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Abstract

This paper explores the effects of measurement error on dynamic forecasting models. The paper

sets out to illustrate a trade off that confronts forecasters and policymakers when they use data that

are measured with error. On the one hand, observations on recent data give valuable clues as to

the shocks that are hitting the system and will be propagated into the variables to be forecast (and

which ultimately will inform monetary policy). But on the other, those recent observations are

likely to be those least well measured. Two broad classes of results are illustrated. The first

relates to cases where it is imagined that the forecaster takes the coefficients in the data generating

process as a given, and has to choose how much of the historical time series of data to use to form

a forecast. It is shown that if recent data is sufficiently badly measured, relative to older data, that

it can be optimal in this case not to use old data at all. The second class of results is more general.

Here, it is shown that for a general class of linear autoregressive forecasting models, the optimal

weight to place on a data observation of some age, relative to the weight in the true data

generating process, will depend on the measurement error in that data. The gains to be had in

forecasting are illustrated using a model of UK business investment growth.

Key words: Forecasting, measurement error, signal extraction

JEL classification: C53
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Summary

This paper explores a trade-off that confronts forecasters and monetary policymakers when they

use data that are measured with error (as surely, in reality, they are forced to). On the one hand,

observations on recent data give valuable clues as to the shocks that are hitting the system and will

be propagated into the variables to be forecast (and which ultimately will inform monetary policy).

But on the other, those recent observations are likely to be those least well measured. Older data

may have been revised a number of times as more survey returns on the data or other kinds of

corrobarative evidence were collected by the statistics agency. We begin by illustrating and

proving how, faced with a choice between either using or not using most recent observations in

forecasting, once measurement error is sufficiently large it can be optimal not to use it. We move

on to consider a case when measurement error is larger, the more recent the data observation: this

captures the idea that recent data, more likely to be a first release, will be more noisy than older

data, which may have been revised and corrobrated with information that came later. We derive

conditions under which a many-step-ahead forecast, (based on older data) will be a better forecast

(in fact the optimal forecast) than a one-step-ahead forecast. The noisier are recent data, the more

likely this is to be true. And the more persistent the data generating process, the more likely this

is to be true (because old shocks contain more information for values of variables in the immediate

future). By assuming a declining variance structure for the revision errors, we therefore create a

tradeoff between more noisy but more recent data and less noisy older data. We generalise these

results further, by allowing the forecaster to ‘aim off’ the coefficients in the true model, to improve

forecasts still further. Finally, we derive the optimal forecasting model from the class of linear

autoregressive models. We can view this as describing how the policymaker decides on the

optimal weights to place on past data. This structure therefore allows the policymaker to include

many lags of the data to construct the forecast and place different weights (coefficients) on

different lags. This is clearly more general than the analysis in previous sections which

constrained the forecaster to either use or not use at all some particular data. It is not surprising

that the optimal weighting scheme differs from the weighting scheme that characterises the data

generating process. The greater the signal about the future in a data point, the greater the weight

in the optimal forecasting model. More recent and therefore more imprecisely measured data

have a smaller weight. The greater the persistence in the data generating process, the greater the

signal in older data for the future, and the more extra measurement error in recent data relative to

old data makes it optimal to rely on that older data. We conclude with an application to UK
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business investment growth, and illustrate the improvement in forecasting performance that can be

got using our procedure, an improvement that turns out to be statistically significant.
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1 Introduction

This paper explores a trade-off that confronts forecasters and monetary policymakers when they

use data that are measured with error (as surely, in reality, they are forced to). On the one hand,

observations on recent data give valuable clues as to the shocks that are hitting the system and will

be propagated into the variables to be forecast (and which ultimately will inform monetary

policy). But on the other, those recent observations, the ones likely to contain the most

information about the future profile of the data, contain measurement error that will induce errors

in the forecast. Moreover, the more recent a data observation is, the more measurement error it is

likely to contain. The most recent data may be a first release. Older data may have been revised a

number of times as more survey returns on the data or other kinds of corrobarative evidence were

collected by the statistics agency. (1) The best forecast in this (very real) situation will balance the

information about shocks contained in recent data against the contaminating noise of the

measurement error. One option, of course, is to wait for data observations to improve; to wait for

corroborative evidence to accumulate. However, this is not an available option in one prominent

example where forecasting is important: monetary policymaking. Monetary policy takes time to

have an effect. And the economy may be such that it is appropriate to respond to shocks sooner

rather than later to avoid larger fluctuations in (say) inflation and/or output which are themselves

undesirable. So there is an advantage to using the signal contained in the most recent data for

forecasting and policy.

This is of course a very familiar problem, and there is a large literature that attempts to examine

aspects of forecasting and monetary policymaking in ‘real time’, when data are likely to be of

poorer quality than at some future date. We do not attempt to do any justice to the depth or

diversity of this literature here, but to put our work in context it is worth mentioning a few

important strands of research. (2) Real-time data sets that enable economists to study the

properties of different vintages of data relevant to policymaking have been compiled by ? for the

US, and by ?, ? and ? for the UK. Others (for example ?, ?, though this literature is very large

indeed) have studied whether the statistics agency behaves like a ‘rational’ forecaster by

examining whether early releases of data predict later ones. Still others have studied the

implications for monetary policy and inflation forecasts of having to use real-time measures of

important indicators like the output gap (?and ?).

(1) See (?, page 44) for a discussion of the reasons why data are revised in the UK.
(2) A helpful bibliography, can be found at http://phil.frb.org/econ/forecast/reabib.html.
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Within this broad literature are papers that study the properties of forecast models in the presence

of measurement error, and these are the closest intellectual antecedents of our own. One line of

enquiry has been to study a problem of joint model estimation and signal extraction/forecasting.

Optimal filters/forecasts are studied in a line of work that runs from, for example, ? through to ?.

? present informal experiments that reveal the advantages for forecasting of using real-time data

for model estimation. Another focus for study has been the idea of evaluating the properties of

combinations of forecasts (see, for example, ? and discussions in ?). Observations on time series

at dates leading up to time t are ‘forecasts’ of sorts of data at time t , so the problem of how best to

make use of these data is a problem of combining forecasts. (3)

This paper puts to one side the problem of model estimation. We assume that the

forecaster/policymaker knows the true model. (4) Taken at face value, this looks like a very

unrealistic assumption. But it has two advantages. First, it enables us to isolate the forecasting

problem, without any loss of generality. The second advantage is that it also emphasises an aspect

of forecasting and policy that is realistic. The policymaker may have a noisy information source

that is contaminated with measurement error, but also contains an important signal about shocks.

The policymaker may also have an information source that is not contaminated by (at least that

source of) measurement error – an economic prior – but that does not contain the same high

frequency diagnosis of the state of the economy. The set up we use is just an extreme version of

this. We assume that the policymaker’s prior about the structure of the economy (the data

generating proces) is correct.

We begin (in Section 2.1) by illustrating and proving how, faced with a choice between either

using or not using most recent observations in forecasting, once measurement error is sufficiently

large it can be optimal not to use it. Specifically, we assume that the policymaker has access to

data for periods t = 0, ..., T and makes forecasts for date T + 1 using data available at date
T + 1− n and the true model. The policymaker’s choice variable is n. Conventional forecasting
analysis usually assumes that the forecaster/policymaker sets n = 0 which means using all
available data. Here we relax that assumption. In the illustration we offer, of a mean-reverting

dynamic process, the structure of which is known to policymakers, it is optimal to resort to using

the mean as the forecast, rather than (in this simple example, any of) the noisy data. In effect this

amounts to choosing n = ∞.
(3) This observation is made in ?.
(4) We examine model estimation separately in a related paper, ?.
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We move on (in Section 2.2) to consider a case when measurement error is larger, the more recent

the data observation: this captures the idea that recent data, more likely to be a first release, will

be more noisy than older data, which may have been revised and corrobrated with information that

came later. We derive conditions under which a many-step-ahead forecast, (based on older data)

will be a better forecast (in fact the optimal forecast) than a one-step-ahead forecast. The noisier

are recent data, the more likely this is to be true. And the more persistent the data generating

process, the more likely this is to be true (because old shocks contain more information for values

of variables in the immediate future). (5) By assuming a declining variance structure for the

revision errors, we therefore create a tradeoff between more noisy but more recent data and less

noisy older data. In general this means that there is some finite n that minimises the mean squared

error of the forecasts.

In Section 3 we generalise these results a little further. We began by deriving optimal forecasts

when forecasters took the model parameters as a given, and had to find the optimal point at which

to end the data frontier for the forecast. In Section 3, the problem is characterised still as one in

which the forecaster has to choose the optimal point (n) at which to end the data frontier for a

forecast of a variable at time T + 1. But now we assume that the policymaker can also choose the
parameters of the forecast model. Specifically we analyse the case in which the policymaker

knows that the data is generated by a first order autoregressive process with parameter a. To

generate the forecast, we allow the policymaker to use some other parameter ã that may differ

from the true model parameter, a. We find that the optimal point at which to end the data frontier

does not necessarily imply using all the most recent data, and that that optimal forecast does not

imply a parameter equal to the ‘true’ one. (Except, of course, in the limiting case when there is no

measurement error).

Section 4 generalises the results by deriving the optimal forecasting model from the class of linear

autoregressive models. We can view this as describing how the policymaker decides on the

optimal weights to place on past data. This structure therefore allows the policymaker to include

many lags of the data to construct the forecast and place different weights (coefficients) on

different lags. This is clearly more general than the analysis in previous sections which

constrained the forecaster to either use or not use at all some particular data. It is not surprising

that the optimal weighting scheme differs from the weighting scheme that characterises the data

(5) These points are illustrated too in ? but we prove them here.
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generating process. The greater the signal about the future in a data point, the greater the weight

in the optimal forecasting model. More recent and therefore more imprecisely measured data

have a smaller weight. The greater the persistence in the data generating process, the greater the

signal in older data for the future, and the more extra measurement error in recent data relative to

old data makes it optimal to rely on that older data.

In Section 5, we present an application of the results in Section 4 to a single equation forecasting

model for investment spending in the UK, though we think the theoretical results have a very

general implication for linear forecasting models. We use real time data on revisions to national

accounts from ? to estimate how the variance of measurement error declines as we move back in

time from the data frontier at T to some T − n. We find, not surprisingly, that indeed the optimal
forecasting model differs significantly from the weights put on data implied by the underlying

estimated model, suggesting that the problem we study here may well be quantitatively important.

2 Optimal choice of the data frontier for forecasting

2.1 Age-invariant measurement error

We begin, as we described in the introduction, by illustrating how it may be optimal not to use

recent (in fact in this example, any) data for forecasting, but instead to rely on the model, which

we assume is known. In this section we use a very simple model, but we will relax some of our

assumptions in later sections.

Assume that the true model is

y∗t = ay∗t−1 + et (1)

where |a| < 1 and y∗t denotes the true series. Data is measured with error, and the relationship
between the true and observed series is given by

yt = y∗t + vt (2)

For this section, we make the following assumptions about the processes for e and v:

et ∼ i.i.d.(0, σ 2e)
and

vt ∼ i.i.d.(0, σ 2v)
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which encompasses the assumption that the measured data are unbiased estimates of the true

data. (6)

Importantly, at this stage we are assuming that the variance of the distribution of the measurement

error does not depend on how recently the data observation was released, or that the measurement

error is, as the title of this section dubs it ‘age-invariant’. We will relax this assumption later in

the paper. We assume that we have a sample from period t = 1 to period t = T and we wish to
forecast some future realisation y∗T+1. The standard forecast, (when there is no measurement error)

for y∗T+1 is denoted by ŷ
(0)
T+1 and given by ŷ

(0)
T+1 = ayT : this is the forecast that simply projects the

most recent observation of yt using the true model coefficient a. We investigate the mean square

properties of this forecast compared with the general forecast ŷ(n)T+1 = an+1yT−n, a class of
forecasts that project using data that are older than the most recent outturn.

We begin by finding an expression for the forecast error, and then computing the mean squared

error for different forecasts amongst the general class described above. The (true) forecast error

(which of course we never observe) is given by û(n)T+1 = y∗T+1 − ŷ(n)T+1. We know that from ((1)) we
can write:

y∗T+1 = an+1y∗T−n +
n∑
i=0
aieT+1−i

and from ((2)) we have:

ŷ(n)T+1 = an+1yT−n

= an+1y∗T−n + an+1vT−n

So:

û(n)T+1 = an+1y∗T−n +
n∑
i=0
aieT+1−i − an+1y∗T−n − an+1vT−n

=
n∑
i=0
aieT+1−i − an+1vT−n

(6) The analysis in ? focuses on the first moment properties of revisions and finds some evidence of bias. But we
abstract from that issue here.
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Therefore, the mean square error is simply given by: (7)

MSE(n) = a2(n+1)σ 2v +
(
1+ a2 − a2(n+1)

1− a2
)
σ 2e

The next step is to explore the condition that the mean squared error from a forecast using the most

recent data is less than the mean squared error that uses some other more restricted information

set, or MSE(0) < MSE(n) for some n > 0. This will tell us whether there are circumstances

under which it is worth forecasting without using the latest data. Doing this gives us:

MSE(0) < MSE(n) ⇒ a2σ 2v + σ 2e < a
2(n+1)σ 2v +

(
1+ a

2 − a2(n+1)
1− a2

)
σ 2e

which can be written as: (
a2 − a2(n+1)) σ 2v < a2 − a2(n+1)

1− a2 σ 2e

which reduces to

σ 2v <
σ 2e

1− a2 (3)

So if σ 2v >
σ 2e
1−a2 it is better in terms of MSE not to use the most recent data. The intuition is

simply that if the variance of the measurement error σ 2v is very large relative to the shocks that hit

the data generating process, (σ 2e), then it is not worth using the data to forecast: the more so the

smaller is the parameter that propagates those shocks (a). In fact it follows that if σ 2v >
σ 2e
1−a2 then

MSE(n − 1) > MSE(n) for all n and therefore we are better off using the unconditional mean of

the model to forecast the true series than any other data.

There are two alternative ways to describe this result. The first uses the signal-to-noise ratio,

defined as σ 2 = σ 2e/σ
2
v . Then, if σ 2 < (1− a2), it is optimal not to use the most recent data.

Under this interpretation, the lower the signal-to-noise ratio, the more likely it is that using the

mean of the process will provide the best forecast. The critical value of the signal-to-noise ratio is

a decreasing function of the persistence of the process – as the persistence of the process

increases, the strength of past signals in later data increases. The second interpretation involves

the observation that σ 2e/
(
1− α2

)
corresponds to the unconditional variance of the true data, y∗. If

we denote the variance of the data as σ 2y∗ , then it is optimal not to use recent data if condition is

σ 2v > σ 2y∗ . This interpretation shows that it is only worth using recent data if the unconditional

variance of the data measurement errors is smaller than the unconditional variance of the true data,

which is an intuitive result. The practical relevance of this result may be questionable as it seems

likely that there are few data series in practice that are so badly measured. But the underlying

(7) Notice that this expression requires that the revision errors in ((2)) are uncorrelated with future shocks to the
model ((1)). This seems like a reasonable assumption.
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assumptions in this section are somewhat over-simplified and the analysis of the subsequent

sections applies more generally.

The above analysis concentrated on a simple AR(1) model. However, the intuition is clear and is

valid for general AR models and more general dynamic models. The increasing cost of the

cumulative sum of the structural errors (et) is balanced against the falling cost of smaller

measurement errors (aivt) when older data are used. In the case of this simple model there is no

solution where some old data are useful. Either the most recent data should be used or no data at

all, once – and this is crucial – the mean of the series is known. This is because older data are as

well measured as more recent data.

2.2 Age-dependent measurement error

We now investigate a slightly more complex case where the variance of the data measurement

error vt is assumed to tail off over time. This assumption reflects the observation that, in practice,

we observe that statistics agencies revise data often many times after the first release. If we

assume that successive estimates of a particular data point are subject to less uncertainty (since

they are based on more information), then it seems reasonable to assume that the variance of the

revision error embodied in the estimate of a particular data point diminishes over time.

The specific assumption we make here is that:

Var(vT−i) =


biσ 2v , i = 0, 1, . . . , N
0, i = N + 1, . . .

for a parameter 0 < b < 1. We therefore assume that after a finite number of periods N + 1, there
are no further revisions to the data. But for the first N + 1 periods, the variance of the revision
error declines geometrically over time at a constant rate measured by b. This is a fairly specific

assumption which we make here for simplicity and tractability (again the analysis of later sections

is more general). Indeed, we know that data are revised for reasons other than new information

specific to that series (for example re-basing and methodology changes) so the specification of

revision error variance may be more complicated than we have assumed here. But the purpose of

the assumption is to be more realistic than the homoskedastic case considered in Section 2.1.
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Under our assumptions, the MSE as a function of n is given by

MSE(n) = a2n+2bnσ 2v +
n∑
i=0
a2iσ 2e, n = 0, 1, . . . , N

MSE(n) =
n∑
i=0
a2iσ 2e

=
N∑
i=0
a2iσ 2e +

n∑
i=N+1

a2iσ 2e, n = N + 1, . . .

We want to examine when MSE(n) > MSE(N + 1), n = 0, 1, . . . , N . It is clear that
MSE(n) > MSE(N + 1), n = N + 2, . . . ,. So, for n = 0, 1, . . . , N

MSE(n) > MSE(N + 1) ⇒ a2n+2bnσ 2v +
n∑
i=0
a2iσ 2e >

n∑
i=0
a2iσ 2e +

N+1∑
i=n+1

a2iσ 2e

or

a2n+2bnσ 2v >
N+1∑
i=n+1

a2iσ 2e

or

a2n+2bnσ 2v > a
2n+2 1− a2(N−n+1)

1− a2 σ 2e

or, in terms of the signal-noise ratio, σ :
bn(1− a2)
1− a2(N−n+1) > σ 2

So if σ 2 < bn(1−a2)
1−a2(N−n+1) for all n then the best forecast for yt+1 is ŷ

(N+1)
t+1 . To clarify the range of

relevant values for σ we graph the quantity bn(1−a2)
1−a2(N−n+1) over n for N = 24, b = 0.99, 0.95, 0.9, 0.5

and a = 0.1, 0.3, 0.5, 0.7, 0.9 in Figures 1a-1d. If each period corresponds to one quarter, then
our assumption N = 24 corresponds to the situation in which data are unrevised after six years.
While this is naturally an approximation (since rebasing and methodological changes can imply

changes to official figures over the entire length of the data series) it seems a plausible one.

Clearly, the more persistent the process is (the larger the a) the lower σ 2 has to be for ŷ(N+1)t+1 to be

the best forecast. Also, the more slowly the revision error dies out (the larger the b), the lower σ 2

has to be for ŷ(N+1)t+1 to be the best forecast. Note that some of the curves in the figures are not

monotonic. This indicates that although ŷ(N+1)t+1 is a better forecast than ŷ(0)t+1, there exists some

N + 1 > n > 0 such that ŷ(n)t+1 is better than ŷ
(N+1)
t+1 .
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Diagram 1: Critical values for the signal:noise ratio

1a: b=0.99 1b: b=0.95

Diagram 1: (Continued)

1c: b=0.9 1d: b=0.5

3 Optimising over the choice of data frontier and the projection parameters

The analysis in the previous section constrained the policymaker/forecaster to use the true model

when forecasting future outturns. The only choice variable was therefore the horizon n upon

which to base the forecast ŷ(n)T+1 = an+1yT−n. This section generalises the problem of the
policymaker/forecaster so that it is possible to construct a forecast that does not use the true model

parameter. Specifically, we allow the policymaker/forecaster to use the forecast

ŷ(n)t+1(ã) = ãn+1yt−n where ã may differ from a. In this setting, there are two choice variables (ã
and n) and so it might be more appropriate to use a different parameter value, ã, and the most

recent data as opposed to older data and the true model parameter, a.
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This section therefore extends the setup and views the mean square error as a function of n and ã

where the forecast is given by ŷ(n)t+1(ã) = ãn+1yt−n and ã, n are to be jointly determined given the
structural parameters a, σ 2v and σ 2e. We extend the analysis along these lines assuming that the

revision error variance is given by Var(vt−i) = biσ 2v, i = 0, 1, . . . , N and
Var(vt−i) = 0, i = N + 1, . . . as before.

Now the mean square error is a joint function of n and ã given by

MSE(n, ã) = (an+1 − ãn+1)2 σ 2e
1− a2 +

(1− a2(n+1))σ 2e
1− a2 + ã2(n+1)bnσ 2v, n = 0, 1, . . . , N

MSE(n, ã) = (an+1 − ãn+1)2 σ 2e
1− a2 +

(1− a2(n+1))σ 2e
1− a2 , n = N + 1, . . .

and we wish to find the optimal values for n and ã. To do so, we analyse a two-step

minisimisation problem. First we will minimise the mean squared error with respect to the

forecasting parameter ã. This allows us to write down a set of mean-squared errors that use the

optimal forecasting parameters as n changes. To find the best forecast simply requires choosing

the n that gives the overall smallest mean-squared error.

We therefore begin by minimising MSE(n, ã) with respect to ã. The first order necessary

conditions are:

∂MSE(n, ã)
∂ ã

=



−2(an+1 − ãn+1)(n + 1)ãn σ 2e
1−a2 + 2(n + 1)ã2n+1bnσ 2v = 0 n = 0, 1, . . . , N

−2(an+1 − ãn+1)2(n + 1)ãn σ 2e
1−a2 = 0 n = N + 1, . . .

Rearranging gives

−ãn
[
an+1 −

(
1− bn(1− a2)

σ 2

)
ãn+1

]
= 0, n = 1, . . . , N (4)

−ãn (an+1 − ãn+1) = 0, n = N + 1, . . . (5)

For ((4)), disregarding complex roots and under the convention of square roots being positive

numbers, the solutions are ã = 0 and ã = n+1
√
θ where θ = σ 2an+1

σ 2+bn(1−a2) . For ((5)), they are,

intuitively, ã = 0 and ã = a. Note that for positive a, θ ≥ 0 making sure than the second solution
of ((4)) is real. Just to verify that the solutions we have are proper minima we compute the second

derivatives. These are given by

−nãn−1
[
an+1 −

(
1− b

n(1− a2)
σ 2

)
ãn+1

]
+ ãn

(
1− b

n(1− a2)
σ 2

)
(n + 1)ãn n = 0, 1, . . . , N

−nãn−1 (an+1 − ãn+1)+ (n + 1)ã2n n = N + 1, . . .
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In both case the second derivatives are positive for the nonzero solution and zero for the zero

solution. The non-zero solutions are therefore minima.

We can now incorporate the solutions of this minimisation into the expression for the mean

squared error. We define ˆMSE(n) = minã MSE(n, ã):
ˆMSE(n) = [

(an+1 − θ)2 + (1− a2(n+1))] σ 2e
1− a2 + θ2bnσ 2v n = 0, 1, . . . , N

ˆMSE(n) = (1− a2(n+1))σ 2e
1− a2 n = N + 1, . . .

which has to be minimised over n. Unfortunately standard methods do not apply as n takes only

discrete values (8). However, for given parameter values we can compute ˆMSE(n) for a grid of n
and get the minimum. What is clear is that it is not neccesary that the minimum is obtained at

n = 0, thereby leading to the same conclusion as before.

4 A general approach to forecasting with dynamic models under data revisions

The analysis of previous sections has gradually increased the generality of the problem under

consideration. To recap, we began by considering the choice of the the lag, n, of data that the

policymaker/forecaster would use with the true model parameter in the face of (both age invariant

and age dependent) measurement error. We then allowed the policymaker/forecaster to choose

both the lag, n, and the parameter with which to project the lagged data, ã.

In this section we propose a general method of forecasting in autoregressive models under a

general known form of data revisions. The extension from the previous sections is that we

optimise the forecasting model from within the linear class of models. Specifically, we allow the

policymaker/forecaster to choose the optimal weights and lags on all past data. So, in the example

of the previous sections the policymaker/forecaster knew that the data generating process was an

AR(1) with parameter a. But even so, this section allows the forecaster/policymaker to choose

from all linear AR models and it may be the case that the best forecasting model is (say) an AR(2)

with coefficients b and c. The method described here can be easily extended to multivariate

(8) We can note that the minimum of any function is also the minimum of a positive monotonic transformation of
that function. So we can take logs of the mean-squared-error expressions to show that, for real n, the minimum is
obtained for

n =
log

[
(1−a2)θ log(b)
2σ 2a log(a)

]

log(a/b)
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models. In particular VAR models could easily be accomodated (including of course vector error

correction models).

We assume a univariate AR(p) model to illustrate the method. The true process is given by

y∗t =
p∑
i=1
ai y∗t−i + et

This can be written as a VAR(1) model of the form

y∗t = Ay∗t−1 + εt

where y∗t = (y∗t , y∗t−1, . . . , y∗t−p+1)′, A = (a, e1, . . . , ep−1)′; ei is a p × 1 vector with an element of
1 at the i -th place and zeroes everywhere else; a is a p × 1 vector of the autoregressive
coefficients ai ; εt = (et , 0 . . . , 0)′. Now the observed data are given by

yt = y∗t + vt
where vt = (vt , vt−1, . . . , vt−p+1). At time T we wish to determine the optimal forecast for y∗T+1.

We assume that the revision error vT has a variance matrix which is given by �T
v . Our aim is to

determine the optimal forecasting model of the form ŷT+1 = Ã1yT . in terms of mean square error,
where Ã1 is a 1× p vector. Note that the restriction on the dimension of Ã1 to be the same as that

of the order of the true process is not problematic because we can simply increase the order of the

process by setting the higher order a’s equal to zero. This means that the true data generating

process might be an AR(1) even though we can write it as an AR(p) with the coefficients on lags

2, . . . , p set equal to zero.

The forecast error for the forecast of the above form is given by

y∗T+1 − ŷT+1 = A1y∗T + εT − Ã1y∗T + Ã1vT = (A1 − Ã1)y∗T + Ã1vT + εT+1

where A1 is the first row of A. The mean square error is given by

(A1 − Ã1)`(A1 − Ã1)′ + Ã1�T
v Ã

′

1 + σ 2ε

where � = E(y∗Ty∗
′

T ). The covariances of an AR(p) process are given by the first p elements of

the first column of the matrix σ 2ε[Ip2 − A⊗ A]−1. We have assume that the error process is
uncorrelated with the true process of the data. In the data revision literature this is referred to as

the error-in-variables model. This assumption is not crucial to our analysis and could be relaxed

as long as the covariances between the true process and the data revision errors could be

estimated. We want to minimise the mean square error in terms of Ã1. We will use matrix

optimisation calculus to solve this problem. We rewrite the expression for the mean square error
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using only terms involving Ã1 since the rest of the terms will not affect the minimisation. We have

that the mean square error is given by

Ã1�Ã′

1 + Ã1�T
v Ã

′

1 − A1�Ã′

1 − Ã1�A′

1 = Ã1(� +�T
v )Ã

′

1 − 2Ã1�A′

1

We differentiate with respect to Ã1 and set to zero to get

(� +�T
v )Ã

′

1 − �A′

1 = 0

giving

Ãopt
′

1 = (� +�T
v )

−1�A′

1

The second derivative is given by (� +�T
v )

−1 and by the positive definiteness of this matrix the

second order condition for minimisation of the mean square error is satisfied. This result is of

some interest because it may be viewed as analogous to similar results in other literatures. Note

first the similarity between this result and the standard signal extraction result which says that the

optimal filter for distinguishing between signal and noise is equal to the autocovariance of the

signal (� in our case) divided by the sum of the signal and noise autocovariances. Note that if

p = 1 then Ã21 ≤ A21. By the positive-definiteness of � and �T
v one might conjecture that this

result would extend to the multivariate case where Ã1Ã′
1 ≤ A1A′

1. Unfortunately, this is not the

case. Although it is likely that this result will hold it is by no means certain. Another interesting

corollary of the above result is that the method applies equally to measurement error. The only

assumption we have made is that there exist an error in the measurement of the true data whose

covariance is given by �T
v . This clearly covers cases of data measurement error.

The above analysis concentrated on one-step ahead forecasts. The general problem of n-step

ahead forecasting can be dealt with similarly by minimising the sum of the 1 to n-step ahead

forecast errors with respect to a suitably defined set of coefficients Ã just as we did above. We

analyse this case in what follows: We want to minimise the variance of the forecast errors of the

1-step to n-step ahead forecasts. As we need to minimise a scalar function we choose to minimise

the trace of the forecast error variance-covariance matrix of the 1 to n step forecasts. We assume

for simplicity that p > n. If this is not case it can always be made the case by increasing p. Using

the previous notation we know that

y∗T+n = Any∗T + An−1εT + . . .+ εT+n

So

y∗T+n,n = (y∗T+1, . . . , y
∗

T+n) = A(n)y∗T + A(n−1)εT + . . .+ εT+n,n
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where A(n) denote the first n rows of An and εT+n,n is a vector of the first n of the vector εT+n. So

the forecast error is given by

y∗T+n,n − ŷT+n,n = A(n)y∗T + A(n−1)εT + . . .+ εT+n,n − Ãy∗T − ÃvT

The part of the variance of the forecast error, depending on Ã, which is relevant for the

minimisation problem, is given as before by

Ã(� +�T
v ) Ã

′ − 2 Ã�A(n)′

Differentiating and noting that the derivative of the trace of the above matrix is the trace of the

derivative gives

tr((� +�T
v ) Ã

′ − �A(n)′) = 0
If the matrix is equal to zero then the trace is equal to zero and so

(� +�T
v ) Ã

′ − �A(n)′ = 0

or

Ã
opt ′

= (� +�T
v )

−1�A(n)′

Clearly the method we suggest is optimal in terms of mean square forecasting error conditional on

being restricted to use p periods of past data, where p = T is a possibility. It is therefore
equivalent to using the Kalman filter on a state space model (9) once p = T . Nevertheless, the
method we suggest may have advantages over the Kalman filter in many cases. Firstly, the method

we suggest is transparent and easy to interpret structurally. For example, one can say something

about the coefficients entering the regression and how they change when revisions occur. It is also

possible to carry out inference on the new coefficients. We can obtain the standard errors of the

modified coefficients from the standard errors of the original coefficients. So in forecasting one

can say something about the importance (weight) of given variables and the statistical significance

of those weights. From a practical point of view where a large model with many equations is

being used for forecasting, and one which must bear the weight of economic story-telling, one

may want to fix the coefficients for a few periods and not reestimate the whole model. Our

method has some advantages over the Kalman Filter in uses of this sort, since it just uses the same

coefficients rather than applying a full Kalman filter every period. Finally, the method we have is

rather nonparametric as far as variances for the revision error are concerned. We have a T x1

vector of errors at time T. In the most general case, these errros can have any T xT covariance

matrix that represents all possibilities for how the variance of measurement error varies by
(9) For more details on the state space representation of the case we consider saee ?.
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vintage, over time, (and, in a multivariate setting, across variables). In other words, our procedure

allows for time variation in the covariances, heteroscedasticity and serial correlation. The state

space cannot easily attain that sort of generality. In fact a standard state space imposes rather strict

forms of covariance to the errors that are unappealing in the context we are envisaging. These can

be relaxed with great difficulty only and by experienced state space modellers. Some of these

advantages may be come clearer with an empirical illustration.

5 Empirical illustration

We apply the general method of optimising a forecast model to an investment forecasting equation

similar to those used in a number of macroeconometric models for the UK economy. A stylised

fact from the data revision analysis in the UK is that some of the investment series are among the

most heavily revised series in the national accounts, see, for example ?. This is one motivation for

considering investment equations. The general equation we consider is given by

�it = a0 +
p∑
i=1
ai�it−i + ap+1�gt−1 + et

where it is the (log of) business investment and gt is the (log of) GDP at market prices. Many

equations of this general form include an error correction term. These terms however, usually

include variables such as the capital stock and the cost of capital. For our analysis, these variables

suffer from two key problems: they are difficult to measure in the first place; and no satisfactory

analysis of the properties of the revisions in these series exists. Further, there is significant

evidence to indicate that error correction terms may not be very helpful in a forecasting context.

Evidence presented by ? demonstrates that the forecasting performance of VAR models may be

better than that of error correction models over the short forecasting horizons which concern us.

Only over long horizons are error correction models shown to have an advantage. ? cast doubt on

the notion that error correction models are better forecasting tools even at long horizons, at least

with respect to the standard root mean square forecasting error criterion. They also argue that

although unit roots are estimated consistently, modelling nonstationary series in (log) levels is

likely to produce forecasts which are suboptimal in finite samples relative to a procedure that

imposes unit roots, such as differencing, a phenomenon exacerbated by small sample estimation

bias.

We use real time data from 1975Q1-1995Q2. We use the revision data available to provide

estimates of the revision error variances. We assume that revisions do not occur in general after 24
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revision rounds. More details on the estimation of the data revision variances are given in ?. We

want to investigate the out-of-sample performance of the above equation. We consider eight

variants of it. Four variants do not include GDP in the equation and four do. The four variants

reflect the number of lags of investment considered which varies from 1 to 4. We assume that the

revision error becomes smaller and eventually disappears after 24 rounds of revisions.

We compare the forecasting performance of the optimal and standard parameter estimates. The

out-of-sample forecast evaluation exercise is carried out as follows. Starting at 1985Q2 the model

is estimated over the period 1975Q1-1979Q1 and investment at 1985Q3 is forecast. The reason

for not using the period 1979Q2-1985Q1 data for estimating the coefficients is to ensure (within

the assumptions of the experiment) that the original parameter estimate reflects the true parameter

rather than be contaminated by revision errors in the data. We continue producing investment

forecasts until 1995Q2. So the whole forecast evaluation period is 1985Q1-1995Q2 (10 years).

The reason we stop at 1995Q2 is because we need to use the most recently available data for the

evaluation period as proxies for the true data (uncontaminated by noise).

We look at the RMSE ratios of the forecasts coming from optimal and standard parameter

estimates and we also look at the Diebold-Mariano tests (see ?) looking at the null hypothesis that

the two forecast are equally good in terms of RMSE(10) . Results are also considered for the two

five year subperiods within the whole evaluation period. Results are presented in Table A.

Table A: MSE ratios and Diebold-Mariano tests

Whole period First subperiod Second subperiod
Model MSE Ratio D-M Test MSE Ratio D-M Test MSE Ratio D-M Test
AR(1) 0.8690 2.4557∗ 0.9185 0.8346 0.8353 2.7867∗
AR(2) 0.7837 3.6246∗ 0.7710 2.1530∗ 0.7945 3.1363∗
AR(3) 0.7809 3.3514∗ 0.7678 1.9543 0.7919 2.9845∗
AR(4) 0.8466 2.2081∗ 0.9233 0.5510 0.8003 2.8204∗
ARDL(1) 0.8497 2.7007∗ 0.8909 1.1836 0.8158 2.7332∗
ARDL(2) 0.8275 3.5666∗ 0.8631 1.8871 0.7881 3.3172∗
ARDL(3) 0.8595 3.0335∗ 0.9138 1.2267 0.8033 3.3275∗
ARDL(4) 0.9320 0.9047 1.1211 -1.3071 0.7818 3.0568∗

∗ denotes significance at the 1% level

Clearly the forecasts using the optimal coefficients outperform the standard forecasts for all

(10)Positive test statistics indicate superiority of the forecasts based on the optimal forecasting coefficients and vice
versa.
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models for the whole period and the second subperiod. In all but one model they outperform the

standard forecast in the first subperiod as well. Even in that model, this result is not statistically

significant according to the Diebold-Mariano statistic. On the other the Diebold Mariano statistics

indicate statistically significant superiority (at the 1% significance level) in the whole period and

the second subperiod.

6 Summary and conclusion

A brief summary of our analysis can be given as follows:

• Section 2.1 assumed a data generating process y∗t = ay∗t−1 + et and a measurement equation
yt = y∗t + vt with homoskedastic errors, vt . We showed that the unconditional mean of the

process forms a better forecast of the true data than any forecast ŷ(n)T+1 = an+1yT−n when the
variance of the measurement errors is greater than the variance of the true data.

• Section 2.2 generalised the analysis to the case in which the variance of vt increases with t
reflecting the fact that more recent data are measured less reliably. In that case we found that it

can be optimal to forecast using ŷ(n)T+1 = an+1yT−n for some n ≥ 1: it is better not to use the
most recent data in constructing the forecast.

• Section 3 generalised the problem to allow the forecaster to chose the parameter of the
forecasting model as well as the forecasting lag. In that case we found that it can be optimal to

forecast using ŷ(n)T+1 = ãn+1yT−n for some n ≥ 1: it is better to use less recent data and a
parameter ã that differs from the true model parameter a.

• Section 4 generalised the problem further to allow the forecaster to choose a forecasting model
from a general linear specification. Specifically, we allowed the forecaster to choose the

coefficients on a general AR process that minimise the mean-squared error of the forecast. We

found that it can be optimal to forecast with an AR model of higher order than the true data

generating process.

• Section 5 applied the analysis of Section 4 to an equation estimated on UK investment data. We
found that the forecasts using the optimal forecast model outperformed forecasts from the

standard model when compared using the Diebold-Mariano test.
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So in this paper we have explored the effects of data revision on forecasting models. We have

shown that in the presence of data revisions it is possible that forecasting with older data may

provide superior forecasts in terms of mean square error compared to forecasts which use the most

recent data. This conclusion is not affected even if we allow for adjustments in the parameters of

the dynamic model to optimise the forecast in terms of mean square error. Finally, we have

provided a general method of determining the optimal forecasting model in the presence of data

measurement and revision errors with known covariance structure.
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