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Abstract
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1 Introduction

In many economic situations, the optimal action of an economic agent is comple-

mentary to the actions undertaken by other agents. For example, a consumer's

payo® from buying a computer software typically increases as the number of con-

sumers who use this technology increases. One reason for this is a direct network

e®ect. The amount of people with whom the consumer can exchange relevant data

increases. Another is an indirect network e®ect. The more popular the software,

the more likely complementary products are o®ered. Such indirect network e®ects

are common. Consider a consumer deciding on whether or not to buy a video

recorder (CD player or DVD player). As there are more users, more videos (CD's

or DVD's) will become available to the consumer. Or, think of a consumer who

decides to buy a durable consumption good such as a car. As more consumers buy

this brand of car, more repair shops will have the know-how and spare parts to

repair the car quickly. Complementarity of optimal actions is also a key ingredi-

ent of Diamond and Dybvig's (1983) famous bank-run model in which a player's

payo® from withdrawing depends on the actions undertaken by the other players.

Similarly, in Obstfeld's (1996) model of currency crises a speculative attack is only

successful if launched by a su±ciently high number of traders. Models of situations

in which the agents' optimal actions are complementary to each other are often

plagued by multiple equilibria with self-full¯lling beliefs: If a player expects the

other players to take the action (i.e withdraw in Diamond and Dybvig's model),

then it's in her best interest to withdraw as well. If a player expects the other

players not to withdraw, she wants to refrain from withdrawing. This multiplicity

result is annoying from an economic-policy point of view. Without an adequate

theory of equilibrium selection, one cannot use these theories to predict the sta-

bility of a ¯nancial system or of a currency peg nor can one predict the market

outcome in markets with network e®ects. How then does one judge, for example,

whether costly policies to enhance the stability of the ¯nancial system should be

implemented?

For two-player coordination games, Carlsson and van Damme (1993), henceforth

CD, developed an equilibrium selection theory, which was adopted to (a speci¯c)

coordination problem with a continuum of players by Morris and Shin (1998). CD

assume that the agents' payo®s depend on the action chosen by the other agent in

the economy and some unknown economic fundamental summarized by the state

of the world µ. Agents receive di®erent signals about µ; which generate beliefs
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about the state of the world and a hierarchy of higher order beliefs (beliefs about

the other agent's beliefs, beliefs about the other agent's beliefs about his beliefs,

etc...). 1 CD called this incomplete information game a global game and showed

that if the potential type space is rich enough, the game has a unique equilibrium.

Thus, the global game framework enables researchers to base policy recommenda-

tions on theory that predicts behavior in coordination games (e.g the probability of

a bank run or of a speculative currency attack). It has been used to model currency

crises (Morris and Shin (1998), Corsetti and al. (2000), ...), bank runs (Goldstein

and Pauzner (2000), Rochet and Vives (2000),...) and car-dealer markets (DÄonges

and Heinemann (2000)). All these papers are based on static models. In reality,

however, many economic coordination problems are essentially dynamic. Players

can always postpone their investment decisions (or their withdrawing decision) in

order to make a more informed decision at a later point in time. What happens in

a coordination game with incomplete information once we allow for strategic wait-

ing? To better understand this question let us ¯rst explain the logic underlying

any global game.

Consider a continuum of players who have the opportunity to undertake a risky in-

vestment, whose return depends positively on the realization of a random variable

and on the mass of investors. All players possess some noisy private information

concerning the realization of the random variable. Players who received a \very

high" signal always invest, since they believe that the state of the world is so good

that investing is always pro¯table - independent of the actions undertaken by the

other players. Consider now a player that possess a \high" but not a \very high"

signal. If she expects no other player to invest, then she would rather refrain from

investing. She knows, however, that all players with a very high signal invest.

Given her signal, it is equally likely that the other players received a higher or

lower signal than herself. Therefore, in equilibrium, she cannot expect that no

other player invests. As her signal is \high," her knowledge that everyone with a

very high signal invests is enough to induce her to invest as well. This will, in turn,

convince other players possessing a signal a little less favorable then hers to also

1Carlsson and van Damme's work is based on the insight developed in Rubinstein's (1989)
famous electronic mail game, in which he illustrated that the risk-dominated equilibrium of
the common knowledge game is selected as the unique equilibrium in the absence of common
knowledge. That heterogeneity of agents can lead to a unique equilibrium in situations in which
the agents actions are complementary to each other was shown earlier by Postlewaite and Vives
(1987) in a bank-run model.
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invest, etc... . This process of iterative elimination of dominated strategies stops

at the point where a player, who believes that everyone with a lower signal than

herself does not invest, is indi®erent between investing and not investing. Similar,

because it is a dominant strategy not to invest for players with \very low" signals,

players with low signals refrain from investing. Iteratively eliminating players for

whom it is a dominant strategy not to invest, there is a critical player who is in-

di®erent between investing and not investing if she believes that all players with a

higher signal than herself invest. With a uniform prior, the two iterative processes

stop at the same point and, hence, there is a unique equilibrium. This equilibrium

is characterized by a critical treshold, below which no player invests and above

which all players invest.

It is not clear, however, whether this line of reasoning can be extended to a dynamic

setting. In a dynamic setting, we would expect the most \extreme" players (e.g.

those players possessing a \very high" signal) to move ¯rst. Thus, the period-two

distribution of signals is a truncated one (and this is common knowledge). Given

that the \very high" types have invested at time one, do the \high" types then

still have a strong incentive to invest at time two, or do their investment incentives

depend on their expectations (of the other players' actions at time two)?

Furthermore, in many dynamic settings the bene¯t of moving early depends not

only on the aggregate mass of investors but also on when other players invest. Con-

sider, for example, a consumer buying a computer software early on. In the interim

period in which late movers have not invested yet, this early mover is subject to a

network e®ect depending on the mass of early movers only. Here, the intra-period

network e®ects between early investors are greater than the inter-period network

e®ects with late movers. We call this an early mover cohort e®ect. Similar, if the

intra-period network e®ects between second-period investors are greater than the

inter-period ones with ¯rst-period investors, we say that there is a late mover cohort

e®ect.2 Cohort e®ects yield an additional coordination aspect: when to invest. To

understand why cohort e®ects may matter, suppose that the inter-period network

e®ects are zero. Then one would expect an equilibrium to exist in which all players

invest in the ¯rst period and one in which all players invest in the second period.

That is, one would expect multiple equilibria to exist. This raises the question:

2In Section 3, we point out that both type of cohorts e®ects occur in dynamic situations in
which the network externality in a given period depends on the mass of players that are currently
active.
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Under what conditions do multiple equilibria exist with less extreme cohort e®ects?

To investigate the dynamic extension, we analyze a set-up identical to the one we

described above, with the exception that players can invest in either of two periods.

If a player waits, she gets a more informative signal (concerning the realization of

the random variable) at the cost of foregone pro¯ts. Our model is simple in the

sense that we assume a uniform distribution of period-one signals. Moreover, we

assume that each player at time two can either receive good or bad news and that

the second-period signal constitutes a su±cient statistic for a player's beliefs about

the random variable. This set of assumptions highly simplify the computation of

our equilibrium strategies and permit us to get closed-form solutions. This enables

us to investigate the role of cohort e®ects. We characterize for which parameter

values our model has multiple equilibria in symmetric switching strategies and

show that for some underlying economic interpretations our model exhibits multi-

ple equilibria while for others it does not. In particular, in the absence of cohort

e®ects, our model has a unique equilibrium in rationalizable strategies.

This is not the ¯rst paper to introduce dynamic elements in a global game. Morris

and Shin (1999) and Chamley (1999) studied a dynamic global game in which the

state of the world evolves stochastically through time. In each period all players

face a new investment opportunity and players observe a statistic correlated with

past realizations of the state of the world. In those models players have no incen-

tives to wait and act later on the basis of more information. Under some additional

assumptions, the authors show that each period can be analyzed as a static global

game. Thus, their models have a unique equilibrium.3

To the best of our knowledge, only Dasgupta (2001) introduced elements of strate-

gic waiting in a global game. Players can invest in two periods. If a player delays,

she observes a noisy signal about the past economic activity (at the cost of foregone

pro¯ts). Dasgupta shows that his game, under some additional assumptions on

the prior distribution and the signalling technology, is characterized by a unique

equilibrium in the class of switching strategies. The main di®erence between our

paper and Dasgupta (2001) is that we investigate cohort e®ects, which are not

present in his model in which payo®s depend only on the aggregate number of

investors. Another di®erence is that in his model one wants to delay to engage

3Frankel and Pauzner (2000) investigate a dynamic model in which investment opportunities
arrive at di®erent point in time. ...
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in social learning, while in our model a player delays to obtain a more precise signal.

The remainder of this paper is organized as follows. In section 2, we introduce

our formal model. In section 3, we relate the parameters of our model to di®erent

economic environments. In section 4, we analyze the model and characterize the

set of parameter values for which it has multiple equilibria. Final comments are

summarized in the ¯fth and ¯nal section. Appendix 1 derives the number of

investors as function of the realized fundamental and a given strategy pro¯le.

Some more technical proofs are relegated to Appendices 2, 3, and 4.

2 The model

Assume a continuum of risk-neutral players with mass one that are indexed along

the line [0; 1]. All players have the opportunity to undertake one risky investment

project. Investments are irreversible. A player can invest at time one, at time two,

or can decide not to invest at all. If player i decides to invest at time one, she gets

a utility U i1 equal to:

U i1 = µ + n1 + ®n2 ¡ 1;
where n1 (n2) denotes the mass of players who invest at time one (two). The state

of the world µ is randomly drawn from a uniform distribution along the entire real

line. A period-two investor enjoys a utility equal to:

U i2 = ¿(µ + °n1 + n2 ¡ 1¡¢):

If player i decides not to invest in any of the two periods, she gets zero. Through-

out, we assume that ¿; ®; ° 2 [0; 1] and that ¢ ¸ 0:We postpone the discussion of
the economic motivation for our payo® structure until the next section.

All players possess a private and imperfect signal concerning the realized state of

the world. Formally, player i's ¯rst-period signal, si1, equals:

si1 = µ + ²
i
2 + ²

i
1;

where ²i2 » U [¡²; ²] and ²i1 2 f¡²; ²g. The prior probability that ²i1 = ¡² equals 12 .
²i2 and ²

i
1 are independently distributed. Player i's second-period signal, s

i
2, equals:

si2 = µ + ²
i
2:
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The ¯rst- (and second-) period errors ²i1 (²
i
2) are uncorrelated among the di®erent

players.

Note that our model possesses some \desirable" features that highly simplify the

computation of our equilibrium strategies and enable a direct comparison with the

static counterparts of our model. First, note that si1 is constructed by adding noise

to si2. In statistical terms, this means that s
i
2 is a su±cient statistic for s

i
1. In par-

ticular, this implies that E(µjsi2; si1) = E(µjsi2). Second, we know that si2 = µ + ²i2.
This last equality can be rewritten as µ = si2 ¡ ²i2. Hence, µjsi2 » U [si2 ¡ ²; si2 + ²],
and E(µjsi2) = si2. Similar, one has µjsi1 » U [si1 ¡ 2²; si1 + 2²]; and E(µjsi1) = si1.
That is the errors are uniformly distributed in both periods. This ensures that if

players were only allowed to invest either in the ¯rst or in the second period, then

our game would be characterized by a unique equilibrium in switching strategies.4

To avoid confusion, we detail the timing of the game we study.

0) Nature chooses µ. All players receive their ¯rst-period signals.

1) All players simultaneously decide whether to invest or wait.

2) Player i observes whether ²i1 = ² or ²
i
1 = ¡² but not n1. If she did not invest at

time one, she decides whether or not to do so at time two.

3) All players receive their payo®s and the game ends.

Each player's action space A = finvest, not investg: Player i's observable history
at time one is H1 = fsi1jsi1 2 <g and at time two it is H2 = f(si1; si2)jsi1 2 <^ si2 2
fsi1 ¡ ²; si1 + ²gg: Let H = H1 [H2: A symmetric (pure) strategy of player i is a
(measurable) function ¾ : H ! A; with the interpretation that ¾(si1) represents

the action taken by player i at time one given her ¯rst period signal. ¾((si1; s
i
2))

represents the action taken by player i at time two given (si1; s
i
2). By assumption

player i can only invest once. Therefore we impose the following restriction on ¾:

If ¾(si1) =invest, then ¾((s
i
1; ¢)) =not invest. Throughout this paper, we focus on

symmetric switching strategies; that is strategies that can be parameterized by a

vector k ´ (k1; k2) with the interpretation that:
(i) ¾(si1) = invest if and only if s

i
1 > k1,

(ii) ¾((si1; s
i
2)) = invest if and only if s

i
2 > k2 and player i did not invest in period 1.

An equilibrium in symmetric switching strategies is a k¤ such that player i's strat-

4Using a similar argument to Morris and Shin (2001), this extends to an essentially unique
equilibrium in rationalizable strategies.
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egy is a best response at every information set given (i) his beliefs about the state

of the world, and given (ii) the equilibrium behavior of all other agents.

3 Economic Interpretations

In this section, we show that the payo® structure of our model accommodates a

wide variety of more speci¯c models.

Fixed Horizon Technology Adoption Problem (= FHTAP). Suppose players can

invest in a new technology with an unknown quality. This technology exhibits

positive network e®ects and becomes obsolete in period T + 1: For simplicity,

players are only allowed to invest in period 1 or period 2 and have a common

discount factor ±. Call a player who invested at time one (two) an (a) early (late)

adopter. When investing, players need to pay a setup cost s ¸ 0: The (net of

any per-period cost) return of the investment in period t (t = 1; :::; T ); is given by

vit =
~µ +mt; where mt denotes the mass of players who invest in period t or who

have invested earlier. Assume, for the sake of simplicity, that T = 2. In this case

the payo® of a player investing in period 1 is given by

V i1 = (1 + ±)
~µ + (1 + ±)n1 + ±n2 ¡ s;

and of a player investing in period 2 is given by

V i2 = ±(
~µ + n1 + n2)¡ ±s:

Setting µ = ~µ¡ s
(1+±)

+ 1 and using the following utility transformation U it =
V it
(1+±)

shows that this economic model is a special case of our model in which ® = ¿ =
±
1+±

< 1; ° = 1; and ¢ = ±
1+±
s:5

Note that at time one the early adopters do not enjoy any network bene¯ts from

the late adopters. Therefore early adopters care more about the mass of players

who bought the technology at time one than about the mass of players who bought

it at time two (which explains why in this case ® < 1). The FHTAP model can

be interpreted as a stylized model of the credit card industry. The more popular a

5If T > 2, one should set µ = ~µ¡ s
1+±+:::+±T¡1 +1 and use the following utility transformation:

U it =
V i
t

1+±+:::+±T¡1 . After some computations we then get that ® = ¿ =
±+:::+±T¡1
1+±+:::+±T¡1 ; ° = 1; and

¢ = ±T s
(±+:::+±T¡1)(1+±+:::+±T¡1) .
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credit card becomes, the more widespread its acceptance will be. Early adopters

of a credit card are therefore hampered by its small installed base in the sense

that they will ¯nd few shops willing to accept it. On the other hand, late movers

care as much about the mass of early as about the mass of late adopters (which

explains why in this case ° = 1).6 Whenever an early (late) adopter exhibits a

stronger preference for her fellow adopters to invest early (late), we say that our

model exhibits a cohort e®ect for the early (late) adopters.

Adopting a Technology with a Fixed Lifespan (=ATFL). Rather than assuming

that the technology becomes obsolete at time T + 1, suppose the technology, once

bought, can be used for T periods. For the sake of simplicity, assume that T = 2

(i.e. in this case an early adopter uses her technology at times one and two, while

a late adopter uses it at times two and three). If the setup remains otherwise

unchanged, one can use a similar procedure as above to show that this is a special

case of our model in which ¿ = ±; ® = ±° < ° = 1
1+±

< 1; and ¢ = 0.7

To illustrate this interpretation, consider the following example: Assume everyone

has the opportunity to buy a video player. The more people who buy a video

player, the higher the availability of video movies, video rental stores, etc. A video

player can only be used for two periods. Everyone knows that at time 3 the DVD

player will be introduced in our economy. As DVD technology is superior to video

technology, from time 3 on, no one wants to buy a new video player anymore.

However, people only switch to the superior DVD technology once their video

player becomes \too old" (i.e. early adopters switch to the superior technology at

time three, while late adopters switch to the new technology at time four). In this

set-up for the same reason as the one explained in our earlier interpretation, our

model exhibits a cohort e®ect for the early adopters. However, in this case late

adopters know that the installed base will become smaller at time three due to the

early adopters' switching to the new technology. Therefore, the ATFL model also

exhibits a cohort e®ect for late adopters.

Technology Adoption Problem with Partially Compatible Technologies (=TAPPCT).

Consider the same setup as in the Fixed Horizon Technology Adoption Problem

6In the credit card example, one may want to think about T as tending towards in¯nity.
7If T > 2 one must apply the utility transformation which appears in our earlier footnote.

One can check that the values of ¿ , ® and ¢ then remain unchanged. ° would then be equal to
1+±+:::+±T¡2
1+±+::::+±T¡1 .
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(with T = 2) except for the following two changes. First, assume that the early

adopters get the following per-period payo®s: vi11 =
~µ+ n1 and v

i
21 =

~µ+ n1+ ~®n2
(where vit1 denotes the payo® received by player i at time t (t = 1; 2) given that she

adopted the new technology at time one and where ~® 2 [0; 1)). Second, assume
late adopters get the following second-period payo®: vi22 =

~µ + ~°n1 + n2 (where

~° 2 [0; 1)). In this case the present value of adopting early equals

V i1 = (1 + ±)
~µ + (1 + ±)n1 + ±~®n2 ¡ s;

while a late adopter receives

V i2 = ±
~µ + ±~°n1 + ±n2 ¡ ±s:

Applying the same utility transformation to these payo®s as the one explained in

our FHTAP-interpretation, one can check that this interpretation is a special case

of our model in which ® = ~® ±
1+±

2 [0; 1), ° = ~°, ¿ = ±
1+±

and ¢ = ±
1+±
s.

For example, one can think of our players as consumers who choose whether or

not to buy a computer. Early adopters buy a computer equipped with Windows

3.11. Between time one and time two, the seller introduces a superior computer

equipped with Windows 95. As both operating systems are di®erent, a late adopter

can not always be helped by an early adopter whenever she faces a problem (and

vice versa). Therefore, in this example, there is a cohort e®ect for both the early

and the late adopters.

Pledging to Invest with Early Mover Advantage (=PIEMA). Suppose there are two

periods in which players can commit to invest into a project prior to the time in

which the project will take place. For example, ¯rms may commit to buy some land

in a soon-to-be developed industrial zone (or individuals may commit to become a

member of some club or lobbying organization). In the ¯rst period, the land is sold

at a lower price than in the second period (or there is a reduced membership rate).

The more players invest in either period, the better the infrastructure provided

(or the more exciting it will be to visit the club or the more in°uential will the

lobbying organization be). In period 3, all players that committed to invest pay

the amount due and start getting the bene¯t from the planned activity. This can

be captured by a model in which ® = ° = ¿ = 1 and ¢ > 0: This example is thus

void of any cohort e®ects.
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4 Analysis of Strategic Waiting

In this section, we ¯rst characterize the equilibria within the class of symmetric

switching strategies. Our characterization shows that cohort e®ects can lead to

multiple equilibria. We then prove that in the absence of cohort e®ects, there ex-

ists an essentially unique equilibrium in rationalizable strategies. We furthermore

discuss under what parameter conditions our model has a unique equilibrium in

class of symmetric switching strategies.

To solve the dynamic game, we show that every symmetric equilibrium in switching

strategies can be found by analyzing a system of equations. We start with some

useful de¯nitions. Let

h(si2; k) ´ si2 + E(°n1 + n2jsi2; k)¡ 1¡¢:(1)

h(si2; k) is the expected payo® of a player who invests in the second period after

getting a signal si2; expecting that all other players play the strategy k: Similar,

we de¯ne

W (si1; k) ´
¿

2
maxf0; h(si1 + ²; k)g+

¿

2
maxf0; h(si1 ¡ ²; k)g:(2)

W (si1; k) the gain of waiting for a player i with a signal s
i
1 who believes that all

other players play k. If player i postpones her investment decision, then with

probability 1/2 she will get \bad news," i.e. she will learn that at time one she

was to optimistic because ²i1 = +²:With probability 1/2, however, she will receive

\good news" in the sense that she will learn that ²i1 = ¡²: Equation (2) states that
player i's gain of waiting equals her expected second-period payo® given that she

will take an optimal second-period investment decision (i.e. not invest at time two

if and only if her gain of investing is negative). For brevity, de¯ne

g(si1; k) ´ si1 + E(n1 + ®n2 j s1i ; k)¡ 1¡W (s1i ; k):(3)

Trivially, it is optimal to invest in the ¯rst period for a player with a signal si1
(who believes that all his rivals play k) if and only if g(si1; k) ¸ 0.

A necessary condition for a strategy pro¯le k¤ in which k¤t <1 for t+1; 2 to be an

equilibrium (strategy pro¯le) in symmetric switching strategies is that it satis¯es

the following two equations:

g(k¤1; k
¤) = 0;(4)
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h(k¤2; k
¤) = 0:(5)

Equation (4), which can be rewritten as

k¤1 + E(n j k¤; s1i = k¤1)¡ 1 = W (k; s1i = k¤1);
states that a player possessing a ¯rst-period signal si1 = k¤1 must be indi®erent
between investing and waiting. Equation (5) says that a player who receives a

second-period signal si2 = k¤2 is indi®erent between investing and not investing.
In case k¤1 = 1; equation (4) must be replaced by the condition g(si1; k¤) · 0;

for all si1: That is it must be optimal to refrain from investing for all ¯rst period

signals. Similar, in case si2 =1; condition (5) must be replaced by the condition
h(k¤2; k

¤) · 0 for all si2:

If g(si1; k) (respectively h(s
i
2; k)) are monotonically increasing in s

i
1 (respectively

si2), then any strategy pro¯le k
¤ satisfying (4) and (5) is clearly an equilibrium strat-

egy pro¯le. However, note that in general h(¢) can be a function of E(n2 j ¢): In
some symmetric switching equilibria, players refrain from investing for su±ciently

low signals and all players invest immediately in the ¯rst period for su±ciently high

signals. For intermediate signals, however, players wait and invest in the second

period when receiving good news. In such a candidate equilibrium, h(¢) need not
be monotone in si2 as E(n2 j ¢) is not. When characterizing the set of symmetric
switching equilibria, we ¯rst look for candidate equilibria that solve equations (4)

and (5) and then carefully verify that these candidate equilibria are indeed equi-

libria. To economize on notation, we will from now on denote equilibrium strategy

pro¯les (and candidate equilibria) by k rather than k¤:

We refer to an equilibrium k in which no player invests in the second period as

an immediate investment equilibrium. Formally, k is an immediate investment

equilibrium if and only if k2 ¸ k1 + ²:

Proposition 1 There exists an immediate investment equilibrium if and only if

¢ ¸ ¡1
2
+ ²+ 3

4
°. In an immediate investment equilibrium k1 =

1
2
:

Proof: In an immediate investment equilibrium no player invests in the second

period. Hence,

h(si2; k) = s
i
2 + °E(n1jsi2; k)¡ 1¡¢:

As shown in Appendix 1, E(n1jsi2; k) is weakly increasing, and thus h(si2; k) is
strictly increasing in an immediate investment equilibrium. By de¯nition, we look
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for an equilibrium in which h(si2 = k1 + ²; k) · 0: Hence, the gain of waiting must
be equal to zero. Therefore, k1 must be set such that a player who possesses a

signal si1 = k1 is indi®erent between investing and not investing. Hence k1 solves

the following equation

k1 + E(n1 j si1 = k1; k)¡ 1 = 0:

Using Appendix 1 and the fact that

E(n1 j si1 = k1; k) =
1

4²

Z k1+2²

k1¡2²
n1(µ; k) dµ;

it is easy to verify that E(n1 j si1 = k1; k) = 1
2
: Thus, in an immediate investment

equilibrium k1 =
1
2
: Using this fact to rewrite the condition that no player has an

incentive to invest in the second period, i.e. that h(si2 = k1 + ²; k) · 0; gives
1

2
+ ²+ °E(n1 j si2 = k1 + ²; k) · 1 + ¢:(6)

Using Appendix 1 and the fact that

E(n1 j si2 = k1 + ²; k) =
1

2²

Z k1+2²

k1
n1(µ; k) dµ;

it is easy to verify that E(n1 j si2 = k1 + ²; k) = 3
4
: Substituting this into equation

(6) and rewriting yields ¢ ¸ ¡1
2
+ ² + 3

4
°; which is a necessary condition for an

immediate investment equilibrium to exist. Because we already established that

h(si2; k) is strictly increasing, it su±ces to show that g(¢) is (weakly) increasing to
show that an immediate investment equilibrium exists whenever ¢ ¸ ¡1

2
+ ²+ 3

4
°:

First, observe that for all si1 < k2 ¡ ²; one has

g(si1; k) = s
i
1 + E(n1 j si1; k)¡ 1;

which is strictly increasing in si1 because E(n1 j si1; k) is weakly increasing in si1.
Second, for all k2 ¡ ² < si1 < k2 + ²;

g(si1; k) = s
i
1 + E(n1 j si1; k)¡ 1¡

¿

2
h(si1 + ²; k):

Using Lemma (3), one can rewrite this equation as

g(si1; k) = (1¡
¿

2
)si1+

1

2
[E(n1 j si2 = si1¡²; k)+(1¡¿°)E(n1 j si2 = si1+²; k)¡¿²¡(2¡¿)+¿¢]:

13



Since E(n1 j si2 = si1 ¡ ²; k) and E(n1 j si2 = si1 + ²; k) are weakly increasing in

si1; and ¿; ° · 1; g(si1; k) is strictly increasing in si1 in this subcase. Third, for all
k2 + ² < s

i
1; one has

g(si1; k) = s
i
1 + E(n1 j si1; k)¡ 1¡

¿

2
[h(si1 ¡ ²; k) + h(si1 + ²; k)]:

Rewriting this equation using Lemma (3) yields

g(si1; k) = (1¡¿)si1+
(1¡ ¿°)

2
[E(n1 j si2 = si1¡²)+E(n1 j si2 = si1+²)]¡(1¡¿)+¿¢:

Since E(n1 j si2 = si1 ¡ ²) and E(n1 j si2 = si1 + ²) are weakly increasing in si1; and
¿; ° · 1; g(si1; k) is weakly increasing in si1 in this subcase. Q.E.D.

The parameter condition under which an immediate investment equilibrium exists

is intuitive. As the payo® reduction for late movers ¢ increases, players have an

incentive to move early and thus an immediate investment equilibrium is more

likely to exist. As ° decreases, a player who deviates in order to invest late en-

joys a smaller (inter-period) network e®ect, which makes deviating less attractive.

Hence, as ° decreases, an immediate investment equilibrium is more likely to ex-

ists. To understand why an increase in ² makes it harder to sustain an immediate

investment equilibrium, consider a player with a signal si1 = 1=2: This player is

uncertain about whether the fundamental µ is high enough to make his investment

pro¯table. As ² increases, more uncertainty about µ is resolved between period one

and two, which makes it more desirable to wait in order to receive more information.

To further understand the role of ²; it is useful to note that the expected network

bene¯t for a player with a signal si1 is 1/2 in an immediate investment equilibrium.

Formally, using Appendix 1 and the fact that

E(n1 j si1 = k1; k) =
1

4²

Z k1+2²

k1¡2²
n1(µ; k) dµ;

it is easy to verify that E(n1 j si1 = k1; k) =
1
2
: Intuitively, player i knows that

all players possessing a signal higher (lower) than hers invest (do not invest) at

time one. Player i asks herself the question: What is the mass of players who

received a ¯rst-period signal greater than k1? Player i knows that µ lies in a 2²

neighborhood of si1. If µ > si1, she knows that more than 1/2 of the population

possesses a signal higher than hers. Conversely, if µ < si1, she knows that more

than 1/2 of the population posses a signal strictly lower than hers. Given hat µjsi1

14



is symmetrically distributed around si1, player i knows that the event µ > s
i
1 is as

likely to occur as the event µ < si1. Therefore E(n1jsi1 = k1; (k1;1)) = 1=2. Stated
di®erently, player i always believes to lie in the center of the world. She always

expects half of the population to possess a signal strictly higher than hers, with

the other half possessing a signal strictly lower than hers.

Now, for simplicity, suppose that there is no late mover cohort e®ect ° = 0 and

that ¢ = 0: Then an immediate investment equilibrium does not exist whenever

² > 1=2: The intuition for this result is as follows: In an immediate investment

equilibrium a player with a signal si1 = k1 is indi®erent between investing and not

investing, which is the action she will take if she decides to wait. So her expected

payo® must be zero. Furthermore, as discussed above he expects half of the pop-

ulation to get a better signal than herself. So her expected gain from the network

e®ect is 1=2: But if ² > 1=2; this player could wait, forfeit the expected network

e®ect and only invest if she learns that she was to pessimistic. In this case her

expected payo® when getting good news changes by ² ¡ 1=2; while her expected
payo® when getting bad news remains zero. So if ² > 1=2 this is a pro¯table

deviation and an immediate investment equilibrium cannot exist.

We refer to an equilibrium (1; k2) in which no player invests in the ¯rst period as
a complete waiting equilibrium.

Proposition 2 A complete waiting equilibrium exists if and only if ¿ = 1 and

¢ · minf²+ 1
2
¡ ®

4
; 3
4
(1¡ ®)g: In a complete waiting equilibrium k2 =

1
2
+¢:

Proof: Using the fact that no player invests in the ¯rst period,

h(si2; k) = s
i
2 + E(n2 j si2; k)¡ 1¡¢:

Observe that n2(s
i
2; µ) is weakly increasing in µ; because as µ increases, (weakly)

more players receive a signal si2 ¸ k2: Hence,

E(n2 j si2; k) =
Z si2+²

si2¡²
n2(µ; k) dµ

is weakly increasing in si2: This implies that h(s
i
2; k) is strictly increasing in s

i
2:

Rewriting condition (5) gives

h(si2; k) = k2 + E(n2 j si2 = k2; k)¡ 1¡¢ = 0:
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It is easy to check that E(n2 j si2 = k2; k) = 1
2
; and hence k2 =

1
2
+¢: Since h(¢) is

increasing, it is optimal for all players in the second period to invest if and only if

si2 ¸ k2: We are left to check under what conditions it is optimal to refrain from
investing in the ¯rst period, i.e. g(si1; k) · 0 8si1.
Consider a player with a signal si1 > k2+3²: This player knows in equilibrium that

all (other) players invest in the second period. Hence,

g(si1; k) = s
i
1 + ®¡ 1¡ ¿ [si1 ¡¢]:

Rewriting, yields g(si1; k) = (1 ¡ ¿ )si1 ¡ (1 ¡ ®) + ¿¢: Fix any values of ®;¢; ¿:
If ¿ < 1; there exists a su±ciently high si1 such that g(s

i
1; k) > 0; ruling out

the existence of a complete waiting equilibrium in this case. Hence, a necessary

condition for a complete waiting equilibrium is that ¿ = 1:

From now on, let ¿ = 1: If si1 · k2¡ ²; it is optimal for player i not to invest in the
second period, independent of whether he gets good or bad news. Thus, in this

case

g(si1; k) = s
i
1 + ®E(n2 j si1; k)¡ 1:

Since, by the same reasoning as above, E(n2 j si1; k) is weakly increasing, g(si1; k)
is strictly increasing in this case and hence g(si1; k) < 0 8si1 < k2 ¡ ² if and only
if g(si1 =

1
2
+ ¢ ¡ ²; k) · 0: Using Lemma (3), E(n2 j si2 = k2 ¡ 2²; k) = 0; and

E(n2 j si2 = k2; k) = 1
2
; this simpli¯es to

1

2
+ ¢¡ ²+ ®

4
¡ 1 · 0;

which can be rewritten as ¢ · ²+ 1
2
¡ ®

4
:We conclude that g(si1; k) < 0 8si1 < k2¡²

if and only if ¢ · ²+ 1
2
¡ a

4
:

If si1 2 (k2¡ ²; k2+ ²); then it is optimal to invest in the second period if and only
if player i receives good news. Thus, in this case

g(si1; k) = s
i
1 + ®E(n2 j si1; k)¡ 1¡

1

2
(si1 + ²)¡

1

2
E(n2 j si2 = si1 + ²; k) +

¢

2
+
1

2

=
1

2
(si1 +¢¡ ²)¡

1¡ ®
2

E(n2 j si2 = si1 + ²; k) +
®

2
E(n2 j si2 = si1 ¡ ²; k)¡

1

2
:

Using Leibnitz's rule,

@g(si1; k)

@si1
=
1

2
¡ 1¡ ®

2
(n2(µ = s

i
1+2²; k)¡n2(si1; k))+

®

2
(n2(s

i
1; k)¡n2(si1¡2²; k))
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¸ 1

2
¡ 1¡ ®

2
¸ 0;

where the ¯rst inequality follows from the facts that n2(µ; k) is weakly increasing

and lies between 0 and 1, and the second inequality follows from ® · 1: Hence

g(si1; k) · 0 8si1 2 (k2 ¡ ²; k2 + ²) if and only if g(si1 = k2 + ²; k) · 0: Since

g(si1 = k2+²; k) = ¢¡ 3
4
(1¡®); we conclude that g(si1; k) · 0 8si1 2 (k2¡²; k2+ ²)

if and only if ¢ · 3
4
(1¡ ®):

If si1 ¸ k2 + ²; then it is optimal for player i to invest in the second period inde-
pendent of whether he receives good news or bad news. Therefore, in this case

g(si1; k) = ¢ ¡ (1¡ ®)E(n2 j si1; k): Hence g(si1; k) is weakly decreasing in si1 and
it again su±ces to analyze whether g(si1 = k2 + ²; k) · 0; which is the case if and
only if ¢ · 3

4
(1¡ ®): Q.E.D.

A complete waiting equilibrium exists only if the cost of waiting are not to high. If

¿ < 1 players discount the payo®s of investing in the second period as their bene¯ts

from investing are delayed. In this case, as the fundamental µ increases without

bound, the forgone ¯rst-period bene¯t grows without bound. In other words, if

¿ < 1; then it is a dominant strategy to invest in the ¯rst period for su±ciently

high signals. Thus a complete waiting equilibrium cannot exist in this case. If

¿ = 1 then the cost of delay are measured by ¢: If ¢ is to large, it is intuitive that

no complete waiting equilibrium exists. Indeed, as ¢ increases two complications

may arise. First, players with a signal si1 < 1=2+¢¡ ²; who are meant to abstain
from investing in an immediate investment equilibrium, may prefer to invest in the

¯rst period rather than not investing at all. For a given ¢ this problem is more

likely to arise if ² decreases, because in that case some of these players expect the

state of the world to be better. Also this problem is more likely to arise as the

inter-period network e®ect ® increases and these players expect to bene¯t more

from the second period investment activity. Second, players may prefer to invest

immediately rather than to wait and invest in the second period. This problem is

more likely to occur as the inter-period network e®ect ® increase and early movers

bene¯t more from the late investment activity. Depending on the parameters, ei-

ther problem may arise ¯rst.

If there is no early mover cohort e®ect (® = 1), then a complete waiting equilib-

rium cannot exist (unless there are no waiting costs at all, i.e. ¿ = 1 and ¢ = 0).

The reason is that in this case a player with a very high ¯rst period signal fore-

sees that all players will invest. But if there are no cohort e®ects, he prefers to
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invest immediately and save the waiting cost. If there are cohort e®ects, however,

he prefers to wait if the waiting cost are less than the reduction in the network

e®ect from moving early. It is easy to check that if cohort e®ects are su±ciently

strong, then there exist parameter values for which an immediate investment and

a complete waiting equilibrium coexist. In the absence of cohort e®ects, this can-

not be the case (except if there are no waiting costs at all). This result already

hints at the main message of our paper: Cohort e®ects can give rise to multiple

equilibria. The following analysis shows that this insight generalizes to the case

where it is a dominant strategy for players with a very high ¯rst period signal to

invest immediately (i.e. ¿ < 1).

We will refer to an equilibrium in which players with high signals invest imme-

diately and player with intermediate signals wait and invest later when receiving

good news (but not when receiving bad news) as an informative waiting equilib-

rium. Formally, an informative waiting equilibrium is an equilibrium in which

k1 ¡ ² < k2 < k1 + ²:

For brevity, let x ´ 4²+ ° and let

D ´ ¡16¢ + 16²¡ 8 + 12° + [(2¡ ®)¡ (2¡ ¿ )x]2;

¢a ´ ¡1
2
+
3

4
° + ²+

1

16
[(2¡ ®)¡ (2¡ ¿ )x]2;

¢b ´ ¡1
2
+
3

4
° + ²;

¢c ´ °

4
(1 + ¿)¡ (1 + ®) + 4²(1¡ ¿ )

4
:

We are ready to characterize when an informative waiting equilibrium exists.

Proposition 3 There exists an informative waiting equilibrium (k11; k21) if the

following three conditions are satis¯ed: (a) ¢ · ¢a; (b) either (2¡ ®) > (2¡ ¿ )x
or ¢ · ¢b; and (c) ¢ > ¢c. In this informative waiting equilibrium

k11 =
1

8
f¿(¿ ¡ 2)x2 + 2x[1¡ (1¡ ®)(1¡ ¿ )] + (1¡ ®)2 + 3 + (x¿ ¡ ®)

p
Dg;

k21 =
1

8
f¡
p
D(®+8²¡x¿)+x2¿ 2+2¿x(1¡®¡4²¡x)+(2¡®)2¡8(1¡®)²+2®(1+x)+16²xg:
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Furthermore, there exists an informative waiting equilibrium (k12; k22) if the fol-

lowing three conditions are satis¯ed: (a) ¢ · ¢a; (d) (2¡ ®) > (2¡ ¿)x; and (e)
¢ > ¢b: In this informative waiting equilibrium

k12 =
1

8
f¿(¿ ¡ 2)x2 + 2x[1¡ (1¡ ®)(1¡ ¿)] + (1¡ ®)2 + 3¡ (x¿ ¡ ®)

p
Dg;

k22 =
1

8
f
p
D(®+8²¡x¿ )+x2¿2+2¿x(1¡®¡4²¡x)+(2¡®)2¡8(1¡®)²+2®(1+x)+16²xg:

Conversely, there exists no other informative waiting equilibrium.

Proof: Rewriting (4) and (5) using the fact that k1 ¡ ² < k2 < k1 + ² in an

informative waiting equilibrium gives

k1+
1

2
+(
®

8²
)(k1+²¡k2)¡1¡¿

2
fk1+²+3°

4
+

1

16²2
(k1+²¡k2)(k2+3²¡k1)¡1¡¢g = 0;

k2 + °f1
4
+
1

4²
(k2 + ²¡ k1) + 1

16²2
(k1 + ²¡ k2)(k2 + 3²¡ k1)g ¡ 1¡¢ = 0:

Thus, (4) and (5) are a pair of quadratic equations, which is equivalent to a fourth

order polynomial. Hence, there exists a routine procedure to solve this system of

equations. Using mathematica to solve this system of equations shows that there

are only two pair of roots (k11; k21) and (k21; k22): Rewriting, gives the expressions

given in the proposition above. Because (4) and (5) are necessary conditions for

an equilibrium, all informative waiting equilibria ar either of the form (k11; k21) or

(k21; k22):

Observe that all roots are real if and only if D ¸ 0: This requires that

16²¡ 8 + 12° + [(2¡ ®)¡ (2¡ ¿)x]2 ¸ 16¢:

Rewriting gives condition (a).

(k11; k21) is a valid solution only if k11 ¡ ² < k21 < k11 + ²; because otherwise the
functional form of (4) and (5) would di®er from the one used above. That is, we

require that (i) ¡² < k11 ¡ k21 and that (ii) k11 ¡ k21 < ²: Using the fact that

k11 ¡ k21 = ²[1¡ ®¡ (2¡ ¿)x+
p
D];

condition (i) holds if and only if

(2¡ ¿)x¡ (2¡ ®) <
p
D:
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Note that this inequality is satis¯ed if either (2¡ ®) > (2¡ ¿)x or if

[(2¡ ¿)x¡ (2¡ ®)]2 < ¡16¢ + 16²¡ 8 + 12° + [(2¡ ®)¡ (2¡ ¿ )x]2:

Rewriting gives condition (b).

Using k11 ¡ k21 = ²[1¡ ®¡ (2¡ ¿ )x+
p
D]; to rewrite condition (ii) gives

p
D < ®+ (2¡ ¿)x:

Squaring this inequality on both sides and rewriting yields

¡16¢ + 16²+ 12° ¡ 4(1 + ®)¡ 4x(2¡ ¿) < 0;

which is equivalent to condition (c) in the proposition. Hence, conditions (a), (b),

and (c) are necessary conditions for (k11; k21) to characterize an equilibrium.

Similar, (k12; k22) is a valid solution only if both (i)¡² < k12¡k22 and (ii) k12¡k22 <
² hold. Using the fact that k12 ¡ k22 = ²[1 ¡ ® ¡ (2 ¡ ¿)x ¡ pD]; condition
(i) holds if and only if

p
D < (2 ¡ ®) ¡ (2 ¡ ¿ )x: Hence, condition (i) requires

that (2 ¡ ®) > (2 ¡ ¿ )x; which is condition (d) in the proposition, and that
D < [(2¡®)¡(2¡¿ )x]2; which is equivalent to condition (e) in the proposition. We
conclude that conditions (a), (d) and (e) are necessary conditions for (k12; k22) to

characterize an equilibrium. (Note also that k12¡k22 = ²[1¡®¡(2¡¿)x¡
p
D] < ²:)

Hence, we have established that no other informative waiting equilibrium than the

ones characterized in the proposition exist. To show that (k11; k21) and (k12; k22)

are indeed equilibria under the above conditions, we are left to verify that (i)

h(si2; k) < 0 for all si2 < k2; (ii) h(s
i
2; k) > 0 8si2 2 (k2; k1 + ²]; and that (iii)

g(si1; k) < 0 if and only if s
i
1 < k1: Conditions (i) and (ii) follow from Lemma (4)

in Appendix 2, and condition (iii) follows from Lemmas (7),(9), and (11) to (14).

Q.E.D.

To understand under what conditions an informative investment equilibrium ex-

ists, suppose ¯rst that (2 ¡ ®) < (2¡ ¿ )x; as is the case in the absence of cohort
e®ects. Then, since condition (d) is violated, the (k12; k22) equilibrium does not

exist. Next, observe that in this case conditions (a) and (b) are satis¯ed whenever

¢ is to low to sustain an immediate investment equilibrium, i.e. when waiting to

act on more information is pro¯table. The role of condition (c) is to ensure that

the relevant decision for a player with signal si1 = k1 is whether to wait for good

news or whether to invest immediately. If it is violated, the player would prefer

20



to invest in the second period also when getting bad news (which explains why

condition (c) gives a lower bound on ¢). Thus condition (c) can only be binding

in the presence of cohort e®ects. If cohort e®ects are absent, the only reason to

wait is to collect information in order to make a better informed decision. So if a

player would prefer to invest when getting bad news, he could invest immediately

and save the waiting costs. If cohort e®ects are present, however, one may want to

wait in order to bene¯t from a higher network e®ect. Note that this requires that °

is su±ciently greater than ®; that is late movers must enjoy a higher intra-period

network e®ect than early movers. The intuition for this is that a player with signal

si1 = k1 expects half of the population to invest in the ¯rst period. So he can

expect at most half of the population to invest late. Therefore, he can only expect

to gain a larger network e®ect by moving late if the inter-period network e®ect for

late movers ° is greater than its ¯rst period counterpart ®:

We are left to consider the case in which (2 ¡ ®) > (2 ¡ ¿)x: Trivially, this
implies that conditions (b) and (d) are satis¯ed. Clearly, then the equilibrium

(k11; k21) exists for all ¢ 2 (¢c;¢a] and the equilibrium (k21; k22) exists for all

¢ in the nonempty interval (¢b;¢a]: Since an immediate investment equilibrium

exists for all ¢ > ¢b; this implies that if (2 ¡ ®) > (2 ¡ ¿)x; there exist values
of ¢ for which our model has multiple equilibria as long as ¢a ¸ 0: To better

understand when (2 ¡ ®) > (2 ¡ ¿ )x; it is useful to rewrite this condition as
(1¡ ®) + (1¡ °) + (¿° ¡ °) > (2¡ ¿)4²: First, observe that this condition cannot
be satis¯ed in the absence of cohort e®ects (i.e ® = ° = 1). But as either cohort

e®ects increases (i.e. ® or ° decreases), the condition is more likely to be satis¯ed.

One interpretation of this fact is that as cohort become more important, dynamic

coordination becomes more important. A player then only wants to invest if he

believes that the other players invest at the same point in time. Second, if ¿ < 1;

then decreasing ° is more likely to make this condition hold then decreasing ® by

the same amount, re°ecting the fact that a ¯rst-period decision maker discounts

the second-period investment payo®s. Third, as the uncertainty ² increases, the

conditions is less likely to hold. As ² increases the uncertainty about the fun-

damental becomes more important relative to the coordination aspect. As the

coordination aspect becomes less important, multiple equilibria are less likely to

exists.

The following Lemma rules out the existence of other symmetric switching equi-

libria in various of the economic environments discussed in Section 3.
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Lemma 1 If 1
2
(¿°¡®)¡ ²(1¡ ¿) < ¢ then there exists no equilibrium in the class

of symmetric switching equilibria in which k2 < k1 ¡ ² <1:
Proof: Recall that E(n1 j si1 = k1; k) =

1
2
: Also, note that since k2 < k1 ¡ ²; a

player with signal si1 = k1 who waits will invest in the second period for certain.

Using these facts and Lemma (3) to rewrite equilibrium conditions (4) and (5)

gives:

k1(1¡ ¿) + 1
2
(1¡ ¿°) + (®¡ ¿)E(n2 j si1 = k1; k)¡ 1 + ¿(1 + ¢) = 0;(7)

k2 = 1 +¢¡ °E(n1 j si2 = k2; k)¡ E(n1 j si2 = k2; k):(8)

Observe that any player with a signal si2 < k2 does not invest in either period

because in this case si1 · si2 + ² < k2 + ² < k1: Hence, E(n1 + n2 j si2 = k2; k) = 1
2

and thus E(°n1 + n2 j si2 = k2; k2) · 1
2
: Using this fact and equation (8), we

conclude that k2 ¸ 1
2
+¢:

Rewriting equation (7) shows that

k1 =
1

1¡ ¿ f
1

2
(1 + ¿° ¡ ¿ (1 + ¢) + (¿ ¡ ®)E(n2 j si1 = k1; k))g:

First, suppose that ® ¸ ¿: In this case

k1 · 1

1¡ ¿ f
1

2
(1 + ¿° ¡ ¿ (1 + ¢)g

and since k2 ¸ 1
2
+¢ a necessary condition for k1 > k2 + ² is that

f1
2
(1 + ¿°)¡ ¿(1 + ¢)g ¸ (1¡ ¿)(1

2
+ ¢+ ²):

This is equivalent to 0 ¸ ¢+ ²(1¡ ¿ ) + ¿
2
(1¡ °); a contradiction.

We are left to consider the case in which ® < ¿: Observe that since E(n1 j si1 =
k1; k) =

1
2
and n1 + n2 · 1; E(n2 j si1 = k1; k) · 1

2
: Hence,

k1 · 1

1¡ ¿ f
1

2
(1 + ¿° ¡ ¿ (1 + ¢) + (¿ ¡ ®)1

2
g:

Thus, a necessary condition for k1 > k2 + ² is that

f1
2
(1 + ¿° ¡ ¿(1 + ¢) + (¿ ¡ ®)1

2
g ¸ (1¡ ¿)(1

2
+ ¢ + ²):
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Rewriting this condition establishes the Lemma. Q.E.D.

The Lemma gives parameter restrictions that rule out a symmetric switching equi-

librium in which players wait in order to invest in the second period with certainty.

This type of behavior rules out any informational reason for waiting. Rather wait-

ing must be driven by the desire to coordinate the timing of the investment. This

can only be pro¯table if there are cohort e®ects and if, as discussed above, the

second-period cohort e®ect is su±ciently less than the ¯rst-period cohort e®ect

(i.e. ° > ®).

We are left to prove that there exists a unique equilibrium in the absence of cohort

e®ects. We ¯rst observe that this is true within the class of symmetric switching

strategies.

Proposition 4 Suppose there are no cohort e®ects (i.e. ® = ° = 1) and positive

waiting costs (i.e. either ¿ < 1 or ¢ > 0). Then there exists a unique equilibrium

in symmetric switching strategies.

Proof: Rewriting conditions (a), (b) and (c) from Proposition (3) yields:

(a) ¢ · 1

4
+ ²+

1

16
(¡1¡ 8²+ 4²¿ + ¿)2;

(b) ¢ · 1

4
+ ²;

(c) ¡ (1¡ ¿ )(1
4
+ ²) · 0 · ¢:

Hence, there exists an informative waiting equilibrium (k11; k21) if 0 · ¢ · 1
4
+ ².

Note also that, when ® = ° = 1, the other informative waiting equilibrium

(k12; k22) cannot exist because condition (d) can be rewritten as 1 > (2¡¿ )(1+4²);
which contradicts the fact that ¿ · 1 and ² > 0. Finally, observe that, when

® = ° = 1, the condition stated in Lemma (1) can be written as¡(1¡¿ )(1
2
+²) < ¢.

This condition is always satis¯ed unless ¿ = 1 and ¢ = 0. From Proposition (1),

it follows that an immediate investment equilibrium exists if and only if ¢ ¸ 1
4
+ ².

Furthermore, as h() is strictly increasing for ® = ° = 1; the immediate investment

equilibrium is unique. Q.E.D.

In Appendix 3, we extend this result to show that there exists a unique equilibrium

in rationalizable strategies in the absence of cohort e®ects.
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Proposition 5 Suppose there are no cohort e®ects (i.e. ® = ° = 1) and posi-

tive waiting costs (i.e. either ¿ < 1 or ¢ > 0). Then the symmetric switching

equilibrium strategy is the (essentially) unique rationalizable equilibrium.

5 Summary and Discussion

In this paper, we analyzed the impact of strategic waiting in a global game. In

contrast to its static counterpart, we found that the nature of the network e®ect

is important. In particular, allowing for cohort e®ects can reintroduce multiple

equilibria in environments in which the static game has a unique equilibrium. Fur-

thermore, we argued that this ¯nding is important because cohort e®ects arise

naturally in many dynamic coordination problems.

Table 1 presents parameter conditions under which an immediate investment equi-

librium, a complete waiting equilibrium, and an informative waiting equilibrium

exist in various economic environments encompassed by our model. In the ab-

sence of cohort e®ects, our game has a unique equilibrium (neglecting the knife

edge case in which their are no waiting costs and investors with a su±ciently high

signal are indi®erent between investing early and waiting in order to invest late).

The PIEMA model is an interpretation of our model in which there are no cohort

e®ects, and thus in the PIEMA environment there always exists a unique equilib-

rium.

Perhaps more surprisingly, in the FHTAP interpretation our model has a unique

equilibrium in the class o symmetric switching strategies even though this inter-

pretation allows for an early mover cohort e®ect. In this economic environment,

however, the second period intra- and inter-period network e®ects are equal to

each other. Furthermore, the ¯rst period intra-period network e®ect is simply the

discounted second-period network e®ect. In this environment, therefore, the ben-

e¯ts of waiting and investing in the second period depend only on the total mass

of investors and not on when the other players invest. Similarly, the bene¯ts of

investing in the second period depend only on the total mass of investors and not

on the timing of the other players' investments. Intuitively, therefore, the dynamic

coordination is not severe enough for multiple equilibria to arise.

The ATFL interpretation, in contrast, allows for both a ¯rst- and a second-period

cohort e®ect. The dynamic coordination aspect thus becomes more important and
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our model has multiple equilibria in such an environment. This result carries over

to the TAPPCT environment because it is very °exible and one can reproduce

the parameter of the ATFL interpretation. In summary, the nature of the cohort

e®ects determines whether our dynamic global game has multiple equilibria. These

multiple equilibria did arise even though we used a Laplacian prior, abstracted

from social learning, and restricted attention to the class of symmetric switching

strategies.

6 Appendix 1

We ¯rst prove the following lemma:

Lemma 2 8k2 2 (k1 ¡ ²; k1 + ²), one has:

n1(µ; k) =

8>>>>>>>><>>>>>>>>:

0 if µ < k1 ¡ 2²;
2²+µ¡k1

4²
if k1 ¡ 2² · µ < k1 + 2²;

1 if k1 + 2² · µ;

and,

n2(µ; k) =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

0 if µ < k2 ¡ ²;
²¡k2+µ
4²

if k2 ¡ ² · µ < k1;
k1+²¡k2

4²
if k1 · µ < k2 + ²;

k1+2²¡µ
4²

if k2 + ² · µ < k1 + 2²;

0 if k1 + 2² · µ;

Proof: To compute n1(¢) and n2(¢) we will work with the following graph (or with
variants thereof):

[Insert here Graph 1]

In the above graph,the two \thick" black lines represent all the possible realizations

that (²i2; ²
i
1) can take. For example, player a in the graph received a ²

i
1 = ²

i
2 = ¡²,
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while player d received ²i1 = ²i2 = ². All the players who received a ²i1 = ¡² are
situated on the lower thick line. Those players will receive \good news" at time

two. Similarly, all players situated on the upper thick line will receive \bad news"

at time two. Actually, one can best think of the graph above as possessing a third

dimension representing f((si1; s
i
2)jµ). From above, we know that Pr(²i1 = ²) =

1
2
,

that ²i2 is independent of ²
i
1 and that ²

i
2 is drawn from a uniform distribution.

Hence, we know that half of our population receive an ²i1 = ¡² and lie, uniformly
distributed, on the lower thick black line, while the other half lie, uniformly dis-

tributed, on the upper thick black line. Therefore, this third dimension is \trivial"

and is not shown in the graph.

The diagonal \k1¡ µ" represents the combination of all (²i2; ²i1) such that ²i1+ ²i2 =
k1 ¡ µ. All players who lie to its right and above possess a ¯rst-period signal
si1 > k1; since s

i
1 = µ + ²i1 + ²

i
2 ¸ k1 if and only if ²

i
1 + ²

i
2 ¸ k1 ¡ µ. Hence, the

diagonal k1 ¡ µ permits us to compute the mass of period one investors.

e denotes the point in which the diagonal k1 ¡ µ cuts the upper thick black line.
What are the coordinates of point e? We know that all points on the diagonal sat-

isfy the restriction that their x and y coordinates sum up to k1¡ µ. We also know
that in point e the y coordinate equals +². Therefore the coordinates of point e are

(k1¡ µ¡ ²; ²). If k1 = µ, then the diagonal goes through the points b and c (this is
logical: in both points k1¡µ = µ¡µ = 0 = ²¡ ²). If k1 = µ¡2², then the diagonal
goes through the point a. This is because in the point a, k1 ¡ µ = ¡2² = ¡²¡ ².
Similarly, if k1 = µ+2², then the diagonal goes through the point d. By continuity,

if µ ¡ 2² < k1 < µ, the diagonal k1 ¡ µ cuts the thick line situated on the X-axis.
Similarly, if µ < k1 < µ + 2², the diagonal cuts the upper thick line.

The vertical "k2¡µ" permits us to compute the mass of players who invest at time
two. For example, in graph three all players situated on the X-axis and to the

right of "k2 ¡ µ" invest at time two. This is easy to see: a player having received
an ²i1 = ¡² invests at time two if and only if si2 = µ + ²i2 > k2 or if and only if

²i2 > k2 ¡ µ. f denotes the point in which the vertical k2 ¡ µ cuts the X-axis.

When doesn't the vertical k2 ¡ µ cross the lower thick line? k2 ¡ µ > ² if and only
if k2 ¡ ² > µ. This is intuitive: if µ is \low", then no player who received \good
news" will invest at time two. In that case point f lies to the right of point b.

Similarly, k2 ¡ µ < ¡² if and only if k2 + ² < µ. In hat case point f lies to the left
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of point a.

We are focusing on an equilibrium in which k1 ¡ ² < k2 < k1 + ². This implies

that:

k1 ¡ 2² < k2 ¡ ² < k1 < k2 + ² < k1 + 2²:
Therefore we must consider the following six cases:

(i) µ < k1 ¡ 2²,
(ii) k1 ¡ 2² < µ < k2 ¡ ²,
(iii) k2 ¡ ² < µ < k1,
(iv) k1 < µ < k2 + ²,

(v) k2 + ² < µ < k1 + 2²,

(vi) k1 + 2² < µ.

In case (i) we know that µ < k1 ¡ 2² < k2 ¡ ². From above, we know that this

implies that points e and f lie to the right of (respectively) d and b. Hence,

n1(µ < k1 ¡ 2²; k) = n2(µ < k1 ¡ 2²; k) = 0.

In case (ii) we know that point f lies to the right of point b, implying that - due

to a low µ - n2(k12² < µ < k2²; k) = 0. Moreover we also know that in this case

µ < k1 which implies that the diagonal k1 ¡ µ cuts the upper thick line. This case
is represented in graph 2.

[Insert here Graph 2]

In this case all players situated between points e and d invest at time one. Hence,

it is straightforward to compute that n1(k1 ¡ 2² < µ < k2 ¡ ²; k) = 2²+µ¡k1
4²

.

In case (iii) µ is still strictly lower than k1 but the vertical k2 ¡ µ crosses the two
thick black lines. This case is represented in graph 1. The coordinates of e are

(k1¡µ¡²; ²) and the ones of point f 0 are (k2¡µ; ²). We are focussing on an equilib-
rium in which k2 > k1¡². This last inequality can be rewritten as k2¡µ > k1¡µ¡²
which amounts to stating that point f 0 always lies to the right of point e. From
above we thus know that n1(k2 ¡ ² < µ < k1; k) =

2²+µ¡k1
4²

. All players lying

between [f; b] invest at time two. Hence, n2(k2 ¡ ² < µ < k1; k) = ²¡k2+µ
4²

:

In case (iv), µ is higher than k1. This implies that the diagonal "k1 ¡ µ" cuts the
lower thick line. Therefore all players who received an ²i1 = ² (and who are thus
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situated on the upper thick line) invest at time one. This case is represented in

graph 3.

[Insert here Graph 3]

From above we know that the coordinates of point e are (k1 ¡ µ + ²;¡²). The
coordinates of point f are (k2 ¡ µ;¡²). Note that k2 ¡ µ < k1 ¡ µ + ² if and only
if k2 < k1 + ². As we work here under the assumption that k2 < k1 + ², it follows

that point f lies to the left of point e. From the graph it should be clear that

n1(k1 < µ < k2 + ²; k) =
1
2
+ ²¡k1+µ¡²

4²
= 2²+µ¡k1

4²
and that n2(k1 < µ < k2 + ²; k)

= k1¡µ+²
4²

¡ k2¡µ
4²

= k1+²¡k2
4²

.

In case (v) point f lies to the left of point a. From above it should be clear that

n1(k2+² < µ < k1+2²; k) =
2²+µ¡k1

4²
, and that n2(k2+² < µ < k1+2²; k) =

k1+2²¡µ
4²

.

In case (vi) point e (see graph 3) lies to the left of point a. Therefore n1(k1+2² <

µ; k) = 1 and n2(k1 + 2² < µ; k) = 0. Q.E.D.

7 Appendix 2

Lemma 3 E(njjsi1; k) = 1
2
E(njjsi2 = si1 + ²; k) + 1

2
E(njjsi2 = si1 ¡ ²; k) 8j = 1; 2.

Proof: Trivially, one has

E(njjsi1; k) =
1

4²

Z si1+2²

si1¡2²
nj(µ; k) dµ

=
1

2
f 1
2²

Z si1

si1¡2²
nj(µ; k) dµ +

1

2²

Z si1+2²

si1

nj(µ; k) dµg
.

=
1

2
E(njjsi2 = si1 + ²; k) +

1

2
E(njjsi2 = si1 ¡ ²; k):

Q.E.D.

Lemma 4 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has h(s

i
2; k) < 0 if s

i
2 < k2 and h(s

i
2; k) > 0 if s

i
2 2 (k2; k1 + ²):
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Proof: Since

h(si2; k) = s
i
2 +

Z si2+²

si2¡²
[°n1(µ; k) + n2(µ; k)]dµ ¡ 1¡¢;

Leibnitz's rule implies that

@h(si2; k)

@si2
= 1 + [°n1(s

i
2 + ²; k) + n2(s

i
2 + ²; k)¡ (°n1(si2 ¡ ²; k) + n2(si2 ¡ ²; k))]:

We have shown in Appendix 1 that n1(¢) is weakly increasing in µ and therefore a
su±cient condition for h(¢) to be strictly increasing is that

n2(s
i
2 + ²; k) ¸ n2(si2 ¡ ²; k):

By Appendix 1, n2(¢) is weakly increasing in µ for all µ · k2+ ² and hence h(si2; k)
is a strictly increasing function in si2 for all s

i
2 · k2: Since k solves the equations

(4) and (5), h(k2; k) = 0 and we conclude that h(s
i
2; k) < 0 if s

i
2 < k2:

Next, consider si2 2 (k ¡ 2; k1 + ²): Since h(k2; k) = 0; one can rewrite h(si2; k) as

h(si2; k) = (s
i
2¡k2)+°[E(n1 j si2; k)¡E(n1 j si2 = k2; k)]+[E(n2 j si2; k)¡E(n2 j si2 = k2; k)]:

As si2 > k2; the ¯rst term is positive. Since, by Appendix 1, n1(µ; k) is weakly

increasing in µ; Leibnitz's rule implies that E(n1 j si2; k) is weakly increasing in
si2: Hence [E(n1 j si2; k) ¡ E(n1 j si2 = k2; k)] ¸ 0: Thus a su±cient condition for
h(si2; k) > 0 is that

[E(n2 j si2; k)¡ E(n2 j si2 = k2; k)] ¸ 0:(9)

To prove that condition (9) is satis¯ed, we establish below that (i) E(n2 j si2; k) is a
concave function in si2 for all s

i
2 2 (k2; k1+ ²); and that (ii) E(n2 j si2 = k1+ ²; k) =

E(n2 j si2 = k2; k): By Leibnitz's rule,
@E(n2 j si2; k)

@si2
=
1

2²
[n2(s

i
2 + ²; k)¡ n2(si2 ¡ ²; k)];

and thus
@2E(n2 j si2; k)

@(si2)2
=
1

2²
[
@n2(s

i
2 + ²; k)

@si2
¡ @n2(s

i
2 ¡ ²; k)
@si2

]:

Using the facts that k2 + ² < s
i
2 + ² < k1 + 2²; k2 ¡ ² < si2 ¡ ² < k1 and Appendix

1, it is easy to check that
@2E(n1jsi2;k)

@(si2)
2 = ¡ 1

4²2
:
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We are left to show that E(n2 j si2 = k1 + ²; k) = E(n2 j si2 = k2; k): Using

Appendix 1, one has

E(n2 j si2 = k1 + ²; k) =
1

2²

Z k2+²

k1

k1 + ²¡ k2
4²

dµ +
1

2²

Z k1+2²

k2+²

2²+ k1 ¡ µ
4²

dµ;

and

E(n2 j si2 = k2; k) =
1

2²

Z k1

k2¡²
²¡ k2 + µ

4²
dµ +

1

2²

Z k2+²

k1

k1 + ²¡ k2
4²

dµ:

Thus

E(n2 j si2 = k1+²; k)¡E(n2 j si2 = k2; k) =
1

8²2
[
Z k1+2²

k2+²
(2²+k1¡µ)dµ¡

Z k1

k2¡²
(²¡k2+µ)dµ]:

Integrating this last expression shows that E(n2 j si2 = k1 + ²; k) ¡ E(n2 j si2 =
k2; k) = 0: Q.E.D.

8 Appendix 3: Iterative Elimination of Domi-

nated Strategies

Let (s01; s
0
2) = (1;1). De¯ne (sn1 ; sn2 ) recursively as the maximal solution to the

following system of equations:

g(sn1 ; (s
n¡1
1 ; sn¡12 )) = 0;

h(sn2 ; (s
n¡1
1 ; sn¡12 )) = 0:

Lemma 5 In the absence of cohort e®ects, one has (sn1 ; s
n
2 ) · (sn¡11 ; sn¡12 ).

Proof: The proof of this lemma proceeds by induction. We start with the following

two remarks.

Remark 1: g(sn¡11 ; (sn¡21 ; sn¡22 )) 6= 0 when h(sn¡11 ¡ ²; (sn¡21 ; sn¡22 )) ¸ 0.

Remark 2: If ° = 1, h(¢) is strictly increasing in si2.

Remark 1 follows from the fact that a player who invest at time two irrespective of

her ¯rst-period error term, strictly gains by investing at time one and saving the
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waiting cost. Remark 2 follows immediately from the fact that E(nj¢) is weakly
increasing in si2. On the basis of both remarks, we know that g(s

1
1; (1;1)) must

be equal to one (and only one) of the following two possibilities:

g(s11; (1;1)) = s11 ¡ 1¡
¿

2
(s11 + ²¡ 1¡¢);(10)

g(s11; (1;1)) = s11 ¡ 1:(11)

Both (10) and (11) take into account the fact that E(nj¢; (1;1)) = 0. Equation
(10) equals zero if s11 = 1+

¿
2¡¿ (²¡¢) <1. Equation (11) equals zero if s11 = 1 <

1: 8 Observe also that:

h(s12; (1;1)) = 0, s12 = 1 +¢ <1:

Induction step. Suppose (sn¡11 ; sn¡12 ) · (sn¡21 ; sn¡22 ); then (sn1 ; s
n
2 ) · (sn¡11 ; sn¡12 ):

We ¯rst show that sn1 · sn¡11 . We know that:

g(sn¡11 ; (sn¡21 ; sn¡22 )) = sn¡11 + E(njsn¡11 ; (sn¡21 ; sn¡22 ))¡ 1

¡¿
2
maxf0; h(sn¡11 + ²; (sn¡21 ; sn¡22 )g ¡ ¿

2
maxf0; h(sn¡11 ¡ ²; (sn¡21 ; sn¡22 )g:

On the basis of Remark 1 and Remark 2, we can conclude that one (and only one)

of the following two cases must prevail:

(i) g(sn¡11 ; (sn¡21 ; sn¡22 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1¡ ¿
2
h(sn¡11 + ²; ¢);

(ii) g(sn¡11 ; (sn¡21 ; sn¡22 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1:
We now show that in case (i) sn1 · sn¡11 . First we show that

g(sn¡11 ; (sn¡11 ; sn¡12 )) ¸ g(sn¡11 ; (sn¡21 ; sn¡22 )) = 0:(12)

To prove inequality (12) we must know how g(sn¡11 ; (sn¡11 ; sn¡12 )) looks like. For

that purpose, note that:

0 · h(sn¡11 + ²; (sn¡21 ; sn¡22 )) · h(sn¡11 + ²; (sn¡11 ; sn¡12 ));

and that,

h(sn¡11 ¡ ²; (sn¡21 ; sn¡22 )) · h(sn¡11 ¡ ²; (sn¡11 ; sn¡12 )):

8Equation (11) implicitly relies on the assumption that s11+ ²¡1 = ² · ¢. Similarly, one can
check that equation (10) is valid when ² > ¢.
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Both inequalities above follow from the fact that the gain of investing cannot

decrease when the other players are more eager to invest. But then it follows

that g(sn¡11 ; (sn¡11 ; sn¡12 )) must be equal to one (and only one) of the following two

possibilities:

(a) g(sn¡11 ; (sn¡11 ; sn¡12 )) = sn¡11 +E(njsn¡11 ; ¢)¡1¡¿
2
h(sn¡11 +²; ¢)¡¿

2
h(sn¡11 ¡²; ¢) ¸ ¢ > 0;

(b) g(sn¡11 ; (sn¡11 ; sn¡12 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1¡ ¿
2
h(sn¡11 + ²; ¢):

In subcase (a) it trivially follows that inequality (12) is satis¯ed. In subcase (b)

inequality (12) can be rewritten as

1

2
(1¡ ¿)[E(njsn¡11 + ²; (sn¡11 ; sn¡12 ))¡E(njsn¡11 + ²; (sn¡21 ; sn¡22 ))]

+
1

2
[E(njsn¡11 ¡ ²; (sn¡11 ; sn¡12 ))¡ E(njsn¡11 ¡ ²; (sn¡21 ; sn¡22 ))] ¸ 0;

which is obviously satis¯ed (E(nj¢) cannot decrease when players become more
eager to invest).

We now show that inequality (12) also holds in case (ii). In case (ii), g(sn¡11 ; (sn¡11 ; sn¡12 ))

can be equal to any one of the following three possibilities:

(a') g(sn¡11 ; (sn¡11 ; sn¡12 )) = sn¡11 +E(njsn¡11 ; ¢)¡1¡¿
2
h(sn¡11 +²; ¢)¡¿

2
h(sn¡11 ¡²; ¢);

(b') g(sn¡11 ; (sn¡11 ; sn¡12 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1¡ ¿
2
h(sn¡11 + ²; ¢);

(c') g(sn¡11 ; (sn¡11 ; sn¡12 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1:
In subcase (a') inequality (12) is trivially satis¯ed. In subcase (b'), inequality (12)

can be rewritten as

E(njsn¡11 ; (sn¡21 ; sn¡22 )) · E(njsn¡11 ; (sn¡11 ; sn¡12 ))¡ ¿
2
h(sn¡11 + ²; (sn¡11 ; sn¡12 )):

Note that the rhs of this last inequality is decreasing in ¿ . Setting ¿ = 1, we can

rewrite this last inequality as:

E(njsn¡11 ; (sn¡21 ; sn¡22 )) · 1

2
E(njsi2 = sn¡11 ¡ ²; (sn¡11 ; sn¡12 ))

¡1
2
(sn¡11 + ²) +

1

2
(1 + ¢):(13)
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Note that the rhs of the inequality above is increasing in ¢. In case (ii), h(sn¡11 +

²; (sn¡21 ; sn¡22 )) · 0, which can be rewritten as

sn¡11 + ²+ E(njsn¡11 + ²; (sn¡21 ; sn¡22 ))¡ 1 · ¢:(14)

Substituting ¢ in (13) by its minimal value given in (14) and after rearranging

terms, we can rewrite equation (12) as

E(njsn¡11 ¡ ²; (sn¡21 ; sn¡22 )) · E(njsn¡11 ¡ ²; (sn¡11 ; sn¡12 )):

Above we have already shown that this inequality holds. In subcase (c') inequality

(12) boils down to

E(n j si1 = sn¡11 ; (sn¡11 ; sn¡12 )) ¸ E(n j si1 = sn¡11 ; (sn¡21 ; sn¡22 ));

which is obviously satis¯ed. As g(sn¡11 ; (sn¡11 ; sn¡12 )) ¸ g(sn¡11 ; (sn¡21 ; sn¡22 )) = 0

and as it is a unique best response to immediately invest for all si1 > sn¡11 , it

follows that sn1 · sn¡11 .

We are left to show that sn2 · sn¡12 : First, observe that

0 · h(sn¡12 ; (sn¡11 ; sn¡12 )), E(njsn¡12 ; (sn¡21 ; sn¡22 )) · E(njsn¡12 ; (sn¡11 ; sn¡12 ));

which is obviously satis¯ed. Second, as 0 · h(sn¡12 ; (sn¡11 ; sn¡12 )) and as h(¢) is
strictly increasing (and continuous) in its ¯rst argument, it follows that sn2 · sn¡12 :

Q.E.D.

Let (s01; s
0
2) = (¡1;¡1). De¯ne (sn1 ; sn2 ) recursively as minimum values satisfying

the following system of equations:

g(sn1 ; (s
n¡1
1 ; sn¡12 )) = 0;

h(sn2 ; (s
n¡1
1 ; sn¡12 )) = 0:

Lemma 6 In the absence of a cohort e®ect, one has (sn1 ; s
n
2 ) · (sn¡11 ; sn¡12 ).

Proof: The proof of this lemma mirrors the one we outlined in Lemma (5). On the

basis of Remark 1 and Remark 2, we know that g(s11; (¡1;¡1)) must be equal
to one of the following two possibilities:

g(s11; (¡1;¡1)) = s11 ¡
¿

2
(s11 + ²¡¢);(15)
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g(s11; (¡1;¡1)) = s11:(16)

Both (15) and (16) take into account the fact that E(nj¢; (¡1;¡1)) = 1. Equa-
tion (15) equals zero if s11 =

¿
2¡¿ (²¡¿ ) > ¡1. Equation (16) equals zero if s11 = 0.9

Observe also that h(si2; (¡1;¡1)) = 0 if si2 = ¢ > ¡1.

Induction step: Suppose (sn¡11 ; sn¡12 ) ¸ (sn¡21 ; sn¡22 ); then (sn1 ; s
n
2 ) ¸ (sn¡11 ; sn¡12 ):

We ¯rst show that sn1 ¸ sn¡11 . On the basis of Remark 1, Remark 2, and continuity

of g(); we know that one (and only one) of the following two cases must prevail:

(i) g(sn¡11 ; (sn¡21 ; sn¡22 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1¡ ¿
2
h(sn¡11 + ²; ¢);

(ii) g(sn¡11 ; (sn¡21 ; sn¡22 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1:
We ¯rst tackle the case where the expression for g(sn¡11 ; (sn¡21 ; sn¡22 )) is given by

equation (i). We prove that

g(sn¡11 ; (sn¡11 ; sn¡12 )) · g(sn¡11 ; (sn¡21 ; sn¡22 )):(17)

g(sn¡11 ; (sn¡11 ; sn¡12 )) must be equal to one (and only one) of the following three

possibilities:

(a) g(sn¡11 ; (sn¡11 ; sn¡12 )) = sn¡11 +E(njsn¡11 ; ¢)¡1¡ ¿
2
h(sn¡11 +²; ¢)¡ ¿

2
h(sn¡11 ¡²; ¢);

(b) g(sn¡11 ; (sn¡11 ; sn¡12 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1¡ ¿
2
h(sn¡11 + ²; ¢);

(c) g(sn¡11 ; (sn¡11 ; sn¡12 )) = sn¡11 + E(njsn¡11 ; ¢)¡ 1:
Case (i) implicitly relies on the assumption that

sn¡11 ¡ ²+ E(njsi2 = sn¡11 ¡ ²; (sn¡21 ; sn¡22 ))¡ 1 < ¢:(18)

Subcase (a) relies on the assumption that

sn¡11 ¡ ²+ E(njsi2 = sn¡11 ¡ ²; (sn¡11 ; sn¡12 ))¡ 1 ¸ ¢:(19)

As (sn¡11 ; sn¡12 ) ¸ (sn¡21 ; sn¡22 ), it follows that

E(njsi2 = sn¡11 ¡ ²; (sn¡21 ; sn¡22 )) ¸ E(njsi2 = sn¡11 ¡ ²; (sn¡11 ; sn¡12 ));

9As before, equation (15) implicitly relies on the assumption that s11 + ² > ¢ or that ² > ¢.
Similarly, one can check that equation (16) is valid when ² · ¢.
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(E(nj¢) cannot increase when players become less eager to invest). But this implies
that (18) and (19) cannot simultaneously be satis¯ed and thus that subcase (a) is

not a valid expression for g(sn¡11 ; (sn¡11 ; sn¡12 )). In subcase (b) inequality (17) can

be rewritten as (after rearranging terms)

1

2
(1¡ ¿)[E(njsn¡11 + ²; (sn¡11 ; sn¡12 ))¡E(njsn¡11 + ²; (sn¡21 ; sn¡22 ))]

+
1

2
[E(njsn¡11 ¡ ²; (sn¡11 ; sn¡12 ))¡ E(njsn¡11 ¡ ²; (sn¡21 ; sn¡22 ))] · 0:

As E(njs12; (sn¡11 ; sn¡12 )) · E(njs12; (sn¡21 ; sn¡22 )), this implies that the inequality

above is respected. In subcase (c) the inequality (17) can be written as

E(njsn¡11 ; (sn¡21 ; sn¡22 ))¡¿
2
(sn¡11 +²+E(njsn¡11 +²; (sn¡21 ; sn¡22 ))¡1¡¢) ¸ E(njsn¡11 ; (sn¡11 ; sn¡12 ))

Note that the lhs is decreasing in ¿ and increasing in ¢. In subcase (c) we know

that

sn¡11 + ²+ E(njsn¡11 + ²; (sn¡11 ; sn¡12 ))¡ 1 · ¢:
Setting ¿ = 1 and replacing ¢ by its minimal value given in our last inequality

yields

E(njsn¡11 ¡ ²; (sn¡21 ; sn¡22 )) ¸ E(njsn¡11 ¡ ²; (sn¡11 ; sn¡12 ));

which is obviously satis¯ed.

Using a reasoning similar to the one we outlined in subcase (i)(a), the reader can

check that in case (ii), (a) and (b) are no valid expressions for g(sn¡11 ; (sn¡21 ; sn¡22 )).

In subcase (ii)(c) inequality (17) boils down to

E(njsn¡11 ; (sn¡11 ; sn¡12 )) · E(njsn¡11 ; (sn¡21 ; sn¡22 ));

which is obviously satis¯ed. As g(sn¡11 ; (sn¡11 ; sn¡12 )) · g(sn¡11 ; (sn¡21 ; sn¡22 )) and as

it is a unique best response not to invest for all si1 < s
n¡1
1 ; it follows that sn1 ¸ sn¡11 .

We are left to show that sn2 ¸ sn¡12 : Observe that

0 ¸ h(sn¡12 ; (sn¡11 ; sn¡12 )), E(njsn¡12 ; (sn¡21 ; sn¡22 )) ¸ E(njsn¡12 ; (sn¡11 ; sn¡12 ));

which is obviously satis¯ed. As 0 ¸ h(sn¡12 ; (sn¡11 ; sn¡12 )) and as h(¢) is strictly
increasing (and continuous) in its ¯rst argument, it follows that sn2 ¸ sn¡12 : Q.E.D.
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Proof of Proposition (5): From Lemma (5), we know that the sequence (sn1 ; s
n
2 )

is non increasing, << (1;1) 8n > 1, and bounded from below by the Nash

equilibrium (which must survive iterative elimination of dominated strategies).

Similarly, from Lemma (6), we know that the sequence (sn1 ; s
n
2 ) is non decreasing,

>> (¡1;¡1) 8n > 1, and bounded from above by the Nash equilibrium. Hence,
both sequences converges to some limit (k1; k2); which satis¯es

g(k1; (k1; k2)) = 0;

h(k2; (k1; k2)) = 0:

Thus, both sequences converges to the unique symmetric switching equilibrium

strategy pro¯le. Q.E.D.
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9 Appendix 4 (for referees only)

Appendix 4 proves that g(¢) > 0; if and only if si1 > k1. We start by de¯ning:

l1(s
i
1; k) ´ si1 + E(n1 + ®n2jsi1; k)¡ 1;

l2(s
i
1; k) ´ si1+E(n1+®n2jsi1; k)¡1¡ ¿

2
[si1+²+E(°n1+n2jsi2 = si1+ ²; k)¡1¡¢];

l3(s
i
1; k) ´ si1+E(n1+®n2jsi1; k)¡1¡ ¿

2
[si1¡²+E(°n1+n2jsi2 = si1¡²; k)¡1¡¢];

l4(s
i
1; k) ´ si1+E(n1+®n2jsi1; k)¡1¡ ¿

2
[si1+ ²+E(°n1+n2jsi2 = si1+ ²; k)¡1¡¢]

¡¿
2
[si1 ¡ ²+ E(°n1 + n2jsi2 = si1 ¡ ²; k)¡ 1¡¢]:

Note that g(¢) = minfl1(¢); l2(¢); l3(¢); l4(¢)g.

Lemma 7 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has g(s

i
1; k) < 0; 8si1 2 [k2 ¡ ²; k1).

Proof: In this case k2¡² < si1 < k1. Hence, k2 < si1+² < k1+² and si1¡² < k1¡² <
k2. From lemma (h-fn), we thus know that h(si1 + ²; k) > 0 and h(s

i
1 ¡ ²; k) < 0.

Therefore in this case g(¢) = l2(¢). By Leibnitz's rule, one has
@l2(¢)
@si1

= 1 +
1

4²
[n1(µ = s

i
1 + 2²; k)¡ n1(µ = si1 ¡ 2²; k)

+®n2(µ = s
i
1 + 2²; k)¡ ®n2(µ = si1 ¡ 2²; k)]¡

¿

2
¡ ¿

4²
[°n1(µ = s

i
1 + 2²; k)

¡°n1(µ = si1; k) + n2(µ = si1 + 2²; k)¡ n2(µ = si1; k)]:(20)

Using Appendix 1, we can evaluate this derivative at the point where si1 = k1, and,

after some rearranging, we get

@l2(s
i
1 = k1; k)

@si1
= 1¡ ¿

2
+
1

8²
(2¡ ¿°) + k1 + ²¡ k2

16²2
¿;(21)

which is positive for °; ¿ · 1 and k2 < k1 + ². Note also that
@2l2(s

i
1 = k1; k)

@si1
2 =

1¡ ®
16²2

+
¿

8²2
> 0:

Hence, since the second derivative is a positive constant, we know that (i) l2(¢) is a
symmetric convex function on the domain [k2¡²; k1] . Therefore, (ii) l2(¢) possesses
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at most two roots. Since k solves the equations (4) and (5), l2(s
i
1 = k1; k) = 0 and

because
@l2(si1=k1;k)

@si1
> 0; (iii) the upper root equals k1. As l2(¢) is a symmetric and

convex function it follows that g(si1 = k2 ¡ ²; k) < 0 if and only if the absolute

value of the slope of g(¢) evaluated at the point k2 ¡ ² is lower than the slope of
g(¢) evaluated at k1. More formally, g(si1 = k2 ¡ ²; k) < 0 if and only if

@l2(s
i
1 = k1; k)

@si1
+
@l2(s

i
1 = k2 ¡ ²; k)
@si1

> 0:(22)

Using Appendix 1 to evaluate (20) at si1 = k2 ¡ ² and rewriting yields
@l2(s

i
1 = k2 ¡ ²; k)
@si1

= 1¡ ¿
2
+
1

4²
(
k2 + 3²¡ k1

4²
+ ®

k1 + ²¡ k2
4²

)

¡°¿
8²
¡ k1 + ²¡ k2

16²2
¿:(23)

Observe that
@l2(si1=k1;k)

@si1
is independent of ® and that

@l2(si1=k2¡²;k)
@si1

is increasing in

®. Thus substituting (21) and (23) into inequality (22) and setting ® = 0 yields

the following su±cient condition for g(si1 = k2 ¡ ²; k) < 0;

2(1¡ ¿
2
) +

1

16²2
(k2 + 3²¡ k1) + 1

4²
¡ °¿
4²
> 0:

As k2+3² > k1 and °; ¿ · 1; this condition is always satis¯ed. As l2(¢) is a convex
function and l2(s

i
1 = k2 ¡ ²; k) < 0 and l2(si1 = k1; k) = 0, it follows that l2(¢) < 0

8si1 2 [k2 ¡ ²; k1). Q.E.D.

To show that g(¢) < 0 8si1 < k2 ¡ ², it is useful to note that:
Lemma 8 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has E(n1jsi1; k) + ®E(n2jsi1; k) is weakly increasing in si1.
Proof: Using Appendix 1, it is easy to verify that n1(µ; k) + n2(µ; k) is (weakly)

increasing in µ. Suppose that n1(¢) + ®n2(¢) is strictly decreasing in µ for some
µ. This requires that 0 < @n1(¢)

@µ
< ¡®@n2(¢)

@µ
. Since ® · 1, this implies thus that

@n1(¢)
@µ

< ¡@n2(¢)
@µ

and thus that n1(¢) + n2(¢) decreases in µ, a contradiction. We
conclude that n1(¢) + n2(¢) is weakly increasing in µ. Because

E(n1 + ®n2jsi1; k) =
1

4²

Z si1+2²

si1¡2²
[n1(µ; k) + ®n2(µ; k)]dµ;
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Leibnitz's rule implies that

@E(n1 + ®n2jsi1; k)
@si1

= [n1(s
i
1+²; k)+®n2(s

i
1+²; k)]¡[n1(si1¡²; k)+®n2(si1¡²; k)] ¸ 0;

were the last inequality follows from the fact that n1(¢)+®n2(¢) is weakly increasing
in µ. Thus, E(n1 + ®n2jsi1; k) is weakly increasing in si1. Q.E.D.

Lemma 9 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has g(s

i
1; k) < 0; 8si1 < k2 ¡ ².

Proof: As si1 < k2 ¡ ² it follows that si1 ¡ ² < si1 + ² < k2. From Lemma (4), we

thus know that in this case g(¢) = l1(¢). Observe that
@l1(s

i
1; k)

@si1
= 1 +

@E(n1 + ®n2jsi1; k)
@si1

:

From Lemma (8), we know that E(n1+®n2jsi1; k) is weakly increasing in si1. Hence
@l1(si1;k)

@si1
> 0. From Lemma (7), we also know that l1(s

i
1 = k2 ¡ ²; k) = l2(s

i
1 =

k2 ¡ ²; k) < 0. Hence, l1(¢) < 0 8si1 < k2 ¡ ². Q.E.D.

Lemma 10 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has l1(s

i
1; k) > 0; 8si1 ¸ k1.

Proof: By de¯nition l2(s
i
1 = k1; k) = l1(s

i
1 = k1; k) ¡ ¿

2
h(k1 + ²; k). Since k

solves equations (4) and (5), l2(s
i
1 = k1; k) = 0: Furthermore, by Lemma (4),

h(k1 + ²; k) > 0. Therefore, l1(s
i
1 = k1; k) > 0. Recall that

@l1(s
i
1; k)

@si1
= 1 +

@E(n1 + ®n2jsi1; k)
@si1

:

From Lemma (8), we know that E(n1+®n2jsi1; k) is weakly increasing in si1. Hence
@l1(si1;k)

@si1
> 0. Thus, l1(s

i
1; k) is strictly increasing in s

i
1 and since we showed above

that l1(s
i
1 = k1; k) > 0, this proves our lemma. Q.E.D.

Lemma 11 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has g(s

i
1; k) > 0; 8si1 2 (k1; k2 + ²].
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Proof: By Lemma 10, l1(¢) > 0: Since in this case k1 < si1 · k2 + ²; Lemma (4)

implies that h(si1 ¡ ²; k) · 0: Thus, g(¢) cannot equal l3(¢) or l4(¢): We are left to
verify that l2(¢) > 0: Using Lemma (3), we can rewrite l2(¢) as

l2(¢) = (1¡ ¿
2
)(si1 ¡ 1) +

¿

2
(¢¡ ²) + 1¡ ¿°

2
E(n1jsi2 = si1 + ²; k)

+
®¡ ¿
2

E(n2jsi2 = si1 + ²; k) +
1

2
E(n1jsi2 = si1 ¡ ²; k) +

®

2
E(n2jsi2 = si1 ¡ ²; k):

By Leibnitz's rule, one has

@l2(¢)
@si1

= (1¡¿
2
)+
1¡ ¿°
4²

fn1(si1+2²; k)¡n1(si1; k)g+
®¡ ¿
4²

fn2(si1+2²; k)¡n2(si1; k)g

+
1

4²
fn1(si1; k)¡ n1(si1 ¡ 2²; k)g+

®

4²
fn2(si1; k)¡ n2(si1 ¡ 2²; k)g:

Using k1 < s
i
1 < k2+ ²; k1+2² < s

i
1+2²; k1¡2² < si1¡2² < k2¡ ² and the ni(¢; k)

functions derived in Appendix 1, one can rewrite the above equation as

@l2(¢)
@si1

= (1¡ ¿
2
) +

1¡ ¿°
4²

+
¿°

4²
(
1

2
+
si1 ¡ k1
4²

) +
¿

4²
(
k1 + ²¡ k2

4²
)¡ 1

4²
(
si1 ¡ k1
4²

):

Hence,
@2l2(¢)
(@si1)

2
=

1

16²2
(¿° ¡ 1) · 0:

Thus, l2(¢) is concave in si1 over the domain (k1; k2+²]: Hence, a su±cient condition
for @l2(¢)

@si1
> 0 for all si1 2 (k1; k2 + ²] is that @l2(s

i
1=k2+²;k)

@si1
> 0; where

@l2(s
i
1 = k2 + ²; k)

@si1
= (1¡ ¿

2
) +

1¡ ¿°
4²

¡ 1 + ¿ ¡ ¿°
16²2

(k2 ¡ k1) + 1

16²
(3¿° + ¿ ¡ 1):

Since 1 + ¿ > ¿°; this function is decreasing in k2 ¡ k1: Substituting k2 ¡ k1 = ²
on the right hand side of the above expression and rewriting shows that

@l2(s
i
1 = k2 + ²; k)

@si1
¸ (1¡ ¿

2
) +

1

8²
> 0:

Hence, we have shown that l2(¢) > 0 for all si1 2 (k1; k2 + ²]: Q.E.D.

Lemma 12 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has g(s

i
1; k) > 0; 8si1 2 (k2 + ²; k1 + 2²].
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Proof: In this case k2+ ² < s
i
1 · k1+2². Hence, k2 < si1¡ ² · k1+ ², and Lemma

(4) implies that h(si1 ¡ ²; k) > 0. Therefore, g(¢) cannot be equal to l2(¢) or l1(¢).
We are left to establish that l3(¢) > 0 and l4(¢) > 0 for all si1 2 (k2+ ²; k1+2²]. By
Lemma (3), one has

l4(s
i
1; k) = (1¡ ¿°)E(n1jsi1; k) + (®¡ ¿)E(n2jsi1; k) + ¿¢+ (si1 ¡ 1)(1¡ ¿ ):

From Leibnitz's rule follows that:

@l4(s
i
1; k)

@si1
=
1¡ ¿°
4²

[n1(s
i
1 + 2²; k)¡ n1(si1 ¡ 2²; k)]

+
®¡ ¿
4²

[n2(s
i
1 + 2²; k)¡ n2(si1 ¡ 2²; k)] + (1¡ ¿):(24)

Using Appendix 1, we can rewrite this equation as

@l4(s
i
1; k)

@si1
=
1¡ ¿°
16²2

[4²¡ si1 + k1] +
®¡ ¿
16²2

[k2 + ²¡ si1] + (1¡ ¿)

¸ 1¡ ¿
16²2

[(k1 + 2²¡ si1) + (k2 + 3²¡ si1)] + (1¡ ¿ ) > 0;
where the ¯rst inequality follows from the facts that k1+4² > s

i
1, ° · 1, k2+² < si1

and ® · 1: The second inequality follows from k1+2² ¸ si1 and k2+3² > k1+2² ¸
si1. We are left to consider l3(¢). By Lemma (3), one has

l3(s
i
1; k) = (1¡

¿

2
)(si1¡1)+

¿

2
(¢+²)+

1

2
E(n1jsi2 = si1+²; k)+

®

2
E(n2jsi2 = si1+²; k)

+
1¡ ¿°
2

E(n1jsi2 = si1 ¡ ²; k) +
®¡ ¿
2

E(n2jsi2 = si1 ¡ ²; k):
By Leibnitz's rule, one has

@l3(s
i
1; k)

@si1
= (1¡ ¿

2
) +

1

4²
[n1(s

i
1 + 2²; k)¡ n1(si1; k)] +

®

4²
[n2(s

i
1 + 2²; k)¡ n2(si1; k)]

+
1¡ ¿°
4²

[n1(s
i
1; k)¡ n1(si1 ¡ 2²; k)] +

®¡ ¿
4²

[n2(s
i
1; k)¡ n2(si1 ¡ 2²; k)]

Using Appendix 1, k2 + ² < si1 · k1 + 2²; and rewriting (using the fact that

n2(s
i
1; k) = n1(s

i
1 + 2²; k)¡ n1(si1; k) in this case) yields

@l3(s
i
1; k)

@si1
= (1¡ ¿

2
) +

1¡ ¿
4²

(
k1 + 2²¡ si1

4²
) +

1¡ ¿°
8²

¡ ®¡ ¿
4²

(
si1 ¡ (k2 + ²)

4²
)
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¸ (1¡ ¿
2
) +

1¡ ¿°
8²

+
1¡ ¿
4²

(
(k1 + 2²) + (k2 + ²)¡ 2si1

4²
)

¸ (1¡ ¿
2
) +

1¡ ¿°
8²

+
1¡ ¿
8²

¸ 0;
where the ¯rst inequality follows from the facts that ® · 1 and si1 > k2 + ²; the

second inequality from the fact that (k1 + 2²) + (k2 + ²) ¡ 2si1 < 2²; and the last
inequality from the fact that ° · 1. Hence, l3(¢) is strictly increasing in the range
(k2 + ²; k1 + 2²]. Since, by Lemmas (4) and (10), l3(s

i
1 = k2 + ²; k) = l1(s

i
1 =

k2 + ²; k) > 0; this implies that l3(¢) > 0 for all si1 2 (k2 + ²; k1 + 2²]: Q.E.D.
Lemma 13 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has g(s

i
1; k) > 0; 8si1 2 (k1 + 2²; k1 + 4²].

Proof: By Lemma (10), l1(¢) > 0: Note that for all k1 + 2² · si1 · k1 + 2²;

E(n1jsi2 = si1 + ²; k) = 1 and E(n2jsi2 = si1 + ²; k) = 0: Hence, using Lemma (3),
we can rewrite l2(¢) as

l2(¢) = (1¡¿
2
)(si1¡1)+

¿

2
(¢¡²)+1¡ ¿°

2
+
1

2
E(n1jsi2 = si1¡²; k)+

®

2
E(n2jsi2 = si1¡²; k):

Using Leibnitz's rule gives

@l2(s
i
1; k)

@si1
= (1¡¿

2
)+
1

4²
[n1(s

i
1; k)+®n2(s

i
1; k)¡(n1(si1¡2²; k)+®n2(si1¡2²; k))] ¸ 0;

since n1(µ; k) + ®n2(µ; k) is nondecreasing. Since Lemma (12) states that g(s
i
1 =

k1 + 2²; k) > 0 and thus also l2(s
i
1 = k1 + 2²; k) > 0; this implies that l2(¢) > 0

8si1 2 (k1 + 2²; k1 + 4²].
Using E(n1jsi2 = si1+ ²; k) = 1; E(n2jsi2 = si1+ ²; k) = 0 and Lemma (3) to rewrite
l3(¢); gives

l3(s
i
1; k) = (1¡

¿

2
)(si1 ¡ 1) +

¿

2
(¢¡ ²) + 1

2

+
1¡ ¿°
2

E(n1jsi2 = si1 ¡ ²; k) +
®¡ ¿
2

E(n2jsi2 = si1 ¡ ²; k):
By Leibnitz's rule, one has

@l3(s
i
1; k)

@si1
= (1¡¿

2
)+
1¡ ¿°
4²

[n1(s
i
1; k)¡n1(si1¡2²; k)]+

®¡ ¿
4²

[n2(s
i
1; k)¡n2(si1¡2²; k)]:

Since, by Appendix 1, n2(s
i
1; k) = 0 in this case and °; ® · 1; the above implies

that

@l3(s
i
1; k)

@si1
¸ (1¡ ¿

2
)+

1¡ ¿
4²

[n1(s
i
1; k)+n2(s

i
1; k)¡ (n1(si1¡2²; k)+n2(si1¡2²; k))];
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which is positive because n1(µ; k) + n2(µ; k) is nondecreasing. We conclude that

l3(¢) > 0 8si1 2 (k1 + 2²; k1 + 4²] since it is increasing and l3(si1 = k1 + 2²; k) > 0
by Lemma (12).

Recall that by Lemma (3), one has

l4(s
i
1; k) = (1¡ ¿°)E(n1jsi1; k) + (®¡ ¿ )E(n2jsi1; k) + ¿¢+ (si1 ¡ 1)(1¡ ¿)

and, by Leibnitz's rule, that

@l4(s
i
1; k)

@si1
=
1¡ ¿°
4²

[n1(s
i
1 + 2²; k)¡ n1(si1 ¡ 2²; k)]

+
®¡ ¿
4²

[n2(s
i
1 + 2²; k)¡ n2(si1 ¡ 2²; k)] + (1¡ ¿):

Since, by Appendix 1, n2(s
i
1 + 2²; k) = 0 in this case and °; ® · 1, one has

@l4(s
i
1; k)

@si1
¸ 1¡ ¿

4²
[n1(s

i
1+2²; k)+n2(s

i
1+2²; k)¡(n1(si1¡2²; k)+n2(si1¡2²; k))]+(1¡¿):

As n1(µ; k) + n2(µ; k) is nondecreasing, we conclude that l4(¢) > 0 8si1 2 (k1 +
2²; k1 + 4²] because it is increasing and l4(s

i
1 = k1 + 2²; k) > 0 by Lemma (12).

Together with Lemma (10) the above implies that l1(¢); l2(¢); l3(¢) andl4(¢) > 0:

Q.E.D.

Lemma 14 For any k that solves equations (4) and (5) and for which k2 2 (k1 ¡
²; k1 + ²); one has g(s

i
1; k) > 0; 8si1 > k1 + 4².

Proof: By Lemma (10), l1(¢) > 0: The argument for why l3(¢) > 0 and l4(¢) >
0 is the same as in the proof of Lemma (13) and thus omitted. Note that if

si1 > k1 + 4²; we know that E(n1jsi2 = si1 + ²; k) = E(n1jsi2 = si1 ¡ ²; k) = 1 and
E(n2jsi2 = si1 + ²; k) = E(n2jsi2 = si1 ¡ ²; k) = 0. Hence, in this case

l2(¢) = (1¡ ¿
2
)(si1 ¡ 1) +

¿

2
(¢¡ ²) + 1¡ ¿°

2
+
1

2
:

Since @l2(¢)
@si1

> 0 and by Lemma (13) l2(s
i
1 = k1 + 4²; k) > 0; l2(¢) > 0 for all

si1 > k1 + 4². Q.E.D.
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