined, “jump” variable, (34) must be solved in a forward-

looking manner, in which mt+1 is determined as the value that causes the

resulting sequence {ms}∞s=t+2 to be non-divergent. For this sequence to also
be unique, we require the usual saddlepath condition that the derivative

of the right-hand side of (34) with respect to mt+2 at the steady state is

strictly less than one in absolute value. In general, this solution will make
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mt+1 a function of the entire future sequence of money growth rates. If we

make the simplifying assumption that these growth rates are constant from

period t+ 1 onwards at µ, however, then the unique non-explosive solution

to (34) will be the steady state value, m∗.

The steady state solution to (34) solves the following quadratic polyno-

mial:

Ψ (m∗) ≡ nκ
µ
(m∗)2 + y

µ
1− χnκ

µ
− β (1 + n)

µ

¶
m∗ − χ (y)2 = 0 (35)

The equation has two distinct real roots, but only its largest root satisfies

the requirement that real balances be non-negative, and this is given by:

m∗ = φ (n, µ) y (36)

where φ (n, µ) ≡ 1
2nκ

½
− [µ− χnκ− β (1 + n)] +

q
[µ− χnκ− β (1 + n)]2 + 4χnkµ

¾
.

As in the representative agent model with logarithmic preferences, the steady

state here has a unit income elasticity of money demand.

The price level in period s, for s ≥ t+ 1, is therefore given by:

Ps = (µ)
s−(t+1) Mt+1

φ (n, µ) y
(37)

Solving for the sequence of future nominal interest rates is even more

simple. Rearranging (33), we see that the nominal interest rate in all future

periods s ≥ t+ 1 will be constant at:

is =
χ

φ (n, µ)− χ
(38)

3.2.2 The IS-LM Equilibrium

We are now ready to solve for the current level of output and the nominal

interest rate. For this purpose, we combine (32) and (33) with (37) to form
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a system of two equations in two unknowns:

yt = β−1 (1 + it+1)−1
·

Mt+1

φ (n, µ)P t
+ nκ

Mt

P t

¸
(39)

Mt

P t
= χ

µ
1 + it+1
it+1

¶
yt (40)

As is common practice in monetary theory papers nowadays, we will

label (39) and (40) microfounded IS and LM curves, in reference to the

famous workhorse model of undergraduate macro textbooks. Whilst the re-

semblance of (40) to a Hicksian LM curve is clear enough, the connection

between (39) and the Hicksian IS curve breaks down in one crucial aspect:

the presence of period t real balances on the right hand side when n > 0.

As an implication, this framework has the interesting property that there

exists a positive relationship between current real balances and current out-

put, holding constant the real interest rate. My claim is that, of all the

microfounded real balance effects discussed in this paper, this particular

mechanism comes closest to the one advocated by Pigou [1943] in his rebut-

tal to Keynes’ challenge to classical theory. But first, let us discuss how this

feature alters the determination of income and the nominal rate.

Rearranging (40) to substitute out for it+1 in (39) yields the following

aggregate demand curve:

yt =
Mt

P t

(
β
Mt

P t

·
Mt+1

φ (n, µ)P t
+ nκ

Mt

P t

¸−1
+ χ

)−1
(41)

≡ y (Mt,Mt+1, n)

The transmission mechanism works as follows. Holding constant Mt+1,

when the monetary authority increasesMt, this has two effects on incentives

for current spending: (i) a standard liquidity effect leading to a fall in it+1

and the real interest rate, rt+1; and (ii) a real balance effect, whereby the
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policy change leads to an increase in aggregate nonhuman wealth at the

beginning of period t+ 1. This, in turn, decreases the optimal growth rate

of average consumption and as future consumption is fixed at y, that means

higher consumption and output today. We provide further intuition for this

latter effect below. When the monetary authority increases Mt+1, there is

an expected inflation effect which raises Pt+1 and lowers real interest rates.

The first and second arguments in the function y therefore have positive

partial derivatives.

4 The Liquidity Trap

4.1 Money, Wealth and the Pigou Effect

Our purpose in this paper is to analyse this transmission mechanism in ex-

tremis when the economy is caught in a liquidity trap, defined as in Aikman

[2000]:

Definition 1 A liquidity trap will be said to occur whenever temporary

changes in the current nominal stock of money — that is, changes in Mt

which leave the sequence {Ms}∞s=t+1 unchanged — are incapable of matching
aggregate demand with full capacity output.

We initially characterise the n = 0 case4. In order to establish that

liquidity traps are possible in representative agent models, it suffices to

show that limMt−→∞ yt < y for some feasible shock. Setting n = 0 in (41)

implies:

yt =
Mt+1

³
1− β (µ)−1

´
χP t

³
β + Mt+1

Mt

³
1− β (µ)−1

´´ (42)

4The reader may wish to consult Aikman [2002] for a more complete description of this
case.
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Taking the limit as the nominal money stock is expanded without bound

gives:

lim
Mt−→∞

yt =
Mt+1

³
1− β (µ)−1

´
βχP t

(43)

Graphically, this represents the level of demand where the IS curve crosses

the horizontal axis in (yt, it+1) space. It is perfectly feasible that this level

of demand lies below y. Starting from yt = y, a permanent time preference

shock5, for instance, which raised β sufficiently high could cause such an

outcome. In IS-LM terms, this shock would shift the IS curve (drawn for a

given level of expected inflation) leftwards and if the shock was of sufficient

magnitude, this could cause the horizontal intercept of the curve to lie below

y. The condition for this to occur is:

β >
Mt+1

Mt+1 (µ)
−1 + yχP t

(44)

⇐⇒ β >
Pt+1

P t
(45)

Such a shock is certainly feasible, provided expected inflation as of period t

is negative.

We now turn our attention to the more interesting n > 0 case. Taking

the limit of (41), we find that as Mt →∞, (41)→ Mt
Pt

³
β
nκ + χ

´−1 →∞. As
the supply of money is expanded to infinity, therefore, aggregate demand

increases without bound. This fact, therefore, may lead us to conclude that

the real balance effect generated by this framework completely eliminates

the possibility of a liquidity trap as defined above.

5Following Krugman [1998], Aikman [2002] considered a shock that permanently re-
duced the full capacity level of output from period t + 1 onwards. Our use of loga-
rithmic preferences, combined with the assumption that policy sets exogenous monetary
targets implies that such a shock would not cause a trap here (see Aikman [2002] for fuller
discussion).
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4.1.1 Monetary Wealth Effects

Why is it that a real balance effect operating through wealth only occurs

when n > 0? To gain a general insight into the mechanism at work, let us

begin by noting that (22) can be integrated to yield the per capita lifetime

budget constraint:

∞X
i=t

λi

·
ci +

µ
ii+1

1 + ii+1

¶
Mi

Pi

¸
=
Mt−1
Pt

+
∞X
i=t

λi (yi + τ i) (46)

where λi ≡ (1+n)i−tQi
j=t+1(1+rj)

is the discount factor. As we show in part 2 of the

appendix, (46) can be combined with (28) and (31) to equivalently express

the per capita consumption function as:

ct = ∆

Ã
Ωmt +

∞X
i=t

λiyi

!
(47)

where ∆ ≡ 1 − β (1 + n) and Ωmt is defined as the economy’s real net per

capita monetary wealth:

Ωmt ≡
Mt−1
Pt

+
∞X
i=t

λiτ i +
nκ

∆

∞X
i=t+1

λi
Mi−1
Pi
−

∞X
i=t

λi

µ
ii+1

1 + ii+1

¶
Mi

Pi
(48)

We initially analyse Ωmt for the n = 0, representative agent case. Here,

the third term on the right-hand side of (48) drops out, and net per capita

wealth will be the sum of nonhuman monetary wealth (Mt−1
Pt
) and human

monetary wealth (the discounted value of the stream of real transfers), less

the present discounted value of the sequence of opportunity costs incurred

when wealth is held in monetary form.

As we show in part 2 of the appendix, Ωmt ≡ 0 when n = 0, for all paths
of real and nominal interest rates, . This result, originally due to Sachs

[1980] and Cohen [1985] — who both prove it for the continuous time case
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— explains why the representative agent model analysed by Krugman does

not display a real balance effect. With Ωmt equal to zero, (47) implies that

monetary policy will only influence demand to the extent that it influences

the equilibrium path of real interest rates in
P∞
i=t λiyi.

Intuitively, without population growth, the households owning the cur-

rent money stock are exactly the same households who receive all the trans-

fers and incur all the opportunity costs involved in carrying the money stock.

These three components of wealth always exactly cancel when n = 0. As

Weil [1991] discusses, this result is a modality of the Ricardian debt neu-

trality proposition, and as we now go on to show for the n > 0 case, the

conditions that cause Ricardian equivalence to break down are exactly the

same conditions required for money to enter the model as net wealth.

When n > 0, as we show in the appendix, Ωmt can be computed as:

Ωmt =

µ
n

1 + n

¶
Mt−1
Pt

+
nκ

∆

∞X
i=t+1

λi
Mi−1
Pi

> 0 (49)

In this case, the real value of current monetary wealth exceeds the present

discounted value of the future opportunity costs of holding money incurred

by the currently alive consumers. This is because future opportunity costs

fall partly upon future cohorts whose consumption is not valued by agents

currently alive. Money is therefore net wealth in the sense that the stock of

money enters the consumption function in a nontrivial way.

4.2 Intergenerational Effects and a Very Keynesian Conclu-

sion

When n = 0, the monetary authority can, in principle, engineer temporary

changes in the current stock of money of any size. This is because the

representative household in that case can always use its current stock of

real balances to finance the lump-sum taxes required to contract the money
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supply in future. When n > 0, however, this is not the case; households

born in period t+1 have zero initial financial wealth and the growth rate of

the money stock between periods t and t+ 1 must be sufficiently high that

these households can afford to pay the taxes and still consume. Part 3 of

the appendix shows that the nonnegativity constraint on ct+1t+1 holds if and

only if:

Mt ≤ cMt ≡ Mt+1

φ (n, µ)κ
(50)

Intuitively, if Mt becomes too large relative to Mt+1, the lump-sum tax

required to contract the money supply in period t + 1, τ t+1, will be so

high that human wealth as of period t + 1 will be negative. As the newly

born cohort in t + 1 have no other assets to fall back on, such a path for

the money supply would imply negative consumption for this cohort. The

nonnegativity constraint on ct+1t+1 will, of course, also have implications for

the set of feasible long run rates of growth of the money stock, and we also

characterise this set in part three of the appendix.

This brings us directly back to our analysis of the possibility of liquidity

traps occurring when n > 0. We showed above that aggregate demand in this

case expands without bound in the limit as the money supply is increased

to infinity and put forward the claim that this ruled out the possibility of

a liquidity trap occurring under this paper’s definition. It is now clear,

however, that such reasoning was incorrect, as temporary increases in the

stock of money of this size would violate the nonnegativity constraint on the

consumption of the newly born in t+ 1, (50).

The correct question, therefore, is whether y
³cMt,Mt+1, n

´
can possibly

lie below the full capacity level of output. Evaluating this expression, we

find that the maximum feasible level of demand when n > 0 is:

lim
Mt−→cMt

yt =
Mt+1 (1 + n)

P tφ (n, µ) [β + χκ (1 + n)]
(51)
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The maximum level of demand is therefore proportional to Mt+1

P
, with

the coefficient of proportionality simply being a collection of parameters that

are independent of y. Without a priori restrictions on technology and tastes,

therefore, it is clear that nothing prevents y
³cMt,Mt+1, n

´
lying below y and

we can conclude that, in principle, liquidity traps are certainly possible when

n > 0.

More practical readers may still be wondering, however, whether such an

outcome represents anything other than a remote possibility? As a prelimi-

nary step in shedding some light on the problem, multiply both numerator

and denominator by Pt+1 and use the steady state solution for real balances

(36); we find that aggregate demand will lie below y if and only if:

Pt+1

P t
<

β

1 + n
+ χκ (52)

Given that n, χ and κ are all likely to be small numbers, the expected

deflation required to cause a liquidity trap when n > 0 would not appear to

be that different from the n = 0 case, suggesting that the incorporation of

the real balance effect does not offer substantially greater protection from a

liquidity trap. We now sharpen this reasoning with a simple calibration of

the model’s key parameters.

If we take a period to equal one year, then a value of 0.957 for the sub-

jective time discount factor, β, would correspond to Cooley and Prescott’s

[1995] calibration. For the steady state annual growth rate of the nominal

money stock, we choose 5 percent, implying µ = 1.05. Following Ireland

[2001], we calibrate the annual population growth rate, n, at 1 percent (a

value also considered by Weil [1991]) and finally χ is set at 0.0127, a value

that implies that the ratio of real money balances to real output in the steady

state is 0.16. Walsh [1998] argues that such a value roughly corresponds to

the real value of M1 relative to GDP in the U.S. in the early 1990s.

These parameter values imply that the deflation rates (− ¡Pt+1/P t − 1¢)
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required to cause a liquidity trap in the n = 0 and n > 0 cases are 4.3 percent

and 5.2 percent respectively. Furthermore, we can apply these values directly

to (43) and (51) to obtain expressions for the maximum feasible levels of

demand (as a function of Mt+1 and P t) resulting from temporary changes

in Mt. When n = 0, limMt−→∞ yt = 7.29
Mt+1

P t
; when n > 0, lim

Mt−→cMt
yt =

6.31Mt+1

P t
. The maximum feasible level of demand when the real balance

effect is operative therefore lies to the left of the level without the real

balance effect! This outcome is sketched in figure 1 below:

LM’

IS’’

IS’

C
B

IS’

C
B

A

yf

LM

0

it+1

ytIS

A

yf

LM

0

it+1

ytIS

Figure 1: A Liquidity Trap With and Without the Real Balance Effect
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In each case, we begin at point A, where demand equals the full capacity

level of output. Following the increase in β, the IS curve shifts leftwards to

IS’, implying a new equilibrium at point B. The central bank, wishing to

restore the full capacity equilibrium, then raises Mt and this shifts the LM

curve rightwards as in the textbook IS-LM model, but also the IS curve

rightwards when n > 0. The movement from B to C represents the largest

feasible effect on demand with and without the real balance effect. In the

upper diagram, which corresponds to the n = 0 case, the current money

supply is expanded to infinity and this brings nominal interest rates down

to zero; nevertheless, the horizontal intercept of IS is the highest level of

demand feasible. When n > 0, however, the upper bound to Mt is cMt

rather than ∞, and as the lower diagram illustrates, under our back-of-the-

envelope calibration, the highest feasible level of demand is actually less

than in the former case.

What then is the intuition for this perhaps at first sight surprising degree

of policy ineffectiveness in the model incorporating the real balance effect?

The result becomes even more surprising when we apply our calibration to

the money growth constraint (50): it permits the central bank to expand

the current money stock to 147 times its t + 1 value! So what is driving

the ineffectiveness result? The answer becomes clear once we examine the

magnitude of the real balance effect under our chosen calibration. The

size of this effect is effectively determined by the product nκ and under

our parameter values, this is extremely small at 0.0004. Therefore, while

the constraint (50) allows for truly enormous gyrations in the money stock

between periods t and t+1, the real balance effect is so weak that even these

movements have little impact on demand.

Our results, therefore, contrast sharply to those of Ireland [2001]. Rather

than eliminating the possibility of liquidity traps occurring, the real balance

effect generated by this model makes a trap more likely as it heightens the
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constraints on the monetary authority.

5 Conclusion

In this paper, we have used Weil’s [1991] monetary, overlapping infinitely-

lived dynasties framework to analyse a microfounded version of the real

balance effect envisaged by Pigou. This effect appears to imply that tempo-

rary monetary expansions can have an unboundedly large impact on current

aggregate demand, thereby eliminating Krugman’s liquidity trap. The cir-

cumstances under which such an effect is operative, however, imply a condi-

tion that rules out temporary monetary expansions of this magnitude. We

then showed that for the set of feasible monetary expansions, liquidity traps

are possible and, under our simple calibration of the model, more likely.

This result contrasts sharply with Ireland [2001].

We conclude with some thoughts for further research using this frame-

work. The first topic would be to extend this paper to analyse the optimal

monetary response to shocks that cause a liquidity trap. Notwithstanding

the obvious difficulties in defining a social welfare function with heteroge-

neous agents, such a study would certainly be interesting as an OLG frame-

work is likely to yield very different results from the representative agent

case. The clearest such difference would surely revolve around the relative

merits of temporary versus permanent monetary expansions. As discussed

in this paper, temporary expansions imply an increase in future lump-sum

taxes and this will have proportionally the greatest impact on future cohorts

as they have no other assets to fall back on. As permanent monetary expan-

sions also have distributional consequences, we could analyse the optimality

of Krugman’s suggestion of credibly committing to being irresponsible.

A second avenue of research that might prove fruitful would be to com-

bine this framework with the expectational liquidity trap put forward by

Benhabib, Schmitt-Grohe and Uribe [2001], [2002]. Conceptually and ob-
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servationally quite distinct from Krugman’s liquidity trap, these authors

view the trap as a failure to coordinate expectations on the stable inflation

equilibrium. Self-fulfilling deflations are usually ruled out as possible per-

fect foresight equilibrium paths by appealing to the transversality condition.

Benhabib et al., however, specify a policy regime in which the transversality

condition necessarily holds, regardless of the evolution of the endogenous

variables, and so this argument cannot apply. Their policy regime has a

particular implication for the dynamic behaviour of financial wealth (money

plus bonds outstanding) and in our framework, this would influence, and be

influenced by, demand via the per capita consumption Euler equation.

6 Appendix

6.1 Deriving the Law of Motion Governing Real Balances

for Periods t+ 1 Onwards

Using (33) to substitute out it+1 in (32), and forwarding by one period, we

get the following difference equation in real balances:

β

µ
1 +

χy

mt − χy

¶
mt+1
mt

µ
1 + n

µt+1

¶
y = y + nκ

µ
1 + n

µt+1

¶
mt+1

Mutliplying out the brackets gives:

β
mt+1
mt

µ
1 + n

µt+1

¶
y+β

µ
χy

mt − χy

¶
mt+1
mt

µ
1 + n

µt+1

¶
y = y+nκ

µ
1 + n

µt+1

¶
mt+1

We then use the following trick:

β
mt+1
mt

µ
1 + n

µt+1

¶
y+

χy

mt

βµ mt
mt − χy

¶
mt+1
mt

µ
1 + n

µt+1

¶
y| {z }


= y + nκ
³
1+n
µt+1

´
mt+1

= y+nκ

µ
1 + n

µt+1

¶
mt+1
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Combining terms gives:

β
mt+1
mt

µ
1 + n

µt+1

¶
y =

µ
1− χy

mt

¶µ
y + nκ

µ
1 + n

µt+1

¶
mt+1

¶

Finally, multiplying through by mt
³
y + nκ

³
1+n
µt+1

´
mt+1

´−1
gives the

equation in the text.

6.2 Net Monetary Wealth

6.2.1 Deriving the Per Capita Consumption Function (47)

We begin by noting that by (28) after a little algebra yields:

ct +

µ
1 + n

1 + rt+1

¶
ct+1 +

(1 + n)2

(1 + rt+1) (1 + rt+1)
+ · · ·

= ct + (1 + n)

µ
βct − nκat+1

(1 + rt+1)

¶
+ (1 + n)2

µ
β2ct − βnκat+1

(1 + rt+1)
− nκat+2
(1 + rt+1) (1 + rt+2)

¶
+ · · ·

Upon further simplification, it is clear that the infinite sum can be writ-

ten as:

∞X
i=t

λici =
ct
∆
− nκ (1 + n) at+1

(1 + rt+1)∆
− nκ (1 + n)2 at+2
(1 + rt+1) (1 + rt+2)∆

− · · ·

=
ct
∆
− nκ
∆

∞X
i=t

λiai

where ∆ ≡ 1 − β (1 + n) and λi ≡ (1+n)i−tQi
j=t+1(1+rj)

. Combining this with the

per capita lifetime constraint and the asset market clearing condition (31)

then yields equation (47) in the text.
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6.2.2 Characterising Ωmt

We begin with the n = 0 case. The economy’s net per capita monetary

wealth will therefore be:

Ωmt =
Mt−1
Pt

+
∞X
i=t

1Qi
j=t+1 (1 + rj)

τ i −
∞X
i=t

1Qi
j=t+1 (1 + rj)

µ
ii+1

1 + ii+1

¶
Mi

Pi

Using the government budget constraint τ i =
Mi−Mi−1

Pi
, we can expand

the first two parts of this expression as follows:

Mt−1
Pt

+

µ
Mt −Mt−1

Pt

¶
+

1

1 + rt+1

µ
Mt+1 −Mt

Pt+1

¶
+

1

(1 + rt+1) (1 + rt+2)

µ
Mt+2 −Mt+1

Pt+2

¶
+ ·

=
Mt

Pt

µ
1− 1

1 + rt+1

Pt
Pt+1

¶
+

1

1 + rt+1

Mt+1

Pt+1

µ
1− 1

1 + rt+2

Pt+1
Pt+2

¶
+ · · ·

=

µ
it+1

1 + it+1

¶
Mt

Pt
+

1

1 + rt+1

µ
it+2

1 + it+2

¶
Mt+1

Pt+1
+ · · ·

where the latter equality comes from imposing the Fisher equation, link-

ing real and nominal interest rates. Clearly the first two terms in Ωmt are

identically equal to the third term and Ωmt ≡ 0.
For the case where n > 0, we continue to follow the same tack. Here,

net per capita monetary wealth will be:

Ωmt ≡
Mt−1
Pt

+
∞X
i=t

λiτ i +
nκ

∆

∞X
i=t+1

λi
Mi−1
Pi
−

∞X
i=t

λi

µ
ii+1

1 + ii+1

¶
Mi

Pi

Once again using the government’s flow constraint (29), we can expand

terms one and two in this expression:
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Mt−1
Pt

+

µ
Mt

Pt
− Mt−1
(1 + n)Pt

¶
+

1+ n

1 + rt+1

µ
Mt+1

Pt+1
− Mt

(1 + n)Pt+1

¶
+

(1 + n)2

(1 + rt+1) (1 + rt+2)

µ
Mt+2

Pt+2
− Mt+1

(1 + n)Pt+2

¶
+ · · ·

=

µ
n

1 + n

¶
Mt−1
Pt

+
Mt

Pt

µ
1− 1

1 + rt+1

Pt
Pt+1

¶
+

µ
1 + n

1 + rt+1

¶
Mt+1

Pt+1

µ
1− 1

1 + rt+2

Pt+1
Pt+2

¶
+ · · ·

=

µ
n

1 + n

¶
Mt−1
Pt

+

µ
it+1

1 + it+1

¶
Mt

Pt
+

1 + n

1 + rt+1

µ
it+2

1 + it+2

¶
Mt+1

Pt+1
+ · · ·

Adding this to terms three and four in Ωmt then gives the expression in

the text.

6.3 Restrictions on Admissible Monetary Policies

6.3.1 Ensuring that Consumption at Birth is Nonnegative

In equilibrium, we require that consumption at birth cυυ be nonnegative — a

necessary and sufficient condition guaranteeing that cυs ≥ 0 for all s > υ ≥ t.
Since dynasties are born with zero financial wealth, this amounts — when

n > 0 — to imposing the restriction that human wealth be nonnegative (see

(17)). From (19) and (23), with the prior imposition of the market clearing

conditions (31), (30), this restriction is equivalent to the following condition:

Ms−1
Ps

≤ ys
κ

∀s ≥ t. For s = t+ 1 and using (37), this inequality implies a lower bound
for the feasible set of growth rates for the nominal money stock between

periods t and t+ 1:

Mt ≤ cMt ≡ Mt+1

φ (n, µ)κ
(A1)

For s = t+2, t+3 and onwards, it implies an upper bound for the steady
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state level of real balances:

m∗ ≤ µy
κ

From the definition of the quadratic polynominal Ψ (m∗), an equivalent

way of stating the above inequality is Ψ
³
µy
κ

´
≥ 0. Simplifying, this implies

a lower bound to the feasible set of steady state monetary growth rates, µ:

µ ≥ χκ+ β (A2)

6.3.2 The Saddlepath Condition for mt+1 = θ
¡
mt+2, µt+2

¢
In addition to the above, we also require a restriction on the steady state

money growth rate to ensure that (34) has a saddlepath solution. As usual,

this amounts to requiring that the derivative of θ
¡
mt+2, µt+2

¢
with respect

to its first argument be less than unity at the steady state, or equivalently:

βµ < (1 + n)

·
µ

1 + n
+ nκφ (µ, n)

¸2
(A3)

This condition implicitly places a lower bound on the admissible rate of

money growth in the steady state, µ. Notice that, when n = 0, (A3) reduces

to the standard requirement that the per capita rate of money growth exceed

the discount factor, β. Depending upon the particular calibration chosen,

one of the conditions (A2) and (A3) will in general be redundant.
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