
 

Absorptive Capacity 
 and  

Frontier Technology: 

Evidence from OECD Manufacturing Industries 

Richard Kneller† and Philip Andrew Stevens‡* 

 

 

Abstract 

This paper investigates whether differences in absorptive capacity help to 
explain cross-country differences in the level of productivity. We utilise 
stochastic frontier analysis to investigate two potential sources of this 
inefficiency: differences in human capital and R&D for nine industries in 
twelve OECD countries over the period 1973-92. We find that inefficiency 
in production does indeed exist and it depends upon the level of human 
capital of the country’s workforce. Evidence that the amount of R&D an 
industry undertakes is also important is less robust. 
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1 Introduction 

This paper investigates whether differences in absorptive capacity help to explain cross-

country differences in the level of productivity. Absorptive capacity, as discussed by 

Arrow (1969), captures the idea that countries may differ in their effort and ability to 

adopt new technologies even if knowledge is global (Eaton and Kortum, 1996; Griffith, 

Redding and Van Reenen, 2000; Papageorgiou, 2000; Xu, 2000). Two formal 

approaches have been developed to model this mechanism: Abromovitz (1986) and 

Cohen and Levinthal (1989) model technical adoption as depending on the level of 

human capital, whereas Fagerberg (1988) and Verspagen (1991) develop models in 

which innovation improves the capacity to absorb foreign country technology. 

Following this literature we examine the effect of human capital and of research and 

development (R&D), as determinants of absorptive capacity, on the inefficiency with 

which countries use frontier technology for a panel of nine manufacturing industries in 

twelve OECD countries over the period 1972 to 1992 using Stochastic Frontier Analysis 

(SFA). SFA allows the study of absorptive capacity in a framework that closely matches 

the idea of a technical frontier found in growth theory. In our framework, each industry 

faces the same production frontier – the maximum output for a given level of inputs. 

Differences in the level of absorptive capacity help explain deviations from this frontier 

through differences in inefficiency.  

The use of R&D and human capital as determinants of absorptive capacity allows 

for the possibility that one or both have a dual effect on production: a direct effect and 

an effect through inefficiency. For this reason the paper is also concerned with the 

appropriate specification of the production function and the stock of frontier knowledge. 

We address these issues by focusing on alternative modelling strategies debated in the 

literature. Among these we consider the inclusion of human capital in the production 

function, the measurement of frontier knowledge, and the underlying functional form of 

the production function. 

The study of absorptive capacity using SFA has a number of advantages over the 

alternative modelling strategies in the previous literature. 1  Griffith et al. (2000), Keller 

(2001a,b) and Kneller (2002) who also research the effects of R&D and human capital 

on productivity in OECD manufacturing industries, use a two stage modelling strategy. 

                                                 
 

1 The statistical advantages of using SFA are outlined in Koop et al. (2000).  
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In those paper estimates of productivity are generated as the residuals from a 

parameterised production function. Griffith et al. (2000) and Kneller (2002) then 

express these relative to the country within each industry with the highest level of TFP 

at each point in time. This relative productivity variable is regressed on a set of 

productivity determinants that includes human capital and R&D. The weakness of this 

methodology is that it assumes that the technical frontier is defined solely by the 

observations from this one country at each point in time and, therefore, that all changes 

in relative productivity in the remaining countries measures technical catch-up 

(reductions in inefficiency). Keller (2001a,b) in contrast, building on the work of Coe 

and Helpman (1995), studies the effect of foreign technology on domestic productivity. 

This approach assumes that productivity growth equates to technological change and 

therefore the restrictive assumption that all countries are completely efficient in their 

use of frontier technology. SFA allows the observations from more than one country to 

define the technical frontier and for productivity growth to be decomposed into changes 

in technology, inefficiency and statistical error. In this sense it allows us to clearly 

differentiate movements of and movements towards the technical frontier.  Koop (2001) 

has previously used SFA for a similar sample in the decomposition of growth rates, 

although they did not consider the issue absorptive capacity.2  This paper also differs in 

its treatment of human capital and its description of movements in the technical frontier 

from that paper. 

We find from this study that there is strong evidence that countries differ in the 

efficiency with which they use frontier technology. The implied assumption of Coe and 

Helpman (1995), Keller (2001a,b) and others that countries are efficient in their use of 

frontier technology does not receive empirical support. Human capital plays a 

significant and quantitatively important role in explaining these differences in 

efficiency. There is also clear evidence that human capital affects production both 

directly and through an effect on productivity. For this reason we reject the Benhabib 

and Spiegel (1994) conclusion that human capital does not enter the production function 

directly. Like de la Fuente and Domènech (2000) we also raise concerns over data 

quality and argue against the use of Barro and Lee (2000) estimates of human capital. 

                                                 
 

2 See also Färe et al (1994) Koop et al (1999, 2000) who use SFA and the related Data Envelopment 
Analysis (DEA) in the decomposition of growth rates at the cross-country level. 
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The results presented in this paper also lead us to conclude that the effect of R&D 

on production is primarily through its contribution to the stock of frontier knowledge in 

each industry. R&D is found to have only a quantitatively small effect on inefficiency 

and is not robust to all changes in specification. Spillovers from R&D on efficiency are 

not important for explaining differences in inefficiency. When we measure the stock of 

frontier knowledge with the R&D stock data from more than one country the absorptive 

capacity effect of R&D all but disappears. These results hold whether the stock of 

frontier technology is measured by the stock of R&D in the five largest OECD countries 

in the sample (France, Germany, Japan, UK and US); the remaining seven OECD 

countries in the sample (Canada, Denmark, Finland, Italy, Netherlands, Norway and 

Sweden); or the sum of the stock of R&D in these 12 countries. It would appear that the 

strong effects from R&D on productivity found in the previous literature are generated 

because of the strong assumptions made in those papers surrounding the measurement 

of the stock of frontier technology. This results leads us to suggest that careful 

consideration of how to measure the stock of frontier technology is important in future 

work. 

Finally, Keller (2001a,b,c), Eaton and Kortum (1999) and others have argued that 

the source of new technology is typically not domestic but foreign. Eaton and Kortum 

(1999) estimate that even in the US, on average the most productive economy, around 

40 per cent of productivity growth in 1988 was due to foreign R&D. This work suggests 

that the position of the technical frontier may differ across countries according to the 

international diffusion of technology at a given point in time. The position of the 

country specific industry frontier may lie inside the global industry frontier in the short-

run. Following Keller (2001a,b) we test for this possibility by allowing the stock of 

frontier knowledge in each industry to depend on the physical distance from the source 

of new ideas. We find initial evidence to suggest that such factors may be important.   

The rest of the paper is organised as follows. In section 2 we outline our model of 

production and empirical method, while section 3 discusses the data to be used. In 

section 4 we present results from our estimates, while Section 5 concludes. 

 

2 A Model of Production 

We assume in the paper that output, Y, is a function of the production technology set out 

in equation (1), where j indexes the industry, i country and t time. 
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( ) ijtijtjtijtijtijtjijt RHLKfY εη,,,=     (1) 

where K is the capital stock, L is the effective labour supply (number of workers 

adjusted for average hours per week), H is the stock of human capital, as measured by 

years of schooling, jtR  the stock of frontier technical knowledge in industry j at time t, 

η ( )10 ≤<η  represents economic efficiency and ε reflects the random character of the 

frontier, due to measurement error or other effects not captured by the model. This last 

term is unique to the SFA approach. A detailed explanation of the estimation of SFA is 

outlined in Koop et al. (1999, 2000). 

To account for possible complementarily between human capital and physical 

capital we follow Griliches (1969) and Mankiw, Romer and Weil (1992) and include 

human capital as a separate term in the production function.3 We make this choice in 

order to recognise the possible dual role of human capital in the production function 

(both directly and through the efficiency term). We also consider the robustness of 

alternative specifications. 

Aside from the usual set of factor inputs, output in Equation 1 is assumed to be a 

function of the total stock of knowledge in a given industry at time t, which following 

Griliches and Lichtenberg (1984) we assume to depend on the stock of R&D in each 

industry. Technological change therefore depends on growth in the stock of R&D. Koop 

(2001) and Koop et al. (1999, 2000) use an alternative assumption that technology 

growth depends on a quadratic time trend. 

The question is how to measure the stock of industry knowledge. Two distinct 

methods have been used in the previous literature that might be useful in this regard. 

These might be labelled as the stock of accessible knowledge and the one-country 

frontier. The first measure of frontier technology used extensively in the previous 

literature has been the stock of technology accessible to the domestic economy. Under 

such a measure the size of the domestic R&D stock is combined with the stock of 

foreign R&D, where the latter is aggregated using the level of trade between the 

domestic and the foreign country as weights (Coe and Helpman, 1995; Coe, Helpman 

and Hoffmeister, 1997; Keller, 2000, 2001a,b). The stock of knowledge in a given 

country therefore differs according to the level of trade. This implies that the position of 

                                                 
 

3 Koop (2001) does not include H in the production function or as a determinant of efficiency . 
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the technical frontier also differs across countries, frontier knowledge has not yet 

diffused identically to these countries. While this is a possibility that we explore below 

it also makes the restrictive assumption that countries are efficient in their use of the 

stock of accessible technology, an assumption that we do not follow. At the conceptual 

level this measure sits poorly with the idea of a common industry frontier found in 

growth theory (Howitt, 2000; Howitt and Mayer-Foulkes, 2002), and the empirical 

evidence that inefficiency helps to explain international differences in productivity 

(Prescott, 1998; Koop et al., 2000; Griffith et al., 2000).4 

The problem of how to aggregate to total industry knowledge is simplified if the 

frontier level of knowledge is assumed to be approximated by the data from just one 

country. For example, Griffith et al, (2000) and Kneller (2002) both use the country 

with the highest level of productivity as the numeraire in a measure of relative 

productivity. However, such an approach has two obvious limitations in the context of 

this paper. First, it assumes that the reference country is on the technical frontier, indeed 

that it solely defines the frontier for all countries – no trivial assumption. Second, if a 

time dimension is added to the data then all technical progress is described by the 

observations from this sole country. If this is not the case then changes in technical 

progress from a follower country may be erroneously measured as catch-up to the 

productivity leader. Neither assumption holds unless the dispersion of knowledge across 

countries is instantaneous. 

In the light of these issues we utilise an SFA approach in which the data is allowed 

to determine the position and the shape of the technical frontier. The stock of 

knowledge at the technical frontier is then assumed to equal the stock of R&D in the 

five countries that contribute most to the stock of R&D in the industry. The contribution 

of a unit of R&D to frontier knowledge from these countries is assumed to be identical. 

In the remaining countries R&D affects only their position relative to the technical 

frontier. A similar assumption is made in Keller (2001a). These assumptions appear 

reasonable in light of the fact that the five countries chosen, France, Germany, Japan, 

UK and US accounted for close to 90 per cent of the total measured stock of R&D in 

the 12 OECD sample countries in 1990. In addition Kneller (2002) finds evidence of an 

absorptive capacity effect of R&D, but no frontier effect when these five countries were 

excluded from the same sample. We test the robustness to the use of this measure below 

                                                 
 

4 Kneller (2002) studies absorptive capacity and distance within the same empirical model. 
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by testing whether the results are affected by the exclusion of the five most intensive 

R&D countries and by allowing all countries to determine the stock of frontier 

knowledge.5   

Equation (1) recognises that countries may differ in their level of productivity in 

each industry through the term η. If a country is 100% efficient (η = 1), it can utilise all 

frontier knowledge, otherwise impediments to absorption will cause the country to 

produce within the industry frontier. One of the implications of equation (1) is that it is 

possible for the R&D of a technical laggard country to contribute nothing to the stock of 

industry knowledge, but affect output through the efficiency term, η. Howitt and 

Mayer-Foulkes (2002) develop a theoretical model of growth that has similar properties.  

Following Battese and Coelli (1995), the inefficiency effect is obtained by a 

truncation of the normal distribution N(µit,σ2).  Inefficiency is modelled as dependent 

on the level of investment in R&D in industry j in country i at time t, the level of human 

capital and country-specific dummies to capture differences in institutional design and 

regulations across countries.6  Given differences in the complexity of technology across 

industries the effect of human capital is allowed to vary by industry through industry 

specific interaction terms. The mean level of inefficiency is defined by  
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where r&d is the (logarithm of) spending on R&D in the industry and  ∑
=

≠

8
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jijtj indhδ  is 

the (logarithm of) human capital interacted with industry dummies7. If human capital 

and R&D both promote the absorption of technology, we would expect to find negative 

coefficients on δ1 and δ20, i.e. they reduce the distance from the frontier.  

The log-likelihood function for this model is presented in Battese and Coelli (1993), 

as are the first partial derivatives of the log-likelihood function with respect to the 

                                                 
 

5 This measure of changes in the technical frontier might also be considered imperfect if there are 
significant cross-industry spillovers of R&D. We choose to leave alternative constructs of frontier 
knowledge that might include such spillovers for future research. 
6 Prescott (1998) and Parante and Prescott (2000) suggest that permanent differences in the design of 
institutions may be important.  
7 The baseline industry (j = 0) is ‘basis metal industries’. 
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different parameters of the model8. The maximum likelihood estimators for the 

parameters in the model were obtained using the FRONTIER computer program 

(Coelli, 1996).  

One of the parameters included with the tables of results in Sections 3 is the 

estimated the variance of the efficiency term relative to the variance of the total error: 

22

2

σσ
σγ

ε +
=      (3) 

The value of the γ parameter provides a useful test of the relative size of the 

inefficiency effects and  lies between zero and one. If γ = 0, this indicates that 

deviations from the frontier are due entirely to noise, previous studies that use a 

standard (i.e. non-stochastic frontier) econometric methodology are entirely correct in 

their implicit assumption of economic efficiency. If γ = 1, however, this would indicate 

that all deviations are due entirely to economic inefficiency and hence the stochastic 

frontier model is not significantly different from the deterministic frontier model with 

no random error9. In practice we find γ  to be in the range, 0.8 to 0.85 and statistically 

significant, questioning the validity of the findings from the non-SFA literature. The 

generalised likelihood-ratio test for the null hypothesis that the γ parameter and the 

δ  parameters are jointly equal to zero is calculated by using the values of the log-

likelihood function for estimating the full frontier model and that obtained from an OLS 

regression of the production function. This statistic has a mixed chi-square 

distribution.10  

 

3 Data 

The model outlined above is estimated for a sample of 9 manufacturing industries in 12 

countries over the period 1973 to 1992. The total number of available observations is 

1731 (the exact coverage for each industry and country is given in Table 1 below). The 

output (value added), capital stock and employment data are all taken from the OECD 

ISDB database. This data is available on an international comparable basis having been 

                                                 
 

8 This parameterisation originates in Battese and Corra (1977). 
9 Note that γ is not the proportion of the total error term explained (except at values of γ = 0 and γ = 1) 
(see footnote 7, page 188 of Coelli, Rao and Battese, 1999; Coelli, 1995). 
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deflated to 1985 prices and converted using measures of PPP to US$. As is usual in the 

literature we adjust the employment data for hours worked using OECD data in the 

manufacturing sector as a whole11. 

 

 

Table 1 Available data by country and industry 

SIC 31 32 33 34 35 36 37 38 39 
Sector BMI CHE FOD MEQ MNM MOT PAP TEX WOD 

Total

Canada 73-90 73-90 73-90 73-90 73-90 73-90 73-90 73-90 73-90 162 
Denmark 73-90 73-90 73-90 73-90 73-90 73-90 73-90 73-90 73-90 162 
Finland 73-91 73-91 73-91 73-91 73-91 73-91 73-91 . 73-91 152 
France 73-91 73-91 73-91 73-91 73-91 . 73-91 73-91 73-91 152 
Germany 73-91 73-91 73-91 73-91 73-91 73-91 73-91 73-91 73-91 171 
Italy 73-90 73-88 73-90 73-88 73-90 . 73-88 73-90 . 120 
Japan 73-91 73-91 73-91 73-91 73-91 73-91 73-91 73-91 . 152 
Neth. 73-90 . 73-90 . . . 73-90 73-89 . 71 
Norway 73-91 73-91 73-91 . 73-91 73-91 . 73-91 73-91 133 
Sweden 73-91 73-91 73-91 73-91 . . 73-91 73-91 73-91 133 
UK 73-91 73-91 73-91 73-91 73-91 73-91 73-91 73-91 . 152 
US 73-91 73-91 73-91 73-91 73-91 73-91 73-91 73-91 73-91 171 

Total 224 204 224 185 187 150 203 204 150 1731 
Note: BMI = basis metal industries; CHE = chemicals etc; FOD = food, beverages and tobacco; MEQ = machinery 

& equipment; MNM = non-metallic mineral products; MOT = other manufacture industries; PAP = paper 
products; TEX = textiles, wearing apparel; WOD = wood products. 
 

 

The absorptive capacity effect of R&D is measured using the flow of R&D 

investment made in each period from the OECD EBRD dataset for the period 1973 to 

1992. Estimates of the stock of R&D (Rijt) in each country, necessary for the 

construction of the stock of frontier knowledge in each industry, are generated by 

accumulating R&D expenditures using a perpetual inventory method (equation 4). The 

rate of depreciation (∆) is set to equal 10 per cent in the equation, while the initial stock 

                                                                                                                                               
10 See Coelli and Battese (1996). 
11 Data for hours worked is available for Canada, Belgium, Denmark, France, Germany, Japan, Norway, 
Sweden U.K., U.S. The data for Germany, Belgium, Denmark, and Sweden is expressed as an index and 
was converted using information contained in O’Mahony (1999), where missing data was converted using 
the average of hours worked in the UK, France and Germany in the base year. Data for Italy and the 
Netherlands is unavailable in either data source and was instead generated as the average for all European 
countries. 
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of R&D is estimated in the usual way (where the term gRD is the average annual growth 

rate of R&D over the period).  

)(

)1(
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0
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     (4) 

4 Results 

To facilitate comparisons with the literature on the cross-country econometric 

estimation of the production function (Mankiw et al., 1992; Senhadji, 2000; Miller and 

Upadhyay, 2000) we assume in our initial specification that output in equation 1 is 

produced using Cobb-Douglas technology, which we write in log-linear form fj(·) in 

Equation 5.   

ijtijtjjtjtijtijtijt drhlky υνββββββ +−+++++= 543210    (5) 

where lower case letters represent logarithms (ν = ln(η) and υ = ln(ε)). Koop (2001) 

also chooses to start from such a position. Given the objections to the assumption of C-

D technology outlined in Duffy and Papageorgiou (2000) we test the robustness of the 

results to more flexible functional forms below.12  

The results from the estimation of equations 2 and 5 are presented in Table 2. The 

top half of the Table refers to the production frontier and the bottom half the efficiency 

effects.  Model (1) in the Table refers to our baseline specification (a Cobb-Douglas 

production function with industry dummies to account for variations in technology), 

while model (2) refers to the same form of production function, but does not allow for 

separate industry intercept terms. We omit the industry dummies from the top half of 

the Table however in order to conserve space, while we do the same for the country 

dummies in the bottom half of the Table.13 

A comparison between models 1 and 2 illustrates the bias caused by excluding the 

industry effects. This bias is similar to that found from the assumption of identical 

initial productivity in the cross-country convergence literature (Islam, 1995; Caselli et 

                                                 
 

12 The industry dummies in equation 4 allow the position of the technical frontier to differ across 
industries. 
13 These coefficients are available from the authors on request. 
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al., 1996; Evans, 1997). This bias is clearest in the case of the estimated parameter on 

human capital, h. In model 2 human capital has a significant negative effect – implying 

that countries with more years of average schooling actually have lower levels of 

output, ceteris paribus, whereas in model 1 the estimated relationship is significant and 

positive. The omission of industry dummies in turn leads to a bias in the estimated 

effect of human capital and R&D on inefficiency effects. The effect of R&D is 

insignificant in model 2, while many of the human capital interaction terms change sign. 

This would appear to be due to the fact that the latter is conflating differences in output 

due to economic inefficiency and differences in output explained by the technical 

relations of production – i.e. differences in the distance from the frontier with the 

frontier itself. For this reason we ignore model 2 from our discussion. 



 
12

Overall the impression from model 1 is that the estimated parameter values are 

close to those found from the previous literature. Indeed it is interesting to note that the 

results are consistent with several of the assumptions often used in the growth 

accounting. The elasticity of output with respect to physical capital is close to that 

implied by the National Accounts and the results are consistent with the assumption of 

constant returns to scale for physical capital and labour. The combined elasticity of 

output with respect to physical capital and human capital is 0.527. This is very close to 

the estimates for the OECD country sample in Mankiw et al. (1992) and just below the 

estimates made in Miller and Upadhyay (2000) and Bloom et al. (2002).  

Table 2 Results from SFA base model 

Number of observations: 1731, Time-periods: 19 
Model No. (1)* (2) 

 Coef. s.e. t Coef. s.e. t 

Production Function 
l  0.708 0.014 49.9  0.722 0.019 40.0 
k  0.301 0.013 23.2  0.301 0.017 17.6 

5r   0.126 0.011 11.1  0.080 0.011 7.6 
h  0.226 0.043 5.2 -0.238 0.085 2.8 

Inefficiency Effects 
h -1.170 0.406 2.9 -1.983 0.353 5.6 
r&d -0.035 0.014 2.5 -0.010 0.011 0.9 
CHE×h 0.080 0.023 3.501 -0.034 0.024 -1.425 
FOD×h -0.079 0.025 -3.225 -0.185 0.019 -9.737 
MEQ×h -0.061 0.030 -2.008 0.079 0.034 2.313 
MNM×h -0.054 0.027 -2.013 -0.077 0.020 -3.880 
MOT×h -0.193 0.032 -6.062 -0.217 0.024 -8.860 
PAP×h 0.010 0.025 0.415 -0.100 0.022 -4.656 
TEX×h -0.010 0.027 -0.360 0.069 0.021 3.276 
WOD×h -0.193 0.037 -5.214 -0.086 0.025 -3.452 
σ2  0.093 0.005 19.8  0.064 0.003 19.3 
γ  0.863 0.012 69.3  0.898 0.021 41.9 
Log likelihood function 379.33   236.71 
LR test of the one-sided error 1237.2   1373.5 
Notes: 
•  Model 1 includes industry dummies within the production function. 
•  BMI = basis metal industries; CHE = chemicals etc; FOD = food, beverages 

and tobacco; MEQ = machinery & equipment; MNM = non-metallic mineral 
products; MOT = other manufacture industries; PAP = paper products; TEX 
= textiles, wearing apparel; WOD = wood products. 
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The estimated return to R&D found in model 1 is also plausible. According to the 

results a one percentage point increase in the stock of world technology increases output 

by 0.126 percentage points. This is within the range of results found elsewhere in the 

literature. For example, it is slightly higher than the estimates obtained from the import 

weighted measures of foreign R&D by Coe and Helpman (1995) and Keller (2001a,b), 

close to the frontier effect in Griffith et al. (2000) and slightly below the relative 

frontier variable used in Kneller (2002) .  

Turning to the effect of the efficiency terms themselves, we can see in model 1 that 

human capital and R&D both have the expected negative sign. The two faces of R&D 

discussed by Griffith et al. (2001) and Kneller (2002) has empirical support even when 

using SFA. The estimated effect of R&D on domestic efficiency is smaller than the 

parameter estimates for domestic R&D found in Coe and Helpman (1995), Keller 

(2001a,b) and Kneller (2002) however. Indeed while R&D is found to be statistically 

important the point estimate in model 1 is small in absolute value, especially when 

compared to that on human capital. A one percentage point increase in R&D leads to a 

decrease in inefficiency in the order of just 0.035 percentage points. The evidence for 

spillovers from R&D on efficiency appears weak. Differences compared to those found 

using alternative modelling strategies may arise out of differences in the specification of 

the frontier.14 

The results for human capital suggest strongly that improvements in education 

among OECD countries over the post-war period has contributed to increased level of 

efficiency. A one percentage point increase in human capital leads to a 1.17 percentage 

point reduction in productive inefficiency. These results are also supportive of evidence 

found in Griffith et al. (2000), Kneller (2002) and the discussion in Fagerberg (1994) 

that human capital is important for technology transfer. Fagerberg (1994) has previously 

argued, albeit for developed and developing countries, that the technology gap needs to 

be sufficiently small for human capital to significantly aid technology transfer. This 

does not appear to apply in this sample of OECD countries, but may suggest caution in 

generalising from these results to a broader sample of countries. 

                                                 
 

14 The inclusion of an interaction term between R&D and human capital does not improve the results for 
R&D. All three terms, human capital, R&D and the interaction term, are found to be statistically 
insignificant in such a regression and the fit of the model, measured by the log-likelihood function, is 
weaker than that of model 1. 
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Several of the human capital interaction terms included in the efficiency equation 

are significantly different from zero. Despite their significance it is evident however, 

that the estimated parameters are actually quite small in magnitude, such that the 

contribution of human capital to absorptive capacity does not differ greatly in economic 

terms across industries. It is also evident from Table 2 that the pattern of the coefficients 

on the industry/human capital interaction terms do not match the usual a-priori 

perceptions about cross-industry differences in skill intensity.   

The mean and standard deviation of the efficiency score for each country in each 

industry is presented in Table A1 of the Appendix. The industry and country specific 

averages are reported in weighted and in un-weighted forms, where average output 

figures over the sample periods are used as weights. 

 

4.1 The Role of Human Capital 

Little agreement exists in the literature as to the appropriate treatment of human capital 

in the production function and to its measurement. Mankiw, Romer and Weil (1992), 

Miller and Upadhyay (2000) and Bloom Canning and Sevilla (2002) allow human 

capital to affect production technology directly, whereas Benhabib and Speigel (1994), 

Pritchett (1996) and Islam (1995) find evidence to suggest that human capital affects the 

level of total factor productivity and has no direct effect on output. An interesting 

explanation for this lack of consensus is given in de la Fuente and Domènech (2000).  

They conclude that the Benhabib and Speigel (1994), Islam (1995) and Pritchett (1996) 

results are generated by poor quality data, namely from the use of the Barro and Lee 

(2000) and World Bank datasets.  We address this modelling issue using SFA.  

Thus far our results point to a dual effect on production. We consider the robustness 

of these results by re-estimating equations 2 and 5 using data from Barro and Lee 

(2000) (labelled model 3), and by excluding human capital from the production 

function, but using the de la Fuente and Domènech (2000) estimates of human capital to 

capture any indirect effects (model 4). If data quality is not an issue then we would 

expect the results in model 3, using the Barro and Lee (2000) data, to be similar to those 

found using the de la Fuente and Domènech (2000) data in model 1. We test whether 

omitting human capital from the production function is appropriate through a 

comparison of the estimates of the log-likelihood function in model 1 and model 4. 
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We find from model 3 that we can replicate the general conclusion of de la Fuente 

and Domènech (2000). The Benhabib and Spiegel (1994) results do indeed appear to be 

sensitive to the use of the Barro and Lee measures of human capital. Therefore, if the de 

la Fuente and Domènech (2000) data are an improvement over the Barro and Lee 

(2000) estimates, it is important that the former are used. The direct effect of human 

capital on the production function estimated in model 3 is close to that estimated in 

model 1, but unlike in model 1 there is no longer evidence that human capital affects the 

level of efficiency. Indeed if anything the point estimate on human capital suggests 

increased levels of human capital lowers the level of efficiency. This provides an 

interesting contrast with the result of Benhabib and Speigel (1994). Like them, when we 

use Barro and Lee data we find evidence that human capital affects production only 

through one channel, but unlike those authors we find that this effect on production is 

direct and not through productivity.  

The evidence from model 4 leads to a clear rejection of the assumption that human 

capital can be safely excluded from the production function. A comparison of the 

estimates of the log-likelihood function shows that the fit of model 4 is much weaker 

than that of model 1. The log likelihood function is 379.34 in model 1 and 83.34 in 

model 4. The exclusion of human capital from the production function also has a 

interesting impact on the estimated parameters. The coefficient on physical capital rises 

from 0.3 to 0.4, but is no longer statistically significant at conventional levels. 

Somewhat surprisingly the effect of human capital on efficiency is also much lower in 

model 4 and is no longer statistically significant. Indeed a 1 percentage point increase in 

human capital now leads to a 0.09 percentage point decrease in the level of inefficiency. 
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Table 3 The inclusion of Human Capital in the Production Function 

Notes: 
•  Model 3 uses Barro and Lee (2000) data. 
•  BMI = basis metal industries; CHE = chemicals etc; FOD = food, 

beverages and tobacco; MEQ = machinery & equipment; MNM = non-
metallic mineral products; MOT = other manufacture industries; PAP = 
paper products; TEX = textiles, wearing apparel; WOD = wood products. 

 

4.2 Measurement of the Technical Frontier 

Evidence about the difference between the direct and efficiency effects of R&D might 

be inferred if, as seems likely, the innovative aspect of R&D is less important for the 

smaller OECD economies. In model 5 we therefore consider the effect on the results of 

excluding France, Germany, Japan, UK and US countries from the sample. The R&D 

data from the remaining countries are used to determine the level of frontier 

knowledge.15 A similar approach is utilised in Kneller (2002).  Given the results from 

                                                 
 

15 Similar results are found when we use the stock of industry knowledge from model 1, but still exclude 
France, Germany, Japan, UK and US from the sample. 

Number of observations: 1731, Time-periods: 19 
Model No. (3)a (4) 
 Coef. s.e. t Coef. s.e. t 

Production Function 
l 0.687 0.014 47.6 0.690 0.275 2.507 
k 0.293 0.014 21.7 0.404 0.246 1.641 

5r  0.135 0.011 11.8 0.159 0.124 1.284 
H 0.233 0.032 7.3 - - - 

Inefficiency Effects 
h 0.35 0.208 1.7 -0.091 0.858 -0.106 
r&d -0.046 0.014 3.4 0.012 0.610 0.020 
CHE×h 0.498 0.152 3.3 0.041 0.997 0.041 
FOD×h 0.985 0.124 8.0 -0.115 0.999 -0.115 
MEQ×h 1.63 0.169 9.6 -0.074 0.998 -0.074 
MNM×h 2.38 0.116 20.5 -0.054 0.997 -0.054 
MOT×h 1.58 0.135 11.7 0.013 0.999 0.013 
PAP×h 2.46 0.123 20.0 0.100 0.995 0.100 
TEX×h 2.23 0.113 19.7 0.077 0.993 0.077 
WOD×h 2.00 0.112 17.8 -0.153 0.999 -0.153 
σ2 0.084 0.005 15.9 0.143 0.436 0.329 
γ 0.862 0.014 62.5 0.869 0.413 2.107 
Log likelihood function 379.34   83.34 
LR test of the one-sided error 1214.5   785.25 
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this exercise we also report the results from a model in which all OECD countries 

contribute to the level of frontier technology (model 6). 

Our final test in this section considers differences in the position of the technical 

frontier across countries. Evidence presented in Coe and Helpman (1995), Keller 

(2001a,b) and Eaton and Kortum (1999) suggests that international technology transfer 

is important for explaining differences in productivity.  The question in SFA is whether 

this should be modelled as an effect on the position of the technical frontier or the 

distance from the frontier. In this paper we assume absorptive capacity determines the 

efficiency with which the stock of accessible technologies issued, where the stock of 

accessible knowledge depends on technology transfer. This implies that the position of 

the country specific industry frontier may lie inside the global industry frontier at a 

given point in time. In the long-run we would expect the two frontiers to coincide. 

Following Keller (2001a,b) and Kneller (2002) we assume technology transfer 

depends on the physical distance from the source of new ideas.  Physical distance has 

been previously identified as an important determinant of a number of the transmission 

mechanisms of knowledge transfer, such as international trade, FDI and human contact 

(see Keller, 2001c for a review). The effect of distance on industry knowledge is 

captured by adding to equation 5 an interaction term between R&D and physical 

distance, shown in equation 6 below. The term Dif measures the physical distance 

between country i and country f (where f is one of France, Germany, Japan, UK and 

US). The interaction term is increasing in distance such that the expected coefficient on 

β5 is negative.16 If this holds then the stock of R&D in country f  accessible in country i 

is decreasing in the physical distance between the two countries. 

ijtijtjifjtjtjtijtijtijt dDrrhlky υνβββββββ +−++++++= 6543210    (6) 

 

 

 

 

                                                 
 

16 Equation 6 restricts the effects of distance on technology transfer to be log-linear. We use the results 
from this specification to indicate that the position of the industry frontier may differ across countries at a 
given point in time and leave a more advanced treatment of this issue to future research. 
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Table 4: Measurement of the Technical Frontier 

 No. of obs:933 
Time-periods: 19 

No of obs: 1731 
Time-periods: 19 

No of obs: 1731 
Time-periods: 19 

Model No. (5) (6) (7) 
 Coef. s.e. t Coef. s.e. t Coef. s.e. t 

Production Function 
l 0.752 0.019 40.383 0.706 0.015 48.505 0.701 0.013 53.698
k 0.183 0.016 11.204 0.303 0.013 23.317 0.289 0.013 22.524

fjr  0.132 0.013 10.503 0.093 0.009 9.874 0.214 0.017 12.693

fjr Dif       -0.078 0.011 -7.334 
H -1.291 0.106 -12.200 0.204 0.045 4.515 0.093 0.047 1.989 

Inefficiency Effects 
h -2.989 0.330 -9.058 -1.399 0.411 -3.403 -1.338 0.390 -3.430 
r&d -0.025 0.009 -2.721 -0.032 0.014 -2.229 -0.024 0.014 -1.719 
CHE×h -0.108 0.024 -4.410 0.072 0.026 2.708 0.059 0.026 2.264 
FOD×h -0.016 0.023 -0.709 -0.086 0.027 -3.208 -0.073 0.027 -2.765 
MEQ×h 0.030 0.026 1.157 -0.071 0.033 -2.124 -0.086 0.034 -2.556 
MNM×h 0.073 0.029 2.544 -0.060 0.026 -2.298 -0.067 0.026 -2.549 
MOT×h -0.183 0.025 -7.233 -0.200 0.032 -6.187 -0.207 0.032 -6.392 
PAP×h -0.134 0.021 -6.367 0.002 0.025 0.093 -0.023 0.025 -0.923 
TEX×h -0.071 0.026 -2.695 -0.018 0.027 -0.674 -0.017 0.027 -0.619 
WOD×h -0.135 0.024 -5.714 -0.197 0.042 -4.655 -0.201 0.042 -4.734 

σ2 0.039 0.002 18.998 0.094 0.005 17.633 0.084 0.005 16.975
γ 0.918 0.021 44.647 0.872 0.010 89.693 0.884 0.011 80.435
Log likelihood function 345.44   375.75   396.44
LR test of the one-sided error 676.93   1236.0   1244.2

Notes: 
•  In model 5 f is defined by the sum of the stock of R&D in Canada, Denmark, Finland, Italy, 

Netherlands, Norway and Sweden.  
•  In model 6 f is defined as the sum of the stock of R&D in all 12 OECD countries included in the 

sample. 
•  In model 7 f is defined as the sum of the stock of R&D in France, Germany, Japan, UK and US. 
•  BMI = basis metal industries; CHE = chemicals etc; FOD = food, beverages and tobacco; MEQ = 

machinery & equipment; MNM = non-metallic mineral products; MOT = other manufacture 
industries; PAP = paper products; TEX = textiles, wearing apparel; WOD = wood products. 

 
 

The results from these three exercises are presented in Table 4. Unlike Kneller 

(2002) we find that when we exclude from the data the five largest R&D countries the 

dual effect of R&D on production identified in Griffith et al. (2001) remains.  Indeed 

the estimated effect of R&D on the frontier and the level of efficiency are very similar 

in magnitude to those found from model 1. Given this result it is no surprise that in 

model 6 when we allow all OECD countries to determine movements in the technical 

frontier in each industry the results are largely unaffected. Once again R&D affects the 
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production function directly as well as through the level of efficiency, but the spillovers 

from R&D on efficiency are again estimated to be small in size. Finally according to the 

results from model 7 the stock of frontier technology does indeed decline with the 

physical distance from the source of new ideas. The interaction term is negative as 

expected and statistically significant. 

 
5 Functional Form of the Production Function 

Duffy and Papageorgiou (2000) argue that the Cobb-Douglas form of the production 

function typically assumed when econometric estimation of the production function is 

undertaken is misspecified. They argue instead in favour of the less restrictive CES 

functional form, although they do restrict how human capital enters the production 

function. In model 8 we report the results for a semi-translog specification (i.e. translog 

in n and k), which provides a good first-order approximation to a broader class of 

production functions, including the CES. Following the results in model 7, in model 9 

we allow the effect of R&D on the frontier to vary according to the physical distance 

from the source of new ideas.  

The additional parameters in the translog production function are significant, 

confirming Duffy and Papageorgiou (2000)’s result that the Cobb-Douglas functional is 

unduly restrictive given the data.  The results for the translog would also appear to 

confirm the questions over the absorptive capacity effects of R&D. The stock of 

industry R&D is found to affect the production function, but there is no evidence that 

the level of R&D contributes to lower efficiency. Finally, model 9 suggests that the 

interaction term between physical distance and R&D has explanatory power even in this 

more flexible production function. The coefficient on the R&D and distance interaction 

term is negative and statistically significant. The physical distance from the source of 

new ideas is important. 
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Table 5 Sensitivity to Changes in the Production Function 
Number of observations: 1731, Time-periods: 19 

Model No. (8) (9)* 

 Coef. s.e. t Coef. s.e. t 

Production Function 
l 1.97 0.178 11.1 1.877 0.186 10.083 
k -0.336 0.15 2.2 -0.276 0.156 -1.764 
l2 -0.052 0.008 6.5 -0.048 0.008 -5.819 
k2 0.003 0.007 0.4 0.004 0.007 0.593 
lk 0.053 0.014 3.8 0.048 0.014 3.324 

5r  0.084 0.014 6.1 0.123 0.021 5.835 

5r Dif    -0.032 0.014 -2.331 
h 0.347 0.056 6.2 0.309 0.058 5.310 

Inefficiency Effects 
h -1.91 0.37 5.2 -1.860 0.379 -4.907 
r&d -0.019 0.016 1.2 -0.017 0.014 -1.189 
CHE×h -0.232 0.034 6.8 -0.228 0.031 -7.268 
FOD×h -0.597 0.04 15.1 -0.572 0.043 -13.176 
MEQ×h -0.377 0.043 8.9 -0.380 0.039 -9.776 
MNM×h -0.324 0.033 9.8 -0.314 0.034 -9.150 
MOT×h -0.385 0.038 10.2 -0.390 0.038 -10.242 
PAP×h -0.197 0.031 6.3 -0.187 0.029 -6.404 
TEX×h -0.235 0.032 7.3 -0.232 0.032 -7.291 
WOD×h -0.981 0.116 8.5 -0.970 0.115 -8.408 

σ2 0.08 0.01 16.4 0.08 0.00 17.40 

γ 0.81 0.01 56.7 0.81 0.01 58.85 
Log likelihood function 395.29    
LR test of the one-sided error 986.28    
Notes: 
BMI = basis metal industries; CHE = chemicals etc; FOD = food, beverages 
and tobacco; MEQ = machinery & equipment; MNM = non-metallic mineral 
products; MOT = other manufacture industries; PAP = paper products; TEX = 
textiles, wearing apparel; WOD = wood products. 

 

 

6 Conclusions 

In this paper we have tested whether differences in absorptive capacity help to explain 

differences in the level of technical efficiency for a panel of nine manufacturing 

industries in twelve OECD countries over the period 1972 to 1992 using Stochastic 

Frontier Analysis (SFA). One of the advantages of a stochastic frontier-based 

methodology is that is promotes strong links with the economic theory underlying it. 
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Technology does not merely determine a unique maximum potential output per unit of 

input, but rather it defines a whole set of potential maxima associated with any given 

vector of inputs. Moreover, technology is not merely ‘the part of output that we cannot 

explain’, but rather the result of an ongoing process of research and innovation.  

From our analysis we find that absorptive capacity does appear to be important for 

the level of efficiency. Of the two determinants of absorptive capacity considered, 

human capital and R&D, both are statistically significant but R&D is not always 

quantitatively important. The spillovers from R&D on efficiency do not appear to 

explain much of the cross-country variation in productivity. These findings contrast in 

some important ways with those previously found by Griffith et al. (2001), Keller 

(2001a,b) and Kneller (2002) also for OECD manufacturing industries. These 

differences in part reflect the restrictive assumptions made in those papers that either all 

productivity growth reflects changes in inefficiency or technical progress, but also by 

allowing the observations from more than one country to determine the stock of frontier 

knowledge. 

While the results from this paper provide a useful test of the robustness of the 

results from the previous literature we also use SFA to readdress several modelling 

issues debated in the literature. We find strong evidence to suggest that the R&D from 

all of the OECD countries in the sample contribute to the stock of frontier technology 

within each industry, although the results are not sensitive to changes in the 

measurement of this variable. but the results for R&D are not robust to changes in the 

function form of the production function. We find however initial evidence that 

suggests that the position of the industry frontier is not identical across countries at a 

given point in time. The physical distance from the source of new ideas appears to 

matter.  

We are also able to conclude from our analysis that the result of Benhabib and 

Spiegel (1994) that human capital affects the production function only through 

productivity is not supported by the data. We find that human capital affects production 

both directly and indirectly through inefficiency. Instead we conclude like de la Fuente 

and Domènech (2000) that the Barro and Lee human capital estimates should not, 

despite their popularity, be used. Finally we find evidence that the translog, rather than 

the C-D production function, is a better fit of the underlying data. In this model R&D is 

found to have a small and insignificant effect on efficiency.  
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While further investigation of these issues is clearly warranted we might use the 

results from this paper as initial evidence that differences in productivity across 

countries both because the stock of available technology differs across countries and 

because countries differ in the efficiency with which they use this technology. 
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Table A1: Mean Efficiency Levels and Standard Deviation, by country and industry. 

      Industry       

Country 
 

BMI CHE FOD MEQ MNM MOT PAP TEX WOD Unwtd.
ALL 

Wtd. 
ALL 

Mean 0.785 0.583 0.865 0.925 0.881 0.884 0.737 0.868 0.861 0.818 0.828 CAN s.d. 0.079 0.027 0.040 0.014 0.064 0.039 0.048 0.040 0.051 0.115 0.036 
Mean 0.536 0.602 0.655 0.711 0.674 0.893 0.698 0.668 0.705 0.684 0.681 DEN s.d. 0.125 0.059 0.055 0.056 0.065 0.045 0.063 0.074 0.045 0.112 0.058 
Mean 0.402 0.601 0.623 0.638 0.624 0.690 0.636  0.759 0.622 0.629 FIN s.d. 0.117 0.058 0.018 0.106 0.064 0.120 0.066  0.047 0.125 0.075 
Mean 0.887 0.950 0.943 0.948 0.946 0.958 0.943 0.954 0.936 0.938 0.944 FRA s.d. 0.047 0.011 0.010 0.012 0.012 0.001 0.008 0.008 0.017 0.028 0.013 
Mean 0.887 0.934 0.901 0.947 0.922 0.948 0.874 0.876 0.947 0.915 0.927 GERM s.d. 0.033 0.010 0.012 0.005 0.016 0.013 0.018 0.041 0.012 0.036 0.012 
Mean 0.789 0.747 0.915 0.887 0.894  0.864 0.906  0.859 0.871 ITL s.d. 0.111 0.103 0.049 0.061 0.046  0.067 0.056  0.094 0.065 
Mean 0.912 0.577 0.842 0.685 0.634 0.781 0.299 0.314  0.630 0.692 JAP s.d. 0.039 0.064 0.087 0.144 0.054 0.053 0.015 0.044  0.225 0.102 
Mean 0.953  0.758    0.920 0.900  0.882 0.855 NETH s.d. 0.016  0.051    0.011 0.044  0.083 0.032 
Mean 0.683 0.325 0.532  0.393 0.683  0.499 0.693 0.544 0.534 NOR s.d. 0.061 0.041 0.060  0.037 0.120  0.018 0.069 0.153 0.055 
Mean 0.564 0.628 0.570 0.692   0.586 0.706 0.789 0.648 0.657 SWE s.d. 0.099 0.061 0.022 0.053   0.039 0.029 0.061 0.096 0.051 
Mean 0.602 0.632 0.941 0.793 0.798 0.721 0.864 0.699  0.756 0.792 UK s.d. 0.150 0.062 0.005 0.041 0.045 0.068 0.033 0.028  0.127 0.041 
Mean 0.955 0.959 0.969 0.967 0.966 0.966 0.965 0.952 0.977 0.964 0.965 US s.d. 0.016 0.005 0.004 0.007 0.005 0.011 0.007 0.017 0.002 0.012 0.007 

Unwtd. Mean 0.745 0.685 0.793 0.818 0.773 0.820 0.761 0.756 0.834 0.772 - 
ALL s.d. 0.197 0.196 0.158 0.140 0.183 0.130 0.197 0.202 0.114 0.179  

Mean 0.889 0.848 0.908 0.879 0.860 0.862 0.867 0.848 0.947 - 0.877 Wtd. 
ALL s.d. 0.042 0.026 0.028 0.043 0.028 0.037 0.019 0.032 0.011 - 0.034 
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