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Abstract

Recently developed algorithms for model selection proceed by or-
dering the variables by their absolute t−values. So much testing in-
volved in choosing the Þnal model, and the generality of the initial
model have been questioned in the literature. This paper shows that
increasing model generality and repeated t2−testing do not reduce the
chances of Þnding the DGP. However, if somewhere along the proce-
dure an irrelevant variable is incorrectly included then all following
variables in the sequence are retained with probability one.
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1 Introduction

Recently developed automated procedures for model selection (see Hoover
and Perez (1999) and Hendry and Krolzig (1999)) start by ordering the vari-
ables in the initial model by their absolute t−values. We would like to
examine the consequences of such action on the probabilities of retaining in
and deleting from the initial model relevant and irrelevant variables. Au-
tomated procedures are more sophisticated than the context we are about
to present. In these procedures variables are ordered but the decision on
whether they are Þnally included or not is made upon the results obtained
from applying diagnostic tests. An important feature of both HP and HK is
that variable selection is accomplished by means of individual and block hy-
pothesis testing. Lovell (1983) found in a Monte Carlo study that t−testing
is not a useful procedure for detecting relevant variables. Hansen (1999)
questions the consistency of model selection procedures based on hypothesis
testing, arguing that those procedures lead to overparameterized models even
in large samples. He proposes to use consistent information criteria to choose
between all possible models which can be formulated from a set of potential
variables. However, to reduce dimensionality he recommends to estimate the
most general model, order its variables by their absolute t−values and delete
the insigniÞcant variables one at a time till a model with about 10 regressors
is obtained. He suggests to formulate all possible models (210) from these 10
regressors and choose that model with smallest Schwarz information crite-
rion. Campos et al. (2003) derive and compute the probability of Þnding the
DGP when all variables are irrelevant in Hansen�s procedure. It is found that
this probability increases with pre-selection and with the penalty parameter
in the Schwarz information criterion.
What we would like to examine below is whether ordering the variables

according to their t2−values alters Lovell (1983) result, and to what extent
the claimed pernicious effect of sequential testing applies. The results below,
which are derived assuming that the tests-statistics are mutually indepen-
dent, and for the simple cases in which up to three variables in the general
model are relevant, question common beliefs on the consequences of repeated
testing and model generality. These results are more directly applicable to
Hoover and Perez (1999) and Hansen (1999) because of their intensive use of
t−testing. The derivations appear to generalize to models with more than
three relevant variables. However, relaxing the independence assumption
complicates the derivations.
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Using the theory on order statistics we derive particular expressions for
the following probabilities, given that the set of variables with lower t2−values
have already been excluded. First, when all potential variables are irrele-
vant, Section 2 Þnds the probabilities of correct deletion and of incorrectly
retaining those variables with largest t2−values. Second, Section 3 Þnds the
probabilities of retaining the most signiÞcant variables when the initial model
includes up to three relevant variables. Because t2−statistics associated to
relevant variables have non-central distributions their means are larger than
the means of those statistics corresponding to irrelevant variables. Hence,
we expect the relevant variables to be also the most signiÞcant, and so hope
that the derived probabilities of the most signiÞcant variables coincide with
the probabilities of retaining the relevant variables. If that is so, contrary
to common knowledge, it is found that the probabilities of retaining rel-
evant variables are not lower for more general models, and that repeated
single t2−testing does not reduce the probability of selecting the relevant
variables. Some conventional results also hold in this context: the probabil-
ity of correct inclusion increases with the number of relevant variables and
with departures from the null hypothesis. The results are Þrst derived as-
suming that all non-central t2−statistics have the same distribution which is
not the case in practice. However, inspection of the particular case of two
relevant variables suggests that the same results hold when the t2−statistics
have different distributions.

2 Models with no relevant variables

Automated procedures for model selection permit increasing model gener-
ality. In this Section we would like to address two issues related to the
generality of the initial model: (i) whether considering larger sets of poten-
tial variables affects size and power of tests leading to incorrect exclusion
and inclusion, and (ii) whether sequentially eliminating potential explana-
tory variables reduces the probability of Þnding the DGP. The answer to
(i) is provided by deriving the probabilities of correctly excluding and of
incorrectly including the set of variables with largest t2−values, given that
the remaining variables have already been excluded, in a sequential testing
procedure when all variables are irrelevant. (ii) is examined by comparing
sequential conditional probabilities.
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Let us consider the following general initial model with k regressors:

yt =
kX
i=1

γixti + εt. (1)

Let us suppose that we wish to discover what regressors are relevant by
using a hypothesis testing sequential procedure in which regressors have been
arranged by their squared t−values in an increasing order of magnitude (i.e.,
the Þrst variable in the sequence is that with smallest t2−value and the last
variable is that with largest t2−value). What we are going to do is to derive
the probabilities of excluding and retaining variables when all regressors are
irrelevant, and all t2−statistics are mutually independent. Let us denote the
ordered mutually independent t2−statistics computed from T observations
by 0 ≤ τ 1 ≤ τ 2 ≤ · · · ≤ τk <∞. Hence, the joint density of those τs is:

Dτ1,...,τk (τ 1, . . . , τk) =

(
k!

Yk

i=1
f (τ i) 0 ≤ τ 1 ≤ · · · ≤ τk ≤ ∞

0 otherwise
(2)

where f (τ i) is the marginal density of the ith τ−statistic (see e.g., Hogg and
Craig (1970) and David (1981)).
Denoting by p = F

¡
ξp

¢
, where F (·) is the cumulative distribution function

(cdf) of a central distribution with density f (·), and by:

Pr = P
£
τ i ≤ ξp, i = 1, . . . , r

¤
= P

£
τ r ≤ ξp

¤
integration of (2) yields Pk = pk and:

Pk1 =
k−k1X
i=0

k!

i! (k − i)!p
k−iθi := Sk,k1 (3)

where θ = 1− p.
We wish to derive Þrst the probabilities of correct exclusion. The proba-

bility of excluding the last k− k1 variables given that the remaining k1 have
been excluded is:

P
£
τ i ≤ ξp, i = k1 + 1, . . . , k | τk1 ≤ ξp

¤
=

Pk
Pk1

=
pk

Sk,k1

(4)
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Variables Probabilities of correct exclusion
k = 40 k = 60

α = 0.05 α = 0.01 α = 0.05 α = 0.01
All 0.128 0.669 0.046 0.547
Three most significant 0.149 0.669 0.071 0.549
Two most significant 0.190 0.674 0.110 0.560
Most significant only 0.322 0.712 0.241 0.623

Table 1: Conditional probabilities of correctly excluding all, the last three, the last
two, and the kth variable only.

which is a function of the probability p to the left of the critical value, of
the total number k of variables in the initial model, and of the number
k1 of irrelevant variables already excluded. For Þxed k, the sequence of
probabilities in (4) deÞned for k1 ∈ [1, k − 1] can be interpreted as follows:
k1 = 1 yields the probability of excluding the k − 1 variables with highest
t2−values, once we have tested for the signiÞcance of the Þrst variable (the
variable with smallest t2−value) and we have excluded it; k1 = 2 yields the
probability of excluding the k − 2 variables with highest t2−values, once we
have tested for the individual signiÞcance of the Þrst two variables (those
variables with smallest t2−values) and we have excluded them; and so on.
Because (3) implies that P

£
τ 1 ≤ ξp

¤
= Sk,1 = 1 − (1− p)k 6= 0, for all

p > 0, sequential testing does not reduce the probability of correct exclusion
since for j = 2, . . . , k:

P
£
τ i ≤ ξp, i = 1, . . . , k

¤
< P

£
τ i ≤ ξp, i = j, . . . , k | τ j−1 ≤ ξp

¤
< P

£
τ i ≤ ξp, i = j + 1, . . . , k | τ j ≤ ξp

¤
.

In addition, probabilities of correct exclusion are larger when testing at lower
signiÞcance levels, and seem to be smaller in more general models. Table 1
provides probabilities, computed as in (4), of correctly excluding variables
in this sequential procedure for models with 40 and 60 variables, and when
testing has been carried out at the 5% and 1% signiÞcance levels. The prob-
ability of excluding the variables with highest t2−values increases with the
number of variables with lower t2−values previously excluded (k Þxed but
k1 increasing). For instance, for α = 0.01 the probability of excluding all
k = 40 variables is 0.669, and the probability of excluding the most signif-
icant variable when all remaining variables have already been excluded is
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0.712. So, from Table 1 we Þnd that probabilities of correct exclusion: (i)
are not reduced by sequential testing; (ii) decrease with model generality;
and (iii) are larger at lower signiÞcance levels, in agreement with the results
found in the literature (see e.g., Hoover and Perez (1999) for their model 1).
(3) also allows us to get insight on overparameterization after a sequential

testing procedure. The probability of incorrectly including the remaining
variables given that the Þrst k1 have already been correctly excluded is:

P
£
τ i ≥ ξp, i = k1 + 1, . . . , k | τk1 ≤ ξp

¤
=

P
£
τk1 ≤ ξp ≤ τk1+1

¤
P

£
τk1 ≤ ξp

¤
=

k!pk1θk−k1

(k − k1)!k1!Sk,k1

. (5)

(5) implies that sequential testing leads to larger probabilities of incorrect
inclusion because P

£
τ i ≥ ξp, i = k1 + 2, . . . , k | τk1+1 ≤ ξp

¤
is greater than

P
£
τ i ≥ ξp, i = k1 + 1, . . . , k | τk1 ≤ ξp

¤
. Furthermore, once a variable has

been included the following variables in the sequence are also included with
probability one because P

£
τ i ≥ ξp, i = k1 + 2, . . . , k | τk1 ≤ ξp, τk1+1 ≥ ξp

¤
=

1. Hence, sequential testing establishes a trade-off between correct exclusion
and incorrect inclusion. Table 2 shows computed probabilities of incorrect
inclusion. By comparing Tables 1 and 2 we notice that probabilities of correct
exclusion are larger than the probabilities of incorrect inclusion when testing
at the 1% signiÞcance level. When k = 40, 60 for α = 0.01 those discrepan-
cies are as large as 0.67 when inclusion-exclusion of the last k − 1 variables
is considered for k = 40, and reduced to 0.42 when inclusion-exclusion of the
last variable is judged. These numbers drop to 0.55 and 0.24, respectively,
when k = 60 but those differences are not negligible. In general, (4) and (5)
imply that the discrepancy between the probabilities of correctly excluding
and of incorrectly including the last k − k1 variables is positive for models
with even 80 variables when testing proceeds at signiÞcance levels not greater
than 1%. So, the beneÞt of sequential testing can offset the evil of incorrect
inclusion.
In addition, (5) converges to zero as p approaches unity but increases

when both k and k1 become larger. The numbers in Table 2 illustrate that
the discrepancy between the probabilities of keeping the most signiÞcant but
irrelevant variables increases with model generality, that we do much better
by testing at lower signiÞcance levels, and that it is less likely to retain more
than fewer irrelevant variables. By testing at the 1% signiÞcance level we
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Variables Probabilities of incorrect inclusion
k = 40 k = 60

α = 0.05 α = 0.01 α = 0.05 α = 0.01
Five most significant 0.035 0.000 0.110 0.000
Four most significant 0.095 0.000 0.210 0.003
Three most significant 0.215 0.007 0.355 0.019
Two most significant 0.410 0.054 0.541 0.101
Most significant only 0.678 0.288 0.759 0.377

Table 2: Conditional probabilities of incorrectly including up to the last Þve vari-
ables.

would expect

to include two variables about 5% of the time. Diagnostic testing may explain
why Hoover and Perez (1999) obtain almost no falsely included variables at
the 1% level (see also Hendry and Krolzig (1999)). Table 2 also indicates
that the probability of incorrectly including the last Þve variables when all
remaining variables have already been excluded is negligible, but it is as
high as 29% when testing for the signiÞcance of the last variable at the 1%
signiÞcance level for k = 40. Notice that the choice of signiÞcance level is
crucial for keeping these probabilities low.
In this Section we have derived formulae for computing conditional prob-

abilities of correct exclusion and inclusion when all variables in the initial
model are irrelevant. We have found that: (i) the probability of correct ex-
clusion is not reduced by sequential testing, it is larger when testing at lower
signiÞcance levels, and it is smaller for more general initial models; (ii) the
probability of incorrect inclusion is enhanced by sequential testing, it is sen-
sibly reduced when testing at smaller signiÞcance levels, and increases with
model generality; (iii) the beneÞt from sequential testing more than offsets
the evil of incorrect inclusion; and (iv) once a variable has been incorrectly
included all variables following that in the sequence are included with prob-
ability one. The next Section deals with models which include relevant as
well as irrelevant variables. Curiously, it is found that more general models
do not lead to lower probabilities of keeping relevant variables. However, as
we may expect, the probability of choosing relevant variables is likely to be
enhanced by increasing the number of relevant variables in the initial model.
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3 Models with relevant variables

In what follows model (1) is assumed to include regressors which are rel-
evant for explaining variable y. Regressors have been arranged according
to their t2−values in an increasing order of magnitude. We assume that
the t2−statistics are mutually independent. Subsection 3.1 derives the prob-
abilities of retaining relevant variables, given that all irrelevant variables
and less signiÞcant but relevant variables have already been excluded. It is
assumed that the t2−statistics associated to the relevant variables are iden-
tically distributed, and that testing proceeds using the same critical value
for all hypotheses in the sequence. Subsection 3.2 relaxes the assumption
of identical distribution, but, except for a simple example, it keeps the as-
sumption that all test-statistics have distributions with the same degrees of
freedom. Degrees of freedom determine the critical values in a testing se-
quence. Critical values are nearly constant when testing for the signiÞcance
of irrelevant variables but they may change substantially when the model
includes variables which are relevant. However, the example provided below
seems to indicate that probabilities of correct inclusion, computed using the
same critical values for all subsequent hypotheses, provide a lower bound to
the same probabilities calculated using the correct critical values.

3.1 Probabilities when t2−statistics are identically dis-
tributed

Let us sequentially consider model (1) with one, two and three relevant
variables. Let us denote by f (·) and g (·) the densities of a central and a
non-central distribution, respectively. The probability of retaining variable
s given that all previous variables in the sequence have been excluded, in a
model with r relevant variables, is:

Pr
£
τ s ≥ ξp | τ s−1 ≤ ξp

¤
= 1− Ps

Ps−1
. (6)

We next derive those probabilities for each model.
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3.1.1 Models with one relevant variable

We consider model (1) with one relevant variable. The density of the ordered
t2−statistics is:

Dτ1,...,τk (τ 1, . . . , τk) = (k − 1)!
kX
j=1

g (τ j)
kY
i6=j

f (τ i)

for 0 ≤ τ 1 ≤ · · · ≤ τk < ∞ , and zero otherwise. Integration yields Pk =
pk−1q, Pk−1 =

¡
pλ+ qϕ1,1

¢
pk−2, and:

Pk−2 = pk−3

µ
p {1 + (k − 2) θ}+

1

2
(k − 1) (k − 2) qθ2

¶
where λ = 1− q, ϕr,s = rp + (k − s) θ, and q = G

¡
ξp

¢
; with G (·) being the

cdf of a non-central distribution with density g (·). So:

P1

£
τk ≥ ξp | τk−1 ≤ ξp

¤
= 1− pq

pλ+ qϕ1,1

(7)

for k = 2, 3, . . .. Strictly speaking (7) is the probability that the most sig-
niÞcant variable is correctly retained when less signiÞcant variables have al-
ready been excluded. We would expect τk to correspond to the t2−value of
the relevant variable, in which case (7) would be the probability of retaining
the relevant variable provided the irrelevant variables have already been ex-
cluded. As an example, notice that non-central χ2 and F distributions have
larger means than their central counterparts, and hence we would expect
larger t2−values for variables which are more relevant.
(7) increases as k becomes larger and hence the probability of retaining

the relevant variable is not smaller for models with more variables (see Table
3). However, once a variable has been included the variable with the next
highest t2−value is also included with probability one, no matter whether
that variable is relevant or not. In addition, model generality leads to larger
probabilities of incorrect inclusion as the following expression indicates: The
probability of including the most signiÞcant irrelevant variable is:

P1

£
τk−1 ≥ ξp | τk−2 ≤ ξp

¤
= 1−

¡
pλ+ qϕ1,1

¢
p

p {1 + (k − 2) θ}+ 1
2

(k − 1) (k − 2) qθ2

(8)
which increases with k.
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3.1.2 Models with two relevant variables

We next increase the number of relevant variables in model (1) to two. The
density of the τs is:

Dτ1,...,τk (τ 1, . . . , τk) = 2 (k − 2)!
kX
j<h

g (τ j) g (τh)
kY

i6=j 6=h
f (τ i)

for 0 ≤ τ 1 ≤ · · · ≤ τk < ∞, and zero otherwise. By integrating the
latter density we obtain Pk = pk−2q2, Pk−1 =

¡
2pλ+ qϕ1,2

¢
pk−3q, and

Pk−2 =
¡
p2λ2 + q2 + 2pqλϕ1,2 + 1

2
(k − 4) q2θϕ2,1

¢
pk−4 for k = 3, 4, . . .. So,

P2

£
τk > ξp | τk−1 ≤ ξp

¤
is greater than P1

£
τk > ξp | τk−1 ≤ ξp

¤
which im-

plies that the probability of correctly including the most relevant variable
increases with the number of relevant variables in the initial model. In addi-
tion, P2

£
τk > ξp | τk−1 ≤ ξp

¤
is greater than P2

£
τk−1 > ξp | τk−2 ≤ ξp

¤
and

hence sequential testing does not lead to lower probabilities of choosing the
relevant variables as we proceed along the sequence of tests.

3.1.3 Models with three relevant variables

In what follows we consider a situation in which we have three relevant vari-
ables in model (1) and look at the probabilities of retaining those variables.
For 0 ≤ τ 1 ≤ · · · ≤ τk <∞, the density is:

Dτ1,...,τk (τ 1, . . . , τk) = 3! (k − 3)!
kX

j<h<m

g (τ j) g (τh) g (τm)
kY

i6=j 6=h6=m
f (τ i)

and zero otherwise. So, Pk = pk−3q3, Pk−1 =
¡
3pλ+ qϕ1,3

¢
pk−4q2, Pk−2 =¡

3p2λ2 + pq2 + 3pqλϕ1,3 + 1
2

(k − 4) q2θϕ2,3

¢
pk−5q, and:

Pk−3 =

µ
p3λ3 + q3 + 3p2qλ2ϕ1,3 + 3pq2λ

½
1 +

1

2
(k − 5) θϕ2,2

¾
+ (k − 6)

½
1 +

1

2
(k − 5) θ +

1

6
(k − 5) (k − 4) θ2

¾
q3θ

¶
pk−6.

for k = 4, 5, . . .. We obtain the same results: sequential testing does not
reduce the chance of retaining the relevant variables, and more relevant vari-
ables enhance the probability of being selected.
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Summarizing, in this Section we have found that: (i) probabilities of
retaining relevant variables increase with the total number of variables in
the initial model; (ii) sequential testing does not reduce the probability of
correctly including the next relevant variable, even if the previous relevant
variable has been incorrectly excluded; (iii) probabilities of correct inclusion
are larger when the number of relevant variables in the model is larger; and
(iv) probabilities of incorrect inclusion increase with the total number of
variables in the initial model.

3.1.4 Some calculations

In what follows we wish to compare those probabilities in this Section for
models with k = 40 and k = 60 variables, which have been estimated using
T = 140 observations. We wish to calculate the probability of Þnding vari-
ables with t2−values greater than the critical value corresponding to testing
at the 1% signiÞcance level, when variables are relevant but their t2−ratios
have a distribution close to the null, and to compare them with the probabil-
ities of retaining those variables when that distribution is farther away from
the null. The values of p and q are associated to the central and non-central
χ2 distributions, respectively. p = 0.99. To obtain q we consider an approx-
imation to the non-central distribution of the t2−statistic around zero. Let
us assume that variable xi is relevant, denote its parameter by γi and by
σ2
i its variance. In addition, let σ

2
ε be the variance of the disturbances in

the model. Independence of regressors and appropriate additional conditions
imply that t2

0 is approximately distributed as a non-central χ
2 with 1 degree

of freedom and non-centrality parameter ψ = Tσ−2
ε γ

2
iσ

2
i . To compute q we

approximate that χ2 (1;ψ) by the variable (1 + 2ψ)−1 (1 + ψ)χ2, which is a
central χ2 with ν = (1 + 2ψ)−1 (1 + ψ)2 degrees of freedom. So:

q = P
£
t2
0 ≤ ξp

¤ ' P
£
χ2 (1;ψ) ≤ ξp

¤ ' P

·
1 + ψ

1 + 2ψ
χ2 (ν) ≤ ξp

¸
(9)

and we expect a relevant variable to have a t20−value around (1 + 2ψ)−2 (1 + ψ)3.
When the null is true and so a variable is irrelevant, the critical value for

testing at the 1% signiÞcance level is 6.63. So, we consider values of ψ which
lead to the two situations we chose to examine: (i) variables with t20−values
close to 6.63 and hence with associated parameters close to the null, and (ii)
variables with t20−values farther away from 6.63 and hence with associated
parameters farther away from the null. The Þrst value of ψ is found by
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Non-centrality parameters Probabilities of retention
and Variables 1 relevant 2 relevant 3 relevant

k = 40 k = 60 k = 40 k = 60 k = 40 k = 60
ψ = 24.49:
Most significant 0.54 0.58 0.67 0.69 0.74 0.75
Penultimate significant 0.31 0.36 0.44 0.47
Antepenultimate significant 0.18 0.22
Irrelevant most significant 0.15 0.22

ψ = 29.50:
Most significant 0.65 0.68 0.77 0.78 0.83 0.84
Penultimate significant 0.44 0.48 0.59 0.61
Antepenultimate significant 0.30 0.34
Irrelevant most significant 0.19 0.26

Table 3: Probabilities of retaining variables at the 1% signiÞcance level.

solving for ψ the cubic (1 + 2ψ)−2 (1 + ψ)3 = 6.63 which yields ψ = 24.49.
We obtain a second value of ψ = 29.50 by solving the same cubic but equated
to 7.88 so that in (ii) we expect variables to show a t2−value of about 7.88
in which case the null would be rejected.
q is approximately 0.5522 and 0.4008 for ψ = 24.49 and 29.50, respec-

tively. Table 3 shows, for k = 40 and k = 60, the probabilities of retention
when there is only one relevant variable and when there are two and three
relevant variables in the potential set, as computed from (6) with Ps, Ps−1

and Ps−2 replaced by their appropriate expressions, given that all previous
variables in the sequence have already been excluded, testing is carried out at
a 1% signiÞcance level, and t2− statistics associated to the relevant variables
have the same distribution. In particular, Table 3 shows the probabilities of
keeping only the most signiÞcant variable, the penultimate signiÞcant, and
the antepenultimate signiÞcant variable. Because all relevant variables have
the same distribution we expect all of them to have the same t2−value. So,
for all relevant variables with the same t2−value their probabilities of be-
ing retained are determined by the order in which we consider them. For
instance, when there are three relevant variables, the category �Most signif-
icant� is to be interpreted as the third variable we consider retaining, given
that all irrelevant and the other two relevant variables have been excluded.
A general result is due: probabilities of correct inclusion are not smaller
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in more general models. For instance, when there is only one relevant vari-
able in the potential set, the probability of choosing that variable is 0.54
when k = 40 and the Þrst 39 variables have already been deleted, and 0.58
when k = 60 and the Þrst 59 variables have already been deleted. However,
other conventional results hold: (i) the chances of choosing relevant vari-
ables increase with the total number of relevant variables in the potential
set (e.g., 0.54 vs. 0.67 when the potential set includes only one relevant and
two relevant, respectively); (ii) the chances of choosing variables with lower
t2−values are smaller (e.g., 0.18 vs. 0.74 which are the probabilities of choos-
ing the least signiÞcant only and of keeping the most signiÞcant, respectively,
when k = 40), or it is more likely to keep the last relevant variable we con-
sider in the testing sequence; and (iii) the probability of retaining relevant
variables increases with departures from the null (e.g., 0.74 for ψ = 24.49
vs. 0.83 for ψ = 29.50 which are the probabilities of keeping the most rele-
vant variable when there are three relevant variables in a potential set of 40
variables). Table 3 also records the probability of incorrectly including the
most signiÞcant irrelevant variable when there is only one relevant variable.
Probabilities of incorrect retention are much smaller (e.g. for k = 40 and
when the relevant variable is close to being irrelevant, the sequential pro-
cedure would include the most signiÞcant irrelevant variable 15 out of 100
times). In addition, probabilities of incorrect retention are not smaller when
the relevant variables are more important (e.g., 0.15 vs. 0.19 when ψ = 24.49
and ψ = 29.50, respectively).

3.1.5 Compare to Hoover and Perez (1999)

For further illustration we next compare the computed probabilities from
(7) with the frequencies of retaining the relevant variable in Hoover and
Perez (1999) DGPs 2, 4 and 5. Column 2 in our Table 4 provides the non-
centrality parameter associated to each of the relevant variables calculated
as ψ = Tσ−2

ε γ
2
i bσ2
i , where T = 140, σε is given in HP�s Table 3 as s.e.r., γi is

the parameter of the ith regressor from HP�s Table 3 , and bσi is taken from
HP�s Table 2. The remaining columns in our Table 4 show the approximate
mean values of t2

0; the computed probabilities from expression (7) with q as
in (9); and the frequencies of retaining relevant variables in HP�s Table 7 for
DGPs 2, 4 and 5. Testing is carried out at the 1% signiÞcance level. The
approximate critical value when testing at the 1% signiÞcance level is close
to 13, and E[t2

0] > 40 for the regressors in DGP�s 2, 4 and 5, so we would ex-
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DGP ψ E[t2
0] Prob. HP

y2 = 0.75y2−1+ε;σε= 85.99 180 45.5 1 1
y4 = 1.33x11 + ε;σε= 9.73 189 47.6 1 0.999
y5 = −0.046x3 + ε;σε= 0.11 1900 475.6 1 1

Table 4: HP�s DGPs, non-centrality parameters, mean values of t-squared, com-
puted probabilities of retention, and HP�s frequencies of retention.

pect a large probability of keeping the relevant variable. Column 4 indicates
that those variables are kept with probability one, in agreement with HP�s
frequency of retention recorded in column 5.

3.2 Probabilities when the t2−statistics have different
distributions

We next derive probabilities of retaining relevant variables for models with
up to four regressors. t2−statistics are assumed to be mutually independent,
and those associated to the relevant variables have different distributions.
However, we assume that the test-statistics have distributions with the same
degrees of freedom, so that all subsequent hypotheses are tested using the
same critical values. In practice, degrees of freedom increase as we proceed
along the sequence, so it would make sense to change the critical values
accordingly. What we do next is to consider Þrst a simple model with two
regressors, one of which is relevant, allow for the test-statistics in testing
for the signiÞcance of one variable at a time to have different degrees of
freedom, and Þnd the probability of retaining the relevant variable using
the correct critical value. That probability is compared to (7), which has
been derived using the same critical value for both hypotheses, to illustrate
that the probability of retention derived under constant critical values may
provide a lower bound to the probability obtained using the appropriate
critical values. After that example we consider probabilities with constant
critical values.

3.2.1 Two regressors: one relevant variable

Let us denote the critical values associated to testing at the (1− p) % signiÞ-
cance level by ξp1

and ξp2
for the irrelevant and the relevant variables, respec-

tively, and assume ξp2
≤ ξp1

. So, p = F
¡
ξp1

¢
= G

¡
ξp2

¢
, where F (·) = G (·)
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are the cdfs of the t2-statistics associated to the irrelevant and relevant vari-
ables, respectively. Let us denote F

¡
ξp2

¢
= p2 and G

¡
ξp1

¢
= q. Hence,

p > p2, q > p, and:

P
£
τ 2 ≥ ξp2

| τ 1 ≤ ξp1
¤

=

R∞
ξp2

R ξp1
0 Dτ1,τ2 (τ 1, τ 2) dτ 1dτ 2R ξp1

0 Dτ1 (τ 1) dτ 1

=
p (1− p) + q (1− p2)

p+ q − pq . (10)

Comparing (10) to (7) we obtain that P
£
τ 2 ≥ ξp2

| τ 1 ≤ ξp1
¤
is greater than

P
£
τ 2 ≥ ξp1

| τ 1 ≤ ξp1
¤
, which implies that testing the second hypothesis in

the sequence using the same critical value as for testing the Þrst hypothesis,
provides a lower bound to the probability of retaining the relevant variable
using the correct critical values.
The following derivations assume constant critical values to illustrate that

the results in Section 3.1 hold when the test-statistics have otherwise different
distributions. We consider models with three and four regressors, two of
which are relevant.

3.2.2 k regressors: two relevant variables

We wish to examine Þrst whether the probability of retaining relevant vari-
ables is larger in more general models. To do so notice that the joint density
of the ordered t2−statistics in a model with k regressors when only two of
those are relevant is:

Dτ1,...,τk (τ 1, . . . , τk) =
X
I

Y
i

f (τ ji) g1 (τ jm) g2 (τ jn)

for 0 ≤ τ 1 ≤ · · · ≤ τk <∞, and zero otherwise. g1 (·) and g2 (·) are densities
of non-central distributions,

Y
i
is the product of k−2 central densities f (·),

and
P

I denotes the summation over all terms in which j1, . . . , jk−2, jm,jn are
the k elements of the k! permutations of 1, . . . , k. So, denoting p = F

¡
ξp

¢
,

q1 = G1

¡
ξp

¢
and q2 = G2

¡
ξp

¢
:

P
£
τk > ξp | τk−1 ≤ ξp

¤
= 1− pq1q2

pδ + (k − 2) q1q2θ
. (11)
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and:

P
£
τk−1 > ξp | τk−2 ≤ ξp

¤
= 1− p2δ + (k − 2) pq1q2θ

p2 + (k − 2) pδθ + 1
2

(k − 2) (k − 3) q1q2θ
2 (12)

which converge to unity as k increases. In addition, (11) is larger than (7)
if non-central distributions imply q2 < p, as it seems to be the case for the
χ2 and F−distribution. Hence, for Þxed k, more relevant variables do not
lead to lower probabilities of correctly including the most signiÞcant variable.
Finally, (11) is larger than (12) which indicates that sequential testing does
not reduce the probability of Þnding the DGP.

3.2.3 Compare to Hoover and Perez (1999)

To illustrate we next compare the computed probabilities from (11) and
(12) with the frequencies of retaining relevant variables in Hoover and Perez
(1999) DGPs 6, 6A and 6B. In all those three DGPs variable x11 has ψ = 187
and E[t2

0] = 47.3. So, columns 2-3 in our Table 5 report that information for
variable x3 only. However, for comparison, columns 4-5 provide the computed
probabilities, and the frequencies of retaining both variables in HP�s Table 5
for DGPs 6A and 6B, and their Table 7 for DGP 6.
Testing is carried out at the 1% signiÞcance level for DGP 6, and at 5% for

DGPs 6A and 6B. The approximate critical value is close to 8 and E[t2
0] > 40

for variable x11 in all DGPs, and for variable x3 in DGP 6B. So, we would
expect a large probability of keeping those relevant variables. We have found
that the probabilities of retaining x11 and x3 (see column 4) are unity, in
agreement with HP�s frequencies reported in our column 5. For variable x3
in DGPs 6 and 6A E[t2

0] is 0.87 and 12, so we expect the probability of
retaining x3 to be very low in DGP 6 and much larger in DGP 6A. Table 5
indicates that this variable is to be kept only 5 out of 100 times for DGP 6,
and almost always (99.9 times out of 100) for DGP 6A. The corresponding
HP frequencies of retention can be read out of Column 5 and are only 0.8%
and as large as 86.4%, respectively.
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DGP ψ E[t2
0] Prob. HP

x3 x3 x3 x11 x3 x11
y6 = 0.67x11− 0.023x3 + ε 0.24 0.87 0.054 1.000 0.008 0.998
y6A = 0.67x11− 0.32x3 + ε 46 12.0 0.999 1.000 0.864 0.999
y6B = 0.67x11− 0.65x3 + ε 190 47.9 1.000 1.000 0.996 0.997

Table 5: HP�s DGPs, non-centrality parameters, mean values of t-squared, com-
puted probabilities of retention, and HP�s frequencies of retention.

4 Conclusion

Repeated testing and generality of the initial model do not seem to have the
commonly believed pernicious effect on the probabilities of correct inclusion,
when the initial model contains relevant variables and the selection proce-
dure incorporates ordering of variables according to their squared t−values.
The following results are found above: (i) the probability of choosing the
relevant variables increases with the total number of variables in the initial
model; (ii) the chance of including least relevant variables is not larger than
that of keeping the most relevant variables; (iii) the probability of correct
inclusion increases with the proportion of relevant variables in the initial
model; and (iv) incorrect retention is less likely than correct inclusion but it
is not smaller when the relevant variables are more important. Those results
are derived assuming that t2−statistics are mutually independent, and that
those associated to the relevant variables have the same non-central distri-
bution. However, relaxing the assumption of identical distribution does not
seem to affect those results.
The story when all variables in the initial model are irrelevant is as fol-

lows: (i) the probability of correct exclusion is not reduced by sequential
testing, it is larger when testing at lower signiÞcance levels, and it is smaller
for more general initial models; (ii) the probability of incorrect inclusion is
enhanced by sequential testing, it is sensibly reduced when testing at smaller
signiÞcance levels, and increases with model generality; and (iii) the bene-
Þt from sequential testing more than offsets the evil of incorrect inclusion
since the probabilities of correct exclusion are larger than the probabilities
of incorrect inclusion.
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