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Abstract

We describe some recent developments inPcGets, and consider their impact on its performance
across different (unknown) states of nature. We discuss the consistency of its selection procedures,
and examine the extent to which model selection is non-distortionary at relevant sample sizes. The
problems posed in judging performance on collinear data are noted. We also describe howPcGets
has been extended to assist non-experts in model formulation, handle more variables than observa-
tions and tackle non-linear models.

Contents

1 Introduction . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Consistent selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Comparisons withBIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Progress inPcGets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Max t-tests . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Recalibrating the heteroscedasticity tests. . . . . . . . . . . . . . . . . . 9
3.3 Overview of progress to date. . . . . . . . . . . . . . . . . . . . . . . . 10

4 ‘Pre-test’ and ‘selection’ biases . . .. . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Selection effects on the two heteroscedasticty tests. . . . . . . . . . . . 12

5 Sub-sample reliability assessment . .. . . . . . . . . . . . . . . . . . . . . . . . 13
6 Quick modeller .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Selection with too many regressors . .. . . . . . . . . . . . . . . . . . . . . . . . 19

8.1 Properties of the selected model . . .. . . . . . . . . . . . . . . . . . . 21
9 Selecting non-linear models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10 Conclusion . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11 Appendix: Progress details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11.1 The ‘Data Mining’ experiments re-visited. . . . . . . . . . . . . . . . . 23
11.2 Re-running the JEDC experiments . .. . . . . . . . . . . . . . . . . . . 26
11.3 Re-running the Stigum experiments .. . . . . . . . . . . . . . . . . . . 26

References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
∗Prepared for EC2, Bologna, 2002. Financial support from the U.K. Economic and Social Research Council under grant

L11625015 is gratefully acknowledged. We are indebted to Dorian Owen for suggesting a correction to the degrees of freedom
of the heteroscedasticity tests, and Julia Campos for comments on an earlier draft.

1



2

1 Introduction

Model selection theory poses great difficulties: all the statistics for selecting models and evaluating
their specifications have distributions, usually interdependent, and possibly altered by every modelling
decision. Fortunately, recent advances in computer automation of selection algorithms have allowed a
fresh look at this old problem, both by revealing some high success rates, and by allowing operational
studies of alternative strategies: seeinter alia Hoover and Perez (1999), Hendry and Krolzig (1999),
and Krolzig and Hendry (2001). An overview of the literature, and the developments leading to general-
to-specific (Gets) modelling in particular, is provided by Campos, Ericsson and Hendry (2003). Here
we analyze some of the procedures in, and recent changes to,PcGets, and seek to ascertain their impact
on its behaviour in sifting relevant from irrelevant variables in econometric modelling.1 Hendry and
Krolzig (2002) described the selection strategies embodied inPcGets, their foundation in the theory of
reduction, and potential alternatives. They emphasized the distinction between the costs of inference,
which are an inevitable consequence of non-zero significance levels and non-unit powers, and the costs
of search, which are additional to those faced when commencing from a model that is the data generation
process (DGP). Finally, they provided Monte Carlo evidence on the performance ofPcGets in a range
of experiments, including those used to calibrate its settings.

This paper provides an update on Hendry and Krolzig (2002), by considering seven recent devel-
opments. First, the consistency of the implemented model selection strategy, as embodied inPcGets’
Liberal and Conservative strategies, is discussed. Secondly, the progress ofPcGets, as the algorithm
has been refined, is demonstrated by again re-running some of the previously published Monte Carlo
experiments from Hendry and Krolzig (1999), Krolzig and Hendry (2001) and Hendry and Krolzig
(2002). The associated developments are also discussed. Thirdly, we investigate the presence/absence
of ‘pre-test biases’ and ‘model selection effects’, for both estimators and tests. Fourthly, we analyze the
sub-sample ‘significance evaluation’ procedure which acts as a reliability check on the selected model.
Next, an ‘automatic modeller’ has been implemented inPcGets, and we describe how it works, and why
it may be able to outperform all but expert econometricians in selecting from an initial dynamic general
unrestricted model (GUM). The sixth development is for the setting where there are more variables than
observations, which surprisingly, is not necessarily a major problem forPcGets. Finally, the same logic
is applied to selecting a non-linear model when the desired class is known.

The structure of the paper is as follows. Section 2 considers the consistency of the released ver-
sion of PcGets, and comparesPcGets to model selection based purely on the Schwarz, or Bayesian,
information criterion (Schwarz, 1978). Section 3 summarizes the progress ofPcGets on the various
Monte Carlo experiments. Then section 4 investigates possible ‘pre-test biases’ and ‘model selection
effects’. Section 5 considers the sub-sample reliability assessment procedure. Section 6 describes the
quick modelling facility, and section 7 comments on collinearity problems. Section 8 addresses the issue
of more variables than observations and section 9 comments on selecting a non-linear model. Section
10 concludes. The appendix provides details of howPcGets now performs on the experiments in Lovell
(1983) as re-analyzed by Hoover and Perez (1999), and in Krolzig and Hendry (2001) and Hendry and
Krolzig (2002).

1PcGets is an Ox Package (see Doornik, 1999) implementing automatic general-to-specific (Gets) modelling for linear
regression models based on the theory of reduction, as in Hendry (1995, Ch.9).
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2 Consistent selection

The performance of many selection algorithms as the sample size increases indefinitely is well known
for an autoregressive process under stationarity and ergodicity: see Hannan and Quinn (1979) (whose
criterion is denotedHQ), and Atkinson (1981), who proposes a general function from which various
criteria for model selection can be generated. The first criterion, proposed by Akaike (1969, 1973)
(denotedAIC for Akaike information criterion) penalizes the log-likelihood by2n/T for n parameters
and a sample size ofT , but does not guarantee a consistent selection as the sample size diverges. Both
the Schwarz (1978) information criterion, denotedSC (also called the Bayesian information criterion,
BIC) and HQ are consistent, in that they ensure that a DGP nested within a model thereof will be
selected with probability unity asT diverges relative ton. This requires that the number of observations
per parameter diverges at an appropriate rate, so that non-centralities diverge (guaranteeing retention
of relevant variables), and that the significance level of the procedure converges on zero (so irrelevant
variables are never retained). In particular,SC penalizes the log-likelihood byn log(T )/T , whereasHQ
uses2n log(log(T ))/T , which they show is the minimum rate at which additional parameters must be
penalized. Then selection is strongly consistent when the assumed order of the model is no less than
the true order, and increases with the sample size. Based on a Monte Carlo, Hannan and Quinn (1979)
suggest thatHQ may perform better in large sample sizes.
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Figure 1 Significance level comparisons across selection rules.

PcGets implements similar requirements to those needed for consistent selection in both its Liberal
and Conservative strategies, namely the general model is assumed to be over-parameterized relative to
the (local) DGP, and the nominal significance level tends to zero as the sample size increases. The
Liberal strategy seeks to minimize the chances of omitting variables that matter, so uses a relatively
loose significance level (with HQ as its upper and SC as its lower bound), whereas the Conservative
seeks to minimize the chances of retaining variables that do not matter, and hence uses a stringent
significance level. Figure 1 illustrates its rules for 10 variables (based on Hendry, 1995, Ch. 13) relative
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to AIC, SC and HQ. As can be seen, thePcGets Conservative profile is much tighter than the three
information criteria considered, whereas the Liberal strategy hasHQ as its upper andSC as its lower
bound. The block jumps are those actually set for the two strategies over the range of sample sizes
shown. A continuous profile could be implemented with ease, such as that usingT−0.8 (also shown), but
as the strategies are designed for non-expert users, it seemed preferable to base them on ‘conventional’
significance levels. TheAIC is substantially less stringent, particularly at larger sample sizes, so would
tend to over-select. However, the Conservative profile is noticeably tighter thanSC at small samples, so
the next sub-section addresses its comparison with the Schwarz criterion, viewed asBIC. Importantly,
while bothBIC andHQ deliver consistent selections, they could differ substantively in small samples,
which is precisely the intent of the twoPcGets strategies. Thus, users ought to carefully evaluate the
relative costs of over- versus under- selection for the problem at hand before deciding on the nominal
significance level, or choice of strategy.

2.1 Comparisons with BIC

The Schwarz (1978), or Bayesian, information criterion selects from a set ofn candidates the model
with k regressors which minimizes:

SCk = ln σ̃2
k + c

k lnT
T

,

wherec ≥ 1 and:

σ̃2
k =

1
T

T∑
t=1

(
yt −

k∑
i=1

β̃izi,t

)2

=
1
T

T∑
t=1

ũ2
t . (1)

A full search for a fixedc and allk ∈ [1, n] entails2n models to be compared, which forn = 40 exceeds
1012. We focus on the implicit setting of significance levels involved in the choice ofc (having shown
in figure 1 the effect of altering the form of the penalty function), and the impact of pre-selection to
reduce the value ofn for a manageable number of models. First, we establish the formal link ofBIC to
significance levels.

Consider the impact of adding an extra orthogonalized regressorzk+1,t, to the model withk such
variables, so that:

T∑
t=1

zk+1,tũt =
T∑

t=1

zk+1,tyt −
T∑

t=1

k∑
i=1

β̃izi,tzk+1,t =
T∑

t=1

zk+1,tyt = β̂k+1

T∑
t=1

z2
k+1,t,

then, as is well known, from (1):

σ̃2
k+1 =

1
T

T∑
t=1

(
ũt − β̂k+1zk+1,t

)2

= σ̃2
k

1 − β̂
2

k+1

∑T
t=1 z

2
k+1,t

T σ̃2
k


= σ̃2

k

(
1 − (T − k − 1)−1 t̂2(k+1)

σ̃2
k+1

σ̃2
k

)
,

where:

t̂2(k+1) =
T β̂

2

k+1

∑T
t=1 z

2
k+1,t

σ̂2
k+1

,
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and:

σ̂2
k+1 =

1
T − k − 1

T∑
t=1

û2
t for ût = ũt − β̂k+1zk+1,t.

Consequently:

σ̃2
k+1 = σ̃2

k

(
1 + (T − k − 1)−1 t̂2(k+1)

)−1
,

so:

SCk+1 = ln σ̃2
k+1 + c

(k + 1) lnT
T

= ln σ̃2
k + c

k lnT
T

− ln
(
1 + (T − k − 1)−1 t̂2(k+1)

)
+ c

lnT
T

= SCk +
c

T
lnT − ln

(
1 + (T − k − 1)−1 t̂2(k+1)

)
.

Hence,SCk+1 < SCk when:

lnT c/T
(
1 + (T − k − 1)−1 t̂2(k+1)

)−1
< 0,

so the additional regressor will be retained when:

t̂2(k+1) > (T − k − 1)
(
T c/T − 1

)
.

Thus, choosingc is tantamount to choosing thep-value for the correspondingt-test. For example, when
T = 140, with c = 1 (the usual choice), andk = 40, as in Hoover and Perez (1999), we haveSC41 <

SC40 whenever̂t2(41) ≥ 3.63, or |t(41)| ≥ 1.9.
To select no variables when the null model is true andc = 1 requires:

t̂2(k) ≤ (T − k)
(
T 1/T − 1

)
∀k ≤ n,

which is a sequence of|̂t(i)| between 1.9 (atk = 40) and 2.2 (atk = 1). That clearly entails at least
every|̂t(i)| < 1.9 which has a probability, in an orthogonal setting, using even the best case 140 degrees
of freedom as an approximation:

P
(|t(i)| < 1.9 ∀i = 1, . . . , 40

)
= (1 − 0.0595)40 = 0.09. (2)

Thus, 91% of the time,BIC should retain some variable(s). However, since there will be many ‘highly
insignificant’ variables in a set of 40 irrelevant regressors, the bound of|̂t(i)| < 2.2 is probably the
binding one, yielding (at 140 degrees of freedom),P

(|t(i)| < 2.2
)

= 0.3. Reducing bothT and k
can worsen the chances of correct selection: for example,T = 80, c = 1 and k = 30 leads to
P
(|t(i)| < 1.66 ∀i = 1, . . . , 30

)
= 0.04. Such probabilities of correctly selecting a null model are too

low to provide a useful practical basis. Two amendments have been proposed.
First, lowering the maximum size of model to be considered using ‘pre-testing’ as in (say) Hansen

(1999). He usesn = 10 whenT = 140 by sequentially eliminating the variable with the smallest
t-value at each stage until 30 are removed. However, that procedure entails thatBIC actually confronts
a different problem. If pre-selection did not matter, then under the null we would have:

P
(|t(i)| < 2.16 ∀i = 1, . . . , 10

)
= (1 − 0.0325)10 = 0.72. (3)

But the un-eliminated variables are those selected to have the largestt-values, so (3) overstates the
performance. Conversely, (2) will understate what happens after pre-selection, because the very act
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of alteringn changes theparameters of BIC, and is not just a numerical implementation. Hansen in
fact reports0.45 for his Monte Carlo applied to the Hoover–Perez experiments. Interestingly, using the
‘baseline’t-value in (2):

P
(|t(i)| < 1.9 ∀i = 1, . . . , 10

)
= 0.54,

so even allowing for the initial existence of 40 variables matters considerably.
Conversely, to have a higher chance of selecting the null model one could increasec. For example,

c = 2 raises the required|̂t(i)| to 2.7 and:

P
(|t(i)| < 2.7 ∀i = 1, . . . , 40

)
= (1 − 0.0078)40 = 0.73,

which is a dramatic improvement over (2). Hansen’s setting ofc = 2 whenn = 10 raises the required
|̂t(i)| < 3.08, and, again ignoring pre-selection, delivers a 97.5% chance of correctly finding a null
model (he reports 95% in his Monte Carlo whereas(1 − 0.0078)10 = 0.92).

Nevertheless, when the null is false, both steps (i.e., raisingc and arbitrarily simplifying till 10
variables remain) could greatly reduce the probability of retaining relevant regressors witht-values less
than 2.5 in small samples: that this effect does not show up in the Hoover–Perez experiments is due to
the ‘population’t-values either being very large or very small.

Three conclusions emerge from this analysis. First, pre-selection can help locate the DGP by al-
tering the ‘parameters’ entered into theBIC calculations, specifically the apparent degrees of freedom
and the implicitly requiredt-value. PcGets employs a similar ‘pre-selection’ first stage, but based on
block sequential tests with very loose significance levels so relevant variables are unlikely to be elimi-
nated. Secondly, the trade-off between retaining irrelevant and losing relevant variables remains, and is
determined by the choice ofc implicitly altering the significance level. In problems with manyt-values
around 2 or 3, high values ofc will be very detrimental. Thirdly, the asymptotic comfort of consistent
selection when the model nests the DGP does not greatly restrict the choice of strategy in small sam-
ples. We also note thatBIC does not address the difficulty that the initial model specification may not
be adequate to characterize the data, but will still select a ‘best’ representation without evidence on how
poor it may be. In contrast,PcGets commences by testing for congruency: perversely, in Monte Carlo
experiments conducted to date, where the DGP is a special case of the general model, such testing will
lower the relative success rate ofPcGets. Finally, the arbitrary specification of an upper bound onn

is both counter to the spirit ofBIC, and would deliver adverse findings in any setting wheren was set
lower than the number of DGP variables.

2.1.1 Comparisons in a VAR

In Brüggemann, Krolzig and L¨utkepohl (2002), theGets approach to the reduction of vector autoregres-
sive models is compared to selection procedures based on information criteria. For the DGPs considered
in their Monte Carlo study, the forecast comparison indicated a clear advantage forPcGets. The results
are summarized in figure 2, which reports the relative mean squared prediction error (MSPE) of the
models selected byPcGets and full-search procedures maximizing AIC, HQ and SC, respectively, at
forecast horizonsh = 1 and5. Interestingly, the forecasts produced byPcGets are better than the fore-
casts based on the true model when all non-zero coefficients of the DGP have to be estimated: in other
words, the estimated DGP forecasts are affected by estimation uncertainty, whereas any model selection
uncertainty is offset by the simplification gains, as might be expected from the theory in the previous
section.
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Figure 2 Normalized and averagedMSPEs relative to the unrestricted VAR.

3 Progress in PcGets

Various new, corrected, and additional procedures have been implemented, most having only a small
impact on the program’s behaviour. This is unsurprising given the degree of ‘error correction’ manifest
in the experiments used to calibrate the program (i.e., when one procedure does not perform, another
does) combined with how close to the theoretical upper bound performance already is. Nevertheless,
improvements are feasible in several directions. First, for settings not previously envisaged, such as a
model with (say) forty lags of one variable, and few lags on others. When one important effect is hidden
in a morass of irrelevance, the pre-search block tests need not be appropriate, so we consider using
the outcome of the maximumt-test as a check (sub-section 3.1). Secondly, the calibration of the mis-
specification heteroscedasticity tests was poor in Hendry and Krolzig (2002), but this transpires to be a
problem with the degrees of freedom assumed for the reference distribution (sub-section 3.2). Thirdly,
a number of small changes have been implemented, including one to the determination of the lag order,
using a combined top-down/bottom-up approach, complemented by an automatic Lagrange-multiplier
(LM) test for omitted regressors. We also investigated exploiting the information in the orderedt-
statistics to locate a cut-off between included and excluded variables, but while suitable for orthogonal
problems, multi-path search remains necessary in general: section 7 briefly addresses the collinearity
issue. Table 1 summarizes the main features of the various Monte Carlo experiments conducted to date,
and referred to below (HP, JEDC, S0–S4 and S0∗–S4∗ respectively denote Hoover and Perez, 1999,
Krolzig and Hendry, 2001, and thePcGets calibration experiments in Hendry and Krolzig, 2002).

3.1 Max t-tests

When only one of a large setn of candidate variables matters, then on average, a block testFnT−n will
have low power to detect it compared to a focusedt-test. A crude approximation relating these statistics,
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Table 1 Monte Carlo designs.
Design regressors causal nuisance |t|-values avg.|t|-value

HP0 41 0 41 0
HP2∗ 41 1 40 5.77 5.77
HP2 41 1 40 11.34 11.34
HP7 41 3 38 (10.9, 16.7, 8.2) 11.93
JEDC 22 5 17 (2,3,4,6,8) 4.6
S0 34 0 34 0
S2 34 8 26 (2,2,2,2,2,2,2,2) 2
S3 34 8 26 (3,3,3,3,3,3,3,3) 3
S4 34 8 26 (4,4,4,4,4,4,4,4) 4
S0∗ 42 0 42 0
S2∗ 42 8 34 (2,2,2,2,2,2,2,2) 2
S3∗ 42 8 34 (3,3,3,3,3,3,3,3) 3
S4∗ 42 8 34 (4,4,4,4,4,4,4,4) 4

valid for orthogonal variables is:

Fn
T−n � 1

n

n∑
i=1

t2(i).

The expected value oft2(i) under the null is unity, so ifn − 1 variables are irrelevant, then on average,
but ignoring sampling variation:

Fn
T−n � 1

n

n−1∑
i=1

1 +
1
n

t2(n) = 1 +
1
n

(
t2(n) − 1

)
, (4)

sinceE[t2(i)|H0] = 1, wheret2(n) denotes the largest statistic. Let the block test be conducted at sizeα,
then amax{|t|} criterion with the correct size would use the approximate nominal significance level
(see e.g., Savin, 1984):

δα
n = 1 − (1 − α)1/n. (5)

For example, forn = 10 whenα = 0.05 so P
(
F10

100 > 1.93|H0

)
= 0.05, then from (4), a significant

outcome due to onlyt2(10) requires its value to be about 10.3, whereas from (5):

δ0.05
10 = 1 − (1 − 0.05)1/10 = 0.0051,

which entailst2 > 8.1, and so is somewhat smaller. Nevertheless, one relevant variable can easily hide
in a set where the overall outcome is insignificant: and note the potential for conflicting inference—
PcGets judges the variable as irrelevant by theF test or a t-test based onδαn, whereas a later investigator
using a one-offt-test at significance levelα would include it. Thus, a compromise between size and
power more favourable to the latter when the initial specification is highly over-parameterized, but one
or more of the variables matters, is to consider themax{|t|} statistic, but at a less stringent level than
δα
n, say twice the value from (5).

To investigate the quality of the approximation in (4), we consider a Monte Carlo experiment withn

IID centralt(ν) random variates, whereν = 30 is the degrees of freedom. In each of theM = 100000
replications, we calculate the maximummax{|t1|, . . . , |tn|} of the n random variables, and compare
thet-prob of its1−α quantiles to the prediction of theδαn rule. Figure 3 plotsδαn for α = 0.01 and0.05
and compares it to the0.95 and0.99 quantiles of associatedt-probs The results demonstrate the quality
of the approximation.
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Figure 3 δαn andmax |t| of n IID t(ν) random variates.

3.2 Recalibrating the heteroscedasticity tests

In Krolzig and Hendry (2001), we found that the QQ plots of the ARCH (see Engle, 1982) and uncon-
ditional heteroscedasticity tests (see White, 1980) were not straight lines, so the simulated outcomes did
not match their anticipated distributions, and we therefore cautioned against their use. A reviewer of
Hendry and Krolzig (2001) (Dorian Owen) suggested that the degrees of freedom were inappropriate
by using a correction like that in Lagrange-multiplier autocorrelation tests (see e.g., Godfrey, 1978, and
Breusch and Pagan, 1980). Instead, as argued in (e.g.) Davidson and MacKinnon (1993, Ch. 11), since
the covariance matrix is block diagonal between regression and scedastic function parameters, tests can
take the former as given. Doing so changes the statistics from being regarded asFarch(q, T −k−2q) and
Fhet(q, T −k−q) to Farch(q, T −2q) andFhet(q, T −q) respectively. This indeed produces much closer
matches with their anticipated distributions as tables 2 and 3 show for the ARCH and heteroscedasticity
tests applied to the DGP.

Table 2 ARCH test DGP outcomes.
Nominal 10% 7.5% 5% 2.5% 1%

HP2 0.075 0.058 0.039 0.018 0.006
HP2∗ 0.069 0.055 0.037 0.020 0.008
HP7 0.068 0.054 0.036 0.015 0.005

JEDC 0.104 0.076 0.053 0.025 0.009
S2 – S4 0.064 0.049 0.035 0.021 0.008

S2∗ – S4∗ 0.095 0.066 0.046 0.028 0.015

The ARCH test remains under-sized in these experiments at most quantiles, whereas the het-
eroscedasticity test is close to its nominal significance level in most cases. Overall, there is a marked
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Table 3 Heteroscedasticity test DGP outcomes.
Nominal 10% 7.5% 5% 2.5% 1%

HP2∗ 0.082 0.061 0.039 0.020 0.010
HP2 0.075 0.053 0.034 0.019 0.008
HP7 0.084 0.066 0.048 0.030 0.016

JEDC 0.095 0.074 0.054 0.031 0.016
S2 – S4 0.097 0.078 0.055 0.032 0.013

S2∗ – S4∗ 0.092 0.072 0.052 0.029 0.016

improvement compared to the outcomes reported in Krolzig and Hendry (2001).
Next, we consider the improvements in the simulation behaviour ofPcGets.

3.3 Overview of progress to date

As Hendry and Krolzig (2002) provide a relatively recent review ofPcGets (as of June 2001), we
record the detailed outcomes in the Appendix (section 11), and summarize the findings here. Since
the study of automatic selection procedures began, progress has been substantial. First, we consider
control over ‘size’, such that the actual null rejection frequencies are close to the nominal level set
by the user ‘independently’ of the problem investigated. Figure 4 plots the ratio of actual to nominal
size, across the various studies of the Hoover–Perez experiments at 5% and 1% nominal level, and
shows that stabilization has occurred as we have learned more about howPcGets functions, and added
new features to its search procedures, such as those noted above (the latest estimates incorporate the
sub-sample reliability weightings, and are slightly under-sized—despite their being between 35 and 40
irrelevant regressors).

1

2

3

4

5

HP1, 1% HP2, 1% HP2, 5% HP7, 1% HP7, 5%

H−P 
H−K Original 
H−K Stigum 
H−K Latest 

Figure 4 Ratio of actual to nominal size.
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Secondly, we consider the appropriate calibration of the two basic strategies. Figure 5 graphically
illustrates four main aspects of the outcomes across all the Monte Carlo experiments to date for both
Conservative and Liberal strategies. Panel a concerns ‘unbiased’ fit, in the sense that the final estimate
of the equation standard error (σ̂) is close to the true value. The Liberal strategy has a slight downward
bias (less than 5%) whereas the Conservative is upward biased by a similar amount. Such behaviour is
easily explained: the latter eliminates variables which matter and the former retains some which only
do so by chance. However, at no stage was selection based on fitper se, although a minimal congruent
encompassing model will necessarily have the best fit at the significance level set.

Panel b shows sizes for the strategies relative to their intended significance levels of 5% and 1%,
both with and without sub-sample reliability weightings: the latter are close to their targets.

Panel c considers the impact of the sub-sample reliability weightings on the resulting power, and
shows that there is only a small effect, even at quite low powers where it should have most impact. The
Conservative strategy naturally has no higher power than the Liberal, and shows that the cost of avoiding
spurious variables can be high in terms of missing what matters.
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Figure 5 Overview of accuracy, size, power and success.

Finally, figure 5d graphs the probabilities of locating the DGP, together with the corresponding out-
comes when the search commences from the DGP, with tests conducted at 5% and 1%. The movements
of the four lines are similar, and frequently the apparent problem for a search algorithm transpires to be
a cost of inference since the DGP is sometimes never retained. The out-performance of commencing
from the DGP in the Hoover–Perez experiments is owing to the high degree of over-parameterization but
even so, the Conservative strategy does a respectable job. When populationt-values are 2 or 3, the Lib-
eral strategy does well, and sometimes outperforms commencing from the DGP with a 1% significance
level. Notice also that the two strategies cannot be ranked on this criterion: their relative performance
depends on the unknown state of nature. Nevertheless, as Hendry and Krolzig (2001, Ch. 5) discuss, a
user may be aware of the ‘type’ of problem being confronted, in which case figure 5d shows the potential
advantages of an appropriate choice of strategy.
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These findings confirm the closeness in practice of the strategies to their desired operating charac-
teristics.

4 ‘Pre-test’ and ‘selection’ biases

To investigate the impact of selection on coefficient estimates and standard errors, we recorded these
outcomes in the Hendry and Krolzig (2002) experiments, with the results shown in table 4. As expected,
conditional on being retained, the coefficient estimates are upward biased for smallert-values (|t| ≤
3), more so for the Conservative strategy, but are close to the population values for largert-values.
Unconditionally, coefficient estimates are downward biased. More importantly, the estimated standard
errors are not biased on either strategy, although the sampling standard deviations are. As noted earlier,
the equation standard error is, if anything, upward biased, so any accusation thatPcGets ‘overfits’ is
clearly false. Finally, ‘pre-test’ effects are not changed by searchper se, as the coefficient biases are
closely similar when commencing from the DGP and the GUM.

Table 4 Coefficient estimates and SEs.
DGP Reduction of DGP GUM Reduction of GUM true value

variable LIB CON LIB CON

mean
Za 0.204 0.286 0.324 0.204 0.285 0.322 0.200
Zb 0.301 0.332 0.358 0.300 0.333 0.360 0.300
Zc 0.399 0.407 0.420 0.399 0.410 0.422 0.400
Zd 0.604 0.602 0.602 0.604 0.604 0.605 0.600
Ze 0.803 0.796 0.796 0.801 0.803 0.803 0.800
SE
Za 0.103 0.102 0.101 0.113 0.099 0.101 0.100
Zb 0.102 0.102 0.102 0.112 0.100 0.100 0.100
Zc 0.103 0.103 0.103 0.113 0.101 0.102 0.100
Zd 0.102 0.103 0.104 0.113 0.101 0.103 0.100
Ze 0.103 0.103 0.103 0.113 0.101 0.103 0.100
SD
Za 0.103 0.066 0.061 0.115 0.070 0.062
Zb 0.102 0.082 0.075 0.113 0.084 0.075
Zc 0.103 0.095 0.089 0.115 0.098 0.090
Zd 0.103 0.102 0.104 0.116 0.108 0.106
Ze 0.106 0.100 0.102 0.119 0.111 0.110

residuals
σ 0.998 1.007 1.017 0.998 0.981 1.008 1.000

% bias -0.2% 0.7% 1.7% -0.2% -1.9% 0.8%

4.1 Selection effects on the two heteroscedasticty tests

Another feature of interest is the impact of model selection on the outcomes of test statistics. This is
shown in tables 5 and 6 for the two tests in section 3.2. Specific models with diagnostic tests indicating
an invalid reduction at1% or less were rejected if the GUM showed no mis-specifications at5%. If a
mis-specification test was significant at1%, the test was dropped from the test battery. If thep-value of
the mis-specification test was between1% and5%, the significance level was reduced from1% to 0.5%.
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Table 5 ARCH test selected model outcomes.
Nominal 10% 7.5% 5% 2.5% 1%

HP2 0.067 0.050 0.032 0.014 0.001
HP2∗ 0.058 0.046 0.032 0.016 0.002
HP7 0.054 0.042 0.024 0.009 0.002

JEDC 0.103 0.076 0.043 0.011 0.001
S2 0.070 0.048 0.033 0.016 0.001
S3 0.072 0.058 0.037 0.016 0.000
S4 0.066 0.051 0.029 0.016 0.007
S2∗ 0.067 0.049 0.027 0.011 0.001
S3∗ 0.082 0.058 0.044 0.024 0.001
S4∗ 0.088 0.057 0.040 0.019 0.003

For the Hoover–Perez DGPs, the heteroscedasticity test statistics were all insignificant at10%.
While the regressors in the JEDC and S experiments are generated by a Gaussian white-noise process,
the regressors in the HP experiments are heteroscedastic.

Table 6 Heteroscedasticity test selected model outcomes.
Nominal 10% 7.5% 5% 2.5% 1%

JEDC 0.109 0.084 0.056 0.027 0.004
S0 0.011 0.009 0.006 0.003 0.001
S2 0.108 0.083 0.057 0.028 0.004
S3 0.116 0.090 0.061 0.027 0.004
S4 0.107 0.082 0.056 0.028 0.007
S0∗ 0.013 0.010 0.006 0.003 0.000
S2∗ 0.098 0.077 0.052 0.026 0.002
S3∗ 0.111 0.087 0.057 0.026 0.003
S4∗ 0.104 0.080 0.057 0.026 0.003

As can be seen in comparison with tables 2 and 3 above, there is almost no change in the rejection
frequencies for quantiles above the nominal significance level, but an increasing impact as the quantile
decreases. The latter effect is essentially bound to occur, since models with significant heteroscedasticity
are selected against by construction.

Nevertheless, the outcomes in these tables do not represent a ‘distortion’ of the sampling properties:
the key decision is that taken at the level of the general model, and conditional on not rejecting there,
no change should occur in that decision. Tables 7 and 8 confirm that result: in both cases, the tests have
their anticipated operating characteristics.

5 Sub-sample reliability assessment

After selection, the relevance of variables in the final model is explored by post-selection reliability
checks to ascertain whether ‘significance’ is substantive or adventitious. Post-selection evaluation is an
attempt to mimic the role in an automatic procedure of recursive estimation, aiming to evaluate whether
apparently significant effects are substantive or chance. It is not a check on constancy, which has already
been tested for the GUM, and checked by diagnostics at each potential reduction.
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Table 7 ARCH test general model outcomes.
Nominal 10% 7.5% 5% 2.5% 1%

HP0 0.146 0.118 0.095 0.053 0.033
HP2 0.114 0.093 0.066 0.038 0.022
HP2* 0.106 0.085 0.060 0.039 0.024
HP7 0.123 0.102 0.074 0.043 0.024

JEDC 0.074 0.063 0.041 0.022 0.011
S0 – S4 0.074 0.060 0.039 0.018 0.009

S0∗ – S4∗ 0.065 0.051 0.034 0.027 0.008

Table 8 Heteroscedasticity test general model outcomes.
Nominal 10% 7.5% 5% 2.5% 1%

JEDC 0.094 0.072 0.047 0.025 0.012
S0 0.098 0.076 0.055 0.029 0.014
S2 0.098 0.077 0.054 0.028 0.012
S3 0.100 0.078 0.055 0.028 0.013
S4 0.099 0.077 0.055 0.029 0.014
S0∗ 0.090 0.068 0.047 0.022 0.010
S2∗ 0.089 0.068 0.047 0.024 0.010
S3∗ 0.090 0.068 0.046 0.024 0.010
S4∗ 0.090 0.067 0.045 0.023 0.010

Under the null hypothesisH0, using a 2-sided test, at-value will exceed (in absolute value) a critical
valuecα onα% of the occasions, whereα is the significance level, so:

P (−cα ≤ t ≤ cα | H0) = α.

However, after selecting a model, the retained variables will have significantt-values by construction.2

The selected set thus comprises (on average)α% of the initial set—significant by chance—and the
remainder—significant by having non-centralt-distributions. The issue is whether conditional on ob-
serving full-sample significance, there is a division of the sample into sub-samples that would help dis-
criminate between these, exploiting the fact that non-centralt-values diverge, whereas centralt-values
are only significant by a chance value falling outside the range[−cα, cα] at the end of the sample.

Our proposed filter between variables that really matter (non-centralts) and those that are adven-
titiously significant (centralts that happen to take large end-of-period values) is to check sub-sample
reliability. The idea is that the centralt-tests will be low in at least one of the two sub-periods, so
revealing the actual irrelevance of the associated variable. Because the sample sizes are smaller, less
stringent critical values are used. Hoover and Perez (1999) find evidence that the power-size trade-off
as a function of the sample split is ‘flat’ in the neighbourhood of 75–25 splits (so 50% of observations
are in common), hencePcGets centers on that.

It is clear from all the Monte Carlo studies we have conducted that the reliability check reduces the
size, and has helped stabilize performance over different states of nature. Nevertheless, that by itself
does not resolve the key issue of whether an equivalent size reduction achieved by lowering the initial

2We neglect the small percentage of the time where variables enter insignificantly, but their elimination would induce a
significant diagnostic test value.
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significance level of every test would result in higher or lower power, and if so, how that changes across
different DGPs. The size-power trade-off is highly non-linear in both the significance level and the
non-centrality parameters of the variables, and any analysis must be conditional on having retained each
associated regressor at its observedt-value.

We have undertaken extensive analytic investigations of the problem, but have few clear results at
this stage. However, we have shown that a 50–50 split (where the sub-samples are independent draws)
yields no benefit, and is equivalent in terms of mis-classifying relevant and irrelevant variables to the
same reduction in the significance level imposed in the full sample. Conversely, since the simulation
evidence in Hoover and Perez (1999) suggested that a 50–50 split was far from optimal, overlapping
samples might yet be proved to deliver genuine gains.

We also investigated the sub-sample properties of a singlet test when the analysis is conditioned
on its significance in the full sample. The Monte Carlo study consists of 5,000,000 replications of
the experiment with twot(ν, ψ) distributed random variables withν = 50 degrees of freedom and a
non-centralityψ ∈ {0, 2, 3, 4}. The full-sample|t|-value is given by|t| = 1√

2
|t1 + t2|.
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Figure 6 The density of|t|i andmini{|t|i}— conditional on significance in the full sample.

Figure 6 plots the conditional density of|t|i andmini{|t|i}— in non-overlapping subsamples con-
ditional on significance in the full sample. It is evident that if a regressor is significant in the full sample,
the distribution of the subsample|t|-values of a variable that matters is hardly distinguishable from that
of a nuisance variable. Information from overlapping subsamples is required for the reliability statistic.
In the split-sample analysis ofPcGets, the size of the subsample is0.75T .

It is important to distinguish the reliability assessment of a model (which has been selected based on
the full-sample information) from selection rules that are formulated in terms of sub-sample evidence.
Hoover and Perez (1999) proposed selecting only variables that are significant in two (over-lapping) sub-
samples. We now provide some Monte Carlo evidence indicating that the latter procedure is dominated
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by the former.3

Let {t1, t2} be t(ν) distributed random variables. Figure 7 compares the distribution of the full-
sample|t| = 1√

2
|t1 + t2| and the minimum of the|t|-values,min{|t|1, |t|2}, in the two non-overlapping

sub-samples of sizeν1 = ν2 = 50.

Table 9 Power function: sub-samplemin{|t|1, |t|2} or full-samplet test.

t-value full-sample subsample (0.5T ) subsample (0.75T ) subsample (0.85T )
10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

2 0.624 0.498 0.258 0.443 0.333 0.162 0.562 0.438 0.213 0.588 0.461 0.228
3 0.902 0.837 0.633 0.750 0.661 0.454 0.852 0.770 0.541 0.874 0.796 0.574
4 0.988 0.975 0.908 0.928 0.889 0.765 0.973 0.947 0.841 0.980 0.960 0.870
5 0.999 0.998 0.989 0.985 0.974 0.933 0.997 0.993 0.969 0.998 0.996 0.979
6 1.000 1.000 0.999 0.998 0.996 0.987 1.000 1.000 0.997 1.000 1.000 0.998

Table 9 reports the resulting power functions. It is worth noting that analyzing overlapping sub-
samples can retrieve parts of the power loss. This is illustrated in figure 8 for subsample sizes of0.75T
and0.85T .
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Figure 7 Density of the full-sample|t| andmin{|t|1, |t|2} for ν1 = ν2 = 50.

3Lynch and Vital-Ahuja (1998) analyzed the related problem whether the use of subsample evidence can mitigate the
potential impact of data snooping on the distribution of test statistics. Comparing subsample and entire sampleR2 tests,
Lynch finds that the full-sample test has a less distorted size and more power than the multisample test.
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Figure 8 Density ofmin{|t|1, |t|2} in overlapping subsamples.

6 Quick modeller

The latest version of the program offers a quick modelling option. The user only needs to specify the
regressand and the list of basic regressors, after whichPcGets offers a menu for fitting a static, dynamic
or cross-section model. The first takes the equation as the basic list; the second selects the maximum
lag length at a convex combination of (i) one more than the data frequencyf ; (ii) 0.4 time the number
of observations per regressor; and (iii) the log of the number of observationsT :

p∗ =

max


(

min
{

1.5 + f,
0.4T
1 + n

− 1
})1

2

(
T

3
4

1 + n
− 1

) 1
4

(log T )
1
4 , 0


 ,

(or it can be set by the user); and the third abstracts from time-related tests. Contemporaneous variables
can be included or excluded, and outlier corrections implemented if desired. The Liberal strategy with
sub-sample analysis is the default, after whichPcGets creates the GUM and selects a model.

The main difference from standard ‘expert usage’ is that the program chooses the lag length in
dynamic models. We assume the user has thought carefully about the specification—indeed, she will
have more time to do so given other tasks are much less onerous—including the relevant variables
and appropriate functional forms. Subject to that, its performance should be similar to more advanced
usage. For example, on the DHSY data set commencing from just the list ofc, y, p it selects the model
reported by Davidson, Hendry, Srba and Yeo (1978). Thus, while users expert in dynamic empirical
modelling, willing to explore the many possible reduction paths, and with specific knowledge about
the problem under analysis may well ‘beat’ the program, the authors’ experience to date is thatPcGets
provides baseline models that are highly competitive. The maincaveat is an expert’s ability to transform
the variables to near-orthogonal, interpretable representations, so we briefly reconsider the issue of
collinearity.
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7 Collinearity

Perfect collinearity denotes an exact linear dependence between variables; perfect orthogonality denotes
no linear dependencies; and any state in between depends on which ‘version’ of a model is inspected,
as collinearity is not invariant under linear transforms.PcGets provides a ‘collinearity analysis’, report-
ing the correlation matrix and its eigenvalues, but suitable statistics are unclear. First, eigenvalues are
only invariant under orthogonal, and not under linear, transforms, so depend on the transformations of
the variables (rather than the ‘information content’). Secondly, even the observed correlations are not
reliable indicators of potential problems in determining if either or both of two variables should enter a
model – the source of their correlation matters. For example, inter-variable correlations of 0.99 can arise
in systems with unit roots and drift, but there is little difficulty determining the relevance of variables
when the DGP is:

yt = γ + yt−1 + εt with εt ∼ IN
[
0, σ2

ε

]
, (6)

and the fitted model is (say):

yt = β0 + β1yt−1 + β2zt−1 + · · · + vt,

andzt is generated as a random walk with drift, but independently of (6).
Conversely, in a bivariate normal:(

xt

zt

)
∼ IN2

[(
0
0

)
,

(
1 ρ

ρ 1

)]
, (7)

with a conditional model as the DGP:

yt = βxt + γzt + εt (8)

whenρ = 0.99 there is almost no hope of determining which variables matter in (8).
Transforming variables to a ‘near orthogonal’ representation before modelling can help resolve this

problem, but otherwise, eliminating one of the two variables seems inevitable. Which is dropped de-
pends on the vagaries of sampling, inducing considerable ‘model uncertainty’, as the selected model
oscillates between retainingxt or zt (or both): either variable is an excellent proxy for the dependence
of yt on βxt + γzt. That remains true even when one of the variables is irrelevant, although then the
multiple-path search is likely to select the correct equation. When both are relevant, a Monte Carlo
model-selection study of (8) given (7) whenρ = 0.99 would almost certainly suggest that the algorithm
had a low probability of selecting the DGP. In empirical applications, however, for users willing to care-
fully peruse the detailed output, the impact of collinearity will be manifest in the number of different
terminal models entered in encompassing comparisons. Such information could guide selection when
subject-matter knowledge was available.

A serious indirect cost imposed by collinearity is that thet-values in the GUM are poor indicators
of the importance of variables. Thus, tests which use the initial orderedt2(i) as a guide to the selection
of candidate variables for elimination cannot perform adequately, which includes the initial cumulative
F-test and block tests (e.g., on groups of lagged variables). Thus, a simple separation into ‘included’ and
‘excluded’ variables in a one-off test is infeasible under non-orthogonality, and multi-path searches are
essential. Transforming the variables to a ‘near orthogonal’ representation before modelling probably
requires analyzing the properties of the regressors, and takes us in the direction of a system variant of
Gets: for applications of such ideas in the context of a vector autoregression, see Krolzig (2000).



19

The effects of collinearity on the selection properties ofPcGets are illustrated by a variation of the
Monte Carlo experiments in Krolzig and Hendry (2001), The DGP is a Gaussian regression model,
where the strongly-exogenous variables are independent Gaussian AR(1) processes:

yt =
∑5

k=1 βk,0xk,t + ut, ut ∼ IN [0, σu] ,

xt = (αI10)xt−1 + vt, vt ∼ IN10

[
0, σ2

v
1−αI10

]
for t = 1, . . . , T.

(9)

The parameterization of the DGP isβ1,0 = 0.2, β2,0 = 0.3, β3,0 = 0.4, β4,0 = 0.6, β5,0 = 0.8, and
σ2

u = σ2
v = 1. The populationt-value associated with regressork is given by:

tk = βk

√
T
σx

σu
= βk

√
T

σv

(1 − α2)σu

The DGP is designed to ensure invariant populationt-values with increasingα. For T = 100, the
non-zero populationt-values are therefore2, 3, 4, 6, 8.

The GUM is anADL(1, 1) model, which includes as non-DGP variables the lagged endogenous
variableyt−1, the strongly-exogenous variablesx6,t, . . . , x10,t and the first lags of all regressors:

yt = π0,0 + π0,1yt−1 +
10∑

k=1

1∑
i=0

πk,ixk,t−i + ut, ut ∼ IN
[
0, σ2

]
. (10)

In an alternative experiment, we consider the orthogonal representation of (10):

yt = π0,0 + π0,1yt−1 +
10∑

k=1

πkxk,t +
10∑

k=1

γk (αxk,t − xk,t−1) + ut, ut ∼ IN
[
0, σ2

]
. (11)

In (10) as in (11),17 of 22 regressors are ‘nuisance’. The sample sizeT is just 100, and the number
of replicationsM is 1000. In a third experiment, using (11), the sample size is corrected for the time
dependence of the regressors:T (α) = 100(1 − α2)−1.

The Monte Carlo results are summarized in figure 9 which plots the size, power and the probability
of finding the DGP withPcGets when commencing from (i) GUM (10) withT = 100, (ii) GUM (11)
with T = 100, and (iii) GUM (11) withT (α). The first experiment illustrates the effects the collinearity:
a significant loss in power and growing size. Starting from an orthogonalized GUM stabilizes size and
power, which becomeα-invariant if the sample size is adjusted.

8 Selection with too many regressors

Consider two groups of variables relevant to determining a variable of interestyt, denotedxi,t, for
i = 1, 2, of dimensionsni << T respectively wheren = n1 + n2 > T , but any one (n1 or n2) is
sufficiently smaller thanT to be estimable. The analysis is easily generalized for more groups, although
the computational burden rises in a combinatorial fashion. Further partition each ofx1,t andx2,t into two
halves, producing four groups. Now select (say) the first halves ofx1,t andx2,t as the first GUM, then
the second halves (assuming the ordering is arbitrary), then the cross-pairing. Cumulate all the resulting
terminal models from each of those searches as the next GUM. There are2C4 = 6 combinations [(1,2)
(3,4), (1,3) (2,4), (1,4), (2,3)] to be investigated, but the procedure is easily automated. Many of the
elements in each set need not have an effect, but we assume components of each are relevant. We
assume all sub-models are congruent against own information, but if non-congruent, HAC standard
errors could be used. We now explain the procedure for two subsets.
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Figure 9 Selection properties ofPcGets for varyingα.

For t = 1, . . . , T , let the DGP be:

yt =
2∑

i=1

β′
ixi,t + εt where εt ∼ IN

[
0, σ2

ε

]
, (12)

where theβi contain many zeros, such that the remaining non-zero parameters numberk << T . To
refer unambiguously to the signs of the covariances between variables, we take all the parameters in
{βi} as positive without loss of generality. The central case is where the groups are equal sized, so two
‘general models’ are considered of the form (

�c denotes ‘claimed to be distributed as’):

yt = γ′
jxj,t + uj,t where uj,t �c IN

[
0, σ2

uj

]
, (13)

Then as bothβi �= 0, the selected model from each of (13) will not coincide with that selected from
(12) when the latter is estimable. Nevertheless, we assume that all the models are congruent against
their own information sets, perhaps by design. If (13) cannot be estimated, sub-divide further; however,
two sets explains the logic.

First select the best model from:
yt = γ′

1x1,t + u1,t (14)

to get the first terminal model:

yt = λ′
1x

∗
1,t + v1,t where v1,t

�c IN
[
0, σ2

v1

]
, (15)

wherex∗
1,t denotes the retained components ofx1,t such that all elements ofλ1 are non-zero.

Similarly for x2,t, commence from:

yt = γ′
2x2,t + u2,t (16)
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to get a second terminal model:

yt = λ′
2x

∗
2,t + v2,t where e1,t �c IN

[
0, σ2

v2

]
. (17)

Now, re-start the selection from:

yt = θ′
1x

∗
1,t + θ′

2x
∗
2,t + ξt where ξt �c IN

[
0, σ2

ξ

]
, (18)

to end with the final selection:

yt = ρ′
1x

∗∗
1,t + ρ′

2x
∗∗
2,t + ηt where ηt �c IN

[
0, σ2

η

]
. (19)

8.1 Properties of the selected model

If x1,t andx2,t are mutually orthogonal, and (18) is feasible then this procedure delivers the correct
answer unless the significance of the relevant variables is close to marginal, so the improved fit of the
combination is essential to retain them. Critical values will probably need to be loose in the early subset
selections to avoid that problem. Conversely, stringent critical values will probably be needed at the
final stage. If, say,n1 = n2 = 100 < T = 150, then a 1% level would only entail 2 irrelevant variables
retained on average despite 200 variables at the start. We first consider theIID case, so the sub-models
are congruent but incomplete.

At stage 1, selecting from (14) when the DGP is in (12), under orthogonality:

u1,t = β′
2x2,t + εt (20)

soγ1 is unbiasedly estimated, but with the equation error variance ofσ2ε +β′
2M2,2β2 under stationarity,

whereM2,2 = E
[
x2,tx′

2,t

]
. Thus, the primary problems are lack of significance of variables that matter

due to ‘underfitting’, and retention of:
α (n1 − k1)

irrelevant variables on average when a test of sizeα is used. Here, we imagineα = 0.1 at stage
1, to minimize the loss of variables that matter. For example, ifn1 = 100 and k1 = 10 (say), all
relevant variables witht-values in excess of about 1.65 in absolute value will be retained together with
9 irrelevant. Similarly for selecting from thex2,t, leading to about 40 variables in the combation of the
terminal models:

yt = θ′
1x

∗
1,t + θ′

2x
∗
2,t + ξt.

At stage 2, setα = 0.01 (say), so only about 2 adventitiously-significant variables will on average be
retained from the initial 200, whereas all relevant variables that have absolutet-values in excess of about
2.6 in the DGP will be retained. Alternatively, depending on the investigators loss function,α = 0.025
would be closer to the value implicit in BIC, and retain variables with absolutet-values in excess of
about 2.25.

The third stage may be unnecessary for orthogonal variables, but even there, cross-matching may
deliver additional relevant variables in some terminal models, so could be beneficial.

If x1,t andx2,t are positively correlated, the efficiency of selection is lower even if the analysis
can be conducted in a single stage, and hence must be lower for the multi-stage process proposed here.
Nevertheless, we can see that it is likely to work quite well, since the intercorrelations should entail
that proxy variables improve fit at the intermediate stages, so could raise the probability of retaining
the relevant variables within each subset. However, when the ‘correct’ regressors are also included, the
proxies should be eliminated.
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The difficult case is ifx1,t andx2,t are negatively correlated, since then each is needed for the other
to be included. In practice, some negative correlations are likely in amongst some near orthogonal and
some positive, so the cross-matching is needed to ensure appropriate pairs at least are always jointly
included.

When the data are notIID, so sub-models may be non-congruent, HAC coefficient standard errors
may be useful during intermediate stages to ensure that terminal models include all DGP-relevant vari-
ables, but should not be needed at the final selection from (18).

9 Selecting non-linear models

A relatively common approach in a non-linear setting (see Granger and Ter¨asvirta, 1993) is to fit non-
linear models beginning from a previously selected linear. Such an approach is analogous to simple
to general in two respects. First, moves between studies are almost bound to be simple to general,
which has poor properties—and may be why empirical advances are so difficult. Secondly, however,
any extension of a model should commence from a more general exemplar than the best selected earlier
representative, otherwise inbuilt restrictions can preclude finding the appropriate generalization.

Instead, commence with a very general approximation to the non-linearity (such as a polynomial
or hypergeometric function, which needs to be identified). Add in the proposed logistic, squashing or
whatever functions one at a time and test if they explain the non-linear components of the approximation.
This approach avoids the lack of identification under the null, and also directly tests that the postulated
functions are the correct ones.

10 Conclusion

Model selection is an important part of a progressive research strategy, and itself is progressing rapidly.
The automatic selection algorithm inPcGets provides a consistent selection likeBIC, but in finite sam-
ples both ensures a congruent model and can out-perform in important special cases withoutad hoc
adjustments. Recent improvements have stabilized the size relative to the desired nominal significance
level, and the power relative to that feasible when the DGP is the initial specification. The power per-
formance on recent Monte Carlo experiments is close to the upper bound of a scalart-test at the given
non-centrality from a known distribution, so the direction of improvement is to protect against specific
formulations, such as needlessly long lags when a subset may matter.

However, searchper se does not seem to impose serious additional costs over those of inference (nor
does the mis-specification testing as that is needed even when commencing from the DGP specification).
The results to date on ‘pre-test’ biases confirm that these arise from simplifying the DGP, not from
searching for it in an over-parameterized representation. The equation standard error is found within
±5% of the population value, depending on the strategy adopted, soPcGets has no substantive tendency
to ‘overfit’. Depending on the state of nature,PcGets can even have a higher probability of finding the
DGP using (say) the Liberal strategy, than a researcher commencing from the DGP but selecting (say)
the Conservative strategy. Such a finding would have seemed astonishing in the aftermath of Lovell
(1983), and both shows the progress and serves to emphasize the importance of the choice of strategy
for the underlying selection problem.

The sub-sample reliability procedure appears in Monte Carlo studies to reduce size at a small cost
in power, but as yet we have not proved that the resulting trade-off is genuinely beneficial, although it
certainly seems relatively costless. Similarly, non-orthogonal designs remain problematic, and may be
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an area where expert knowledge will continue to prove very valuable. Nevertheless, we have added a
‘quick modeller’ option for non-expert users, and briefly described its usage.

Certainly, the theoretical context assumed above of regression analysis with strongly exogenous
variables is far too simple to characterize real-world econometrics. Empirical researchers confront
non-stationary, mis-measured data, on evolving dynamic and high-dimensional economies, with at best
weakly exogenous conditioning variables. At the practical level,Gets is applicable to systems, such as
vector autoregressions (see Krolzig, 2000), and for endogenous regressors where sufficient valid instru-
ments exist. Moreover, Omtzig (2002) has proposed an algorithm for automatic selection of cointegra-
tion vectors, andGets is just as powerful a tool on cross-section problems, as demonstrated by Hoover
and Perez (2000). Thus, we remain confident that further developments will continue to improve the
performance of, and widen the scope of application for, automatic modelling procedures.

11 Appendix: Progress details

Three sets of experiments are recorded here, re-running Hoover and Perez (1999), Krolzig and Hendry
(2001), and Hendry and Krolzig (2002).

11.1 The ‘Data Mining’ experiments re-visited

Lovell (1983) formed a databank of 20 macro-economic variables; generated one (denotedy) as a
function of zero to five others; regressedy on all others plus all lags thereof, four lags ofy and an
intercept; then examined how well some selection methods performed for the GUM:

yt = δ +
4∑

j=1

αjyt−j +
18∑
i=1

1∑
j=0

γi,jxi,t−j + ωt. (21)

He found none did even reasonably, but in retrospect, that seems mainly because of flaws in the
search algorithms evaluated, not the principle of selectionper se.

Moreover, despite using actual macroeconomic data, the Lovell experiments are not very represen-
tative of real situations likely to confront econometricians, for four reasons. First, the few variables
which matter most have (absolute)t-values of 5, 8, 10 and 12 in the population, so are almost always
jointly detected, irrespective of the significance level set: even usingα = 0.001 only requires|t| > 3.4.
Secondly, the remaining relevant variables have populationt-values of less than unity, so will almost
never be detected:

P (|t| ≥ 2 | E [t] = 1) � P (t ≥ 2 | E [t] = 1) = P (t ≥ 1 | E [t] = 0) ,

which is less than 16% even for a single such variable atα = 0.05, and about 5% atα = 0.01. Thus,
there is essentially a zero probability of retaining two such variables in those experiments (and hence no
chance of locating the DGP), even when no search is involved. Thirdly, including40 irrelevant variables
when the sample size isT = 100 is hardly representative of empirical modelling. Finally, and true of
most such Monte Carlo experiments to date, the DGP is a special case of the GUM, so mis-specification
tests play no useful role.

Combining these facets, any researcher running, or re-running, such experiments knows this as-
pect, so is ‘biased’ towards setting tough selection rules, and ignoring diagnostic checks: see e.g., the
approach in Hansen (1999), commenting on Hoover and Perez (1999), and discussed above.PcGets
would do best with very stringent significance levels. Unfortunately, in many practical settings, such
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settings will not perform well:t-values of 2 or 3 will rarely be retained, and badly mis-specified models
would be selected.

Table 10 records the DGPs in those experiments which did not involve variables with population
t-statistics less than unity in absolute value. In all cases,εt ∼ IN[0, 1]. The GUM nested the DGP, with
the addition of between 37–40 irrelevant variables, depending on the experiment.

First, we record the original outcomes reported for our re-run of the Hoover–Perez experiments,
shown in table 12. While the performance was sometimes spectacular – as in HP1, where the DGP
(which is the null model) is almost always found – it could also be less satisfactory, as in HP7 when
α = 0.05.

Table 10 Selected Hoover–Perez DGPs.
HP1 yt = 130εt

HP2 yt = 0.75yt−1 + 130εt

HP2* yt = 0.50yt−1 + 130εt

HP7 yt = 0.75yt−1 + 1.33xt − 0.975xt−1 + 9.73εt

Note: the dependent variable choice differs across experiments; HP2* added by the authors.

Table 11 DGPt-values in Hoover–Perez experiments.
Experiment HP1 HP2 HP2* HP7

yt−1 – 12.95 4.70 12.49
xt – – – 15.14
xt−1 – – – -8.16

Next, we show how the latest version ofPcGets (May, 2002) would perform using both Conservative
and Liberal settings: see table 13. The outcomes are based onM = 1000 replications of the DGP with
a sample size ofT = 100.

Table 12 Original outcomes for Hoover–Perez experiments.
Experiment HP1 HP2 HP2 HP7 HP7

Significance level 0.01 0.01 0.01∗ 0.01 0.05
Selection probabilities
yt−1 1.0000 1.0000 1.0000 1.0000
xt 1.0000 1.0000
xt−1 0.9970 0.9980
Power —— 1.0000 1.0000 0.9990 0.9990
Size 0.0019 0.0242 0.0088 0.0243 0.1017
Selected Model
DGP found 0.9720 0.6020 0.8520 0.5900 0.1050
Non-DGP var. included 0.0280 0.3980 0.1480 0.4100 0.8950
DGP var. not included 0.0000 0.0000 0.0000 0.0030 0.0020
DGP is dominated 0.0260 0.3830 0.1030 0.3900 0.8900
Specific is dominated 0.0020 0.0150 0.0450 0.0200 0.0050

The probabilities of retaining the DGP when commencing from it, and from the GUM (denoted
T:DGPfound and S:DGPfound) are shown first: the former is always close to unity and the latter often
above 80% for the Conservative strategy. The power ofPcGets (the probability of retaining the variables
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that matter) is close to that when commencing from the DGP, and the size is usually less than 1% (5%
when using the Liberal strategy) – with more than 37 irrelevant variables, the Conservative strategy is
clearly the better choice.

The reliability measure is denoted (rel): the size is clearly reduced, being everywhere less than 1%
(5%), with little loss of power, confirming the practical value of the reliability check.

The non-deletion and non-selection probabilities are also shown: the latter is usually tiny, so the
former is close to1−S:DGPfound. Finally, T:Dominated and S:Dominated record the probabilities that
the DGP or the selected model dominates (i.e., encompasses) the other: as can be seen, the former occurs
quite often, about 10% for Conservative but above 50% for Liberal, whereas the latter is usually under
5%. Thus, the operating characteristics are stable between the experiments, and quite well behaved.

Overall, these finding cohere with those reported earlier (for a different version of the program, and
different settings for the significance levels), and suggest thatPcGets performs well even in a demanding
problem, where the GUM is highly over-parameterized. The outcomes also suggest that relatively loose
critical values should be chosen for pre-selection tests.

Table 13 Re-running the Hoover–Perez experiments.
Experiment HP1 HP2 HP2∗ HP7

conservative
T:DGPfound 1.0000 1.0000 0.9940 1.0000
S:DGPfound 0.8780 0.8290 0.6120 0.8450
S:NonDeletion 0.1220 0.1700 0.2440 0.1550
S:NonSelection 0.0000 0.0040 0.2360 0.0020
T:Dominated 0.1000 0.1160 0.1120 0.1040
S:Dominated 0.0220 0.0520 0.1870 0.0490
S:Size 0.0057 0.0091 0.0191 0.0089
S:Power —— 0.9960 0.7640 0.9987
reliability based
S:Size 0.0037 0.0052 0.0089 0.0054
S:Power —— 0.9960 0.7629 0.9987

liberal
T:DGPfound 1.0000 1.0000 0.9990 1.0000
S:DGPfound 0.4580 0.3390 0.3110 0.3640
S:NonDeletion 0.5420 0.6610 0.6810 0.6360
S:NonSelection 0.0000 0.0000 0.0260 0.0020
T:Dominated 0.5170 0.6170 0.6200 0.5880
S:Dominated 0.0250 0.0440 0.0530 0.0460
S:Size 0.0410 0.0538 0.0546 0.0507
S:Power —— 1.0000 0.9740 0.9993
reliability based
S:Size 0.0354 0.0442 0.0454 0.0422
S:Power —— 1.0000 0.9725 0.9991
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11.2 Re-running the JEDC experiments

In this set of experiments from Krolzig and Hendry (2001), the DGP is a Gaussian regression model,
where the strongly-exogenous variables are Gaussian white-noise processes:

yt =
5∑

k=1

βk,0xk,t + εt, εt ∼ IN [0, 1] , (22)

xt = vt, vt ∼ IN10 [0, I10] for t = 1, . . . , T,

whereβ1,0 = 2/
√
T , β2,0 = 3/

√
T , β3,0 = 4/

√
T , β4,0 = 6/

√
T , β5,0 = 8/

√
T .

The GUM is anADL(1, 1) model which includes as non-DGP variables the lagged endogenous
variableyt−1, the strongly-exogenous variablesx6,t, . . . , x10,t and the first lags of all regressors:

yt = π0,1yt−1 +
10∑

k=1

1∑
i=0

πk,ixk,t−i + π0,0 + ut, ut ∼ IN
[
0, σ2

]
. (23)

The sample size used here is justT = 100, and the number of replicationsM is 1000: the non-zero
populationt-values are therefore2, 3, 4, 6, 8. In (23),17 of 22 regressors are ‘nuisance’.

We record the performance of the originalPcGets and that on the calibrated settings now embodied
in the two ‘canned’ strategies. The progress is obvious: the sizes are generally similar with higher
powers, again close to the upper bound of drawing from a scalart-distribution. The search costs are
generally negligible when compared to the costs of statistical inference. Under the default setting of
PcGets (so pre-search and split-sample analysis are active), the costs of search are reduced to0.0015
and 0.0054 per variable at nominal sizes of0.01 and 0.05. Thus, they are just2.12% (respectively
8.49%) of the underlying costs of statistical inference.

11.3 Re-running the Stigum experiments

This is the final set we consider for completeness. As the basis for calibrating the current strategies,
we simply recordPcGets’ actual performance, since there are no major developments against which
to judge progress. The key features are the excellent performance of the Conservative strategy—doing
almost as well from the GUM as from the DGP; the accuracy of the actual size for the desired nominal
after the reliability check; the small loss of power induced by many irrelevant variables; the rapid
reduction in selection error ast-values increase; and the low probabilities of locating the DGP when
there are many relevant variables but witht-values around 2 or 3.
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Table 14 JEDC Experiments: Conservative Strategy.
Theory JEDC JEDC PcGets PcGets PcGets

presearch —— yes —— yes yes
spit sample —— —— —— —— yes

Size 0.0100 0.0185 0.0088 0.0134 0.0106 0.0072
vs. JEDC -0.0097 -0.0051 -0.0079 -0.0113
vs. JEDC (%) -52.43 -27.57% -42.70% -61.08%

Power 0.7544 0.7598 0.6665 0.7328 0.7592 0.7412
vs. JEDC -0.0933 -0.0270 -0.0006 -0.0186
vs. JEDC (%) -12.28 -3.55% -0.08% -2.45%

Selection error 0.0635 0.0689 0.0826 0.0711 0.0629 0.0644
vs. JEDC 0.0137 0.0022 -0.0060 -0.0045
vs. JEDC (%) 19.89 3.19% -8.66% -6.54%
Costs of search 0.0053 0.0190 0.0075 -0.0006 0.0008
Costs of search (%) 8.40 29.97 11.86% -0.99% 1.32%

Expected number of
NonDGP variables incl. 0.17 0.31 0.15 0.23 0.18 0.12
DGP variables deleted 1.23 1.20 1.67 1.34 1.20 1.29
variables misplaced 1.40 1.52 1.82 1.56 1.38 1.42

Power function
power (t=2) 0.2580 0.2820 0.1538 0.2370 0.2880 0.2560
power (t=3) 0.6130 0.6200 0.4278 0.5730 0.6230 0.5854
power (t=4) 0.9020 0.8980 0.7645 0.8540 0.8860 0.8668
power (t=6) 0.9990 0.9990 0.9865 1.0000 0.9990 0.9981
power (t=8) 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997

Indicators
T:DGPfound 0.1540 0.1540 0.1540
S:DGPfound 0.1000 0.1430 0.1430
S:NonDeletion 0.1790 0.1330 0.1330
S:NonSelection 0.8750 0.8410 0.8410
T:Dominated 0.6890 0.7460 0.7460
S:Dominated 0.1500 0.0680 0.0680
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Table 15 JEDC Experiments: Liberal Strategy.
Theory JEDC JEDC PcGets PcGets PcGets

presearch —— yes —— yes yes
spit sample —— —— —— —— yes

Size 0.0500 0.0677 0.0477 0.0658 0.0546 0.0486
vs. JEDC -0.0200 -0.0019 -0.0131 -0.0191
vs. JEDC (%) -29.54 -2.81% -19.36% -28.21%

Power 0.8522 0.8532 0.8156 0.8556 0.8446 0.8350
vs. JEDC -0.0376 0.0024 -0.0086 -0.0182
vs. JEDC (%) -4.41 0.28% -1.01% -2.13%

Selection error 0.0722 0.0857 0.0788 0.0837 0.0775 0.0751
vs. JEDC -0.0069 -0.0020 -0.0082 -0.0106
vs. JEDC (%) -8.06 -2.35% -9.54% -12.40%
Costs of search 0.0135 0.0065 0.0114 0.0053 0.0028
Costs of search (%) 18.62 9.06 15.83% 7.30% 3.91%

Expected number of
NonDGP variables incl. 0.85 1.15 0.81 1.12 0.93 0.83
DGP variables deleted 0.74 0.73 0.92 0.72 0.78 0.83
variables misplaced 1.59 1.88 1.73 1.84 1.71 1.65

Power function
power (t=2) 0.4730 0.4930 0.4080 0.4840 0.4890 0.4482
power (t=3) 0.8120 0.8020 0.7330 0.8120 0.8140 0.7813
power (t=4) 0.9760 0.9720 0.9390 0.9600 0.9600 0.9453
power (t=6) 1.0000 0.9990 0.9980 1.0000 1.0000 1.0000
power (t=8) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Indicators
T:DGPfound 0.3960 0.3960 0.3960
S:DGPfound 0.1410 0.1810 0.1810
S:NonDeletion 0.6290 0.5620 0.5620
S:NonSelection 0.5960 0.6140 0.6140
T:Dominated 0.7550 0.7270 0.7270
S:Dominated 0.0470 0.0230 0.0230
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Table 16 Liberal and Conservative strategies.
DGP Design A B C D E F G H
t 0 0 2 2 3 3 4 4
k 8 8 8 8 8 8 8 8
n 8 20 8 20 8 20 8 20

conservative probabilities
T:DGPfound 1.0000 1.0000 0.0000 0.0000 0.0230 0.0280 0.3440 0.3630
S:DGPfound 0.8590 0.8080 0.0000 0.0000 0.0290 0.0250 0.3420 0.2780
S:NonDeletion 0.1410 0.1920 0.1010 0.2260 0.1000 0.2310 0.0840 0.2000
S:NonSelection 0.0000 0.0000 0.9990 0.9980 0.9660 0.9660 0.6350 0.6530
T:Dominated 0.1300 0.1750 0.8560 0.6370 0.7740 0.4920 0.5620 0.4320
S:Dominated 0.0110 0.0170 0.0840 0.2270 0.1380 0.3300 0.0640 0.2090
S:Size 0.0104 0.0095 0.0129 0.0137 0.0127 0.0153 0.0098 0.0137
S:Power —— —— 0.3250 0.2893 0.6609 0.6108 0.8854 0.8578
S:Selection error —— —— 0.2973 0.2129 0.1759 0.1222 0.0622 0.0504
reliability based
S:Size 0.0075 0.0069 0.0084 0.0093 0.0086 0.0106 0.0069 0.0083
S:Power —— —— 0.2562 0.2446 0.5786 0.5571 0.8454 0.8309
S:Selection error —— —— 0.2973 0.2225 0.2150 0.1341 0.0808 0.0542

liberal probabilities
T:DGPfound 1.0000 1.0000 0.0010 0.0050 0.1740 0.2000 0.7330 0.7310
S:DGPfound 0.4030 0.3290 0.0020 0.0030 0.1200 0.0770 0.4520 0.2670
S:NonDeletion 0.5970 0.6710 0.4340 0.6560 0.4370 0.6390 0.4010 0.6170
S:NonSelection 0.0000 0.0000 0.9950 0.9950 0.8160 0.8270 0.2640 0.3400
T:Dominated 0.5660 0.6470 0.8640 0.7930 0.7310 0.6900 0.4940 0.5980
S:Dominated 0.0310 0.0240 0.0320 0.0290 0.0500 0.0440 0.0270 0.0390
S:Size 0.0548 0.0482 0.0655 0.0593 0.0644 0.0595 0.0569 0.0553
S:Power —— —— 0.4933 0.4765 0.8001 0.7789 0.9600 0.9466
S:Selection error —— —— 0.2973 0.1919 0.1321 0.1056 0.0485 0.0547
reliability based
S:Size 0.0450 0.0407 0.0539 0.0497 0.0523 0.0498 0.0462 0.0459
S:Power —— —— 0.4457 0.4389 0.7608 0.7466 0.9426 0.9324
S:Selection error —— —— 0.2973 0.1958 0.1458 0.1080 0.0518 0.0521
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