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1 Introduction

Dickey and Fuller (1979) [DF] tests are now a basic tool in the tool-kit box of most

time series researchers. Following the recommendation of Ghysels (1990) and Ghysels

and Perron (1993), for variables sampled at infra-annual frequencies DF tests should

be applied to seasonally unadjusted (raw) data. Otherwise, their power can be even

lower than usual. Although in this case the simple procedure proposed by Hylleberg

et al. (1990) [HEGY] is also able to deliver evidence for the presence (absence) of

seasonal unit roots, many researchers prefer using (A)DF1 tests, the purpose of their

analysis being concentrated only on the long-run (zero frequency) properties of the

data. Moreover, as in some circumstances the HEGY test for the zero frequency

unit root may have less power than the DF test, Franses (1996, p. 73) recommends

that the latter should be used to complement the former: “... in practice, therefore,

one may consider an additional step where there are no seasonal unit roots, i.e. a

standard ADF test in a regression that includes seasonal dummies” (the italics is

ours). Therefore, investigating the properties of DF tests for seasonally unadjusted

data is a major concern.

On this regard, previous research – and particularly Ghysels et al. (1994) [GLN],

Rodrigues and Osborn (1999) and Rodrigues (2000) – has focused exclusively on the

effects of neglecting non-stationary stochastic seasonality. The major outcome of this

work is that even when the data generation process (DGP) contains seasonal unit

roots ADF tests can be validly used, provided that the test regression is sufficiently

augmented with lags of the dependent variable to account for the presence of such non-

stationary components. Otherwise, serious over-rejections of the unit root null arise.

However, as the consequences of neglecting the presence of deterministic seasonality

have not been addressed yet, the main purpose of this paper is precisely to fill that

gap.

From a somewhat different perspective this paper addresses the issue of similar-

ity of DF tests with respect to the parameters of the seasonal cycle. Clearly, the

framework of the HEGY tests is more adequate for this purpose, the need to include

the seasonal dummy variables in the test regression arising from the (seasonal) initial

values. Contrasting with this approach, the presence of deterministic seasonality is

1Given the importance of the work of Said and Dickey (1984), a more precise acronym would be

DFS.
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hidden when the analysis relies on a first-order difference equation: the similarity

problem seems to be present with regard only to the initial value and the value of the

drift parameter. To illustrate this problem, the analysis is confined to the quarterly

data case. However, it extends straightforwardly to other frequencies (e.g., monthly,

weekly, etc.).

Actually, the motivation for this research arose from the observation that some

practitioners do not include the usual set of seasonal intercepts when conducting

ADF tests over seasonally observed time series2, while at least some of them add

those regressors to their HEGY regressions. Although we acknowledge that possibly

this is not the most current practice, there does not seem to exist any research that

has addressed this issue.

On the other hand, it is well known that the selection of the lag truncation param-

eter may affect inferences on the presence of unit roots, sometimes even dramatically

[for a recent example see Murray and Nelson (2000)]. Thus, this paper also aims to

investigate the finite sample behaviour of DF tests when the most popular procedure

for lag selection is used jointly with a non-similar test regression. Anticipating the

conclusions, some results might seem somewhat surprising, implying that as yet there

is no universal, clear-cut recommendation for empirical research, yielding satisfactory

size and power performance.

The remainder of this paper is organized as follows. Section 2 discusses the issue

of (non-) similarity of DF tests when the data contain deterministic seasonality. As

the approach is mainly analytical, a very simple DGP is used, i.e., a set of seasonal

dummy variables superimposed on a random walk. In section 3 the analysis is further

complicated through the consideration of more realistic DGP’s and test regressions.

The results of an extensive Monte Carlo study are presented to study the small sample

behaviour of ADF tests when the t-sig general-to-specific procedure is used to select

the lag truncation parameter. Section 4 presents the results of an empirical illustration

where some tentative results are obtained only after a simple but somewhat detailed

univariate analysis. The final section draws the most important conclusions and briefly

discusses some routes for future research. A separate Appendix contains critical values

that may be useful for empirical research.

2Some recent examples include Lim and McAleer (1999), Mártin-Alvarez et al. (1999), Metin and

Muslu (1999) and Patterson (2000, pp. 295-9). In many other cases it is not clear whether the data

contain only weak deterministic seasonality or have been seasonally adjusted. Another questionable

example is provided in the work of Ng and Perron (2001), where GLS (local-to-unity) detrending of

inflation rate series is performed using a constant only.
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2 The (Non-) Similarity of DF Tests for Seasonal

Time Series

More than 15 years ago, in an illuminating paper, Dickey et al. (1986) provided a

straightforward answer to the question: Does the removal of seasonal means affect

the limiting distribution of the DF test statistic(s)? As is well known, their answer

was a clear: No! It does not. However, their result come up to be misinterpreted

by many practitioners, who considered it as an indifference statement as to whether

to include or not the set of seasonal dummy regressors in the test regression. Hence,

this section begins formulating a simpler question: Does the non-removal of seasonal

means affect the distribution of DF test statistics when the data contain deterministic

seasonality? The answer is: Yes! It obviously does, as the test regression must at

least account for all the deterministic components present in the DGP, and as follows

straightforwardly from the work of Kiviet and Phillips (1992), inter alia. Hence, a

further question must be posed: In what way?

Through this paper attention will be frequently focused on time series generated

by the model

xt = ∆ yt = µ+
4X

i=1

γiDit + ut, (1)

where yt typically denotes a logged transformed series, µ is a drift parameter,
P4

i=1 γi =

0, Dit (i = 1, 2, 3, 4) represent the usual set of seasonal dummy variables and {ut}
is a weakly stationary and invertible ARMA(p, q) process in the innovation sequence

{�t} ∼ iid(0, σ2), i.e., φ(L)ut = θ(L) �t, all the roots of φ(L) and θ(L) lying outside

the unit circle. Notice that ut may contain stochastic seasonality which we initially

assume to be stationary.

This equation corresponds to one of the basic models typically considered in the

literature on seasonality and it represents the standard model from which Miron and

his co-authors3 have derived their stylized facts about the seasonal cycle. And al-

though the importance of deterministic seasonality seems to have been overstated by

Miron, it appears that this model provides a good approximation to the behaviour

of many macroeconomic time series, particularly for those corresponding to quantity

3See, e.g., Barski and Miron (1989) and Miron (1994, 1996). See also Hylleberg (1994), Franses et

al. (1995) and Lopes (1999) for a critical appraisal of Miron’s work. Actually, Miron usually adopts

the parametrization xt = ∆ yt =
P4

i=1 αiDit + ut, placing no restriction on the αi parameters.

However, the parametrization adopted here is more convenient, as it allows separating the parameters

of the seasonal cycle from the overall drift (mean); cf. Ghysels and Osborn (2001, pp. 20-24).
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variables. Furthermore, even when {ut} is seasonally non-stationary, with φ(L) con-

taining factors such as (1+L) and/or (1+L2), deterministic seasonality is also usually

present at some extent [see Abeysinghe (1994) and Lopes (1999), inter alia].

To answer the previous question a simplified version of equation (1) was utilized

for the DGP, namely

∆yt =
4X

i=1

(−1)iδ Dit + εt, εt ∼ nid(0, 1), (2)

where the seasonal cycle depends on a single parameter (δ) and, without loss of gen-

erality, σε = 1 (as shown below, the relevant magnitude is the standardized seasonal,

Ks = δ/σε). Obviously, although providing a similar test with respect to the ini-

tial value (y0), the DFc(nd) or τc(nd) test statistic obtained from the OLS regression

yt = α+ ρyt−1 + vt, or

∆yt = α+ φ yt−1 + vt, (3)

where DFc(nd) = φ̂/σ̂φ̂, φ = 1− ρ, cannot provide a test for H0 : ρ = 1 (φ = 0) which

is similar with regard to the nuisance parameter(s) reflecting the seasonal cycle. In

order to achieve similarity, both exact and asymptotic, one must add the seasonal

dummy regressors to (3) and estimate the regression

∆yt =
4X

i=1

αiDit + ψ yt−1 + ωt. (4)

Then, the corresponding DFsd(≡ τsd = ψ̂/σ̂ψ̂) test statistic is also invariant to the

value of y0 because the unity vector lies in the space spanned by the columns of the

exogenous regressors.4 That is, this is a case where invariance of the unit root tests

dispenses the addition of a redundant regressor. However, when µ 6= 0 is added to

(2), invariance clearly requires including the usual linear trend term in (4).

The asymptotic answer to the previous question is provided through the following

result.

Proposition Assume that the data generation process is given by equation (2),

with y0 = 0, but that inference on the existence of an unit root is based on

equation (3) with the intercept term omitted. Then, as T →∞,

τ(nd) ⇒ [1 +K2
s ]
−1/2[

R 1
0
W (r)dW (r)

(
R 1
0
W 2(r)dr)1/2

− (K2
s/2)(

Z 1

0

W 2(r)dr)−1/2)],

4That is, using the obvious matrix notation ∆y = X α + ψy−1 + ω for equation (4), it is clear

that Mx y−1, where Mx = I −X 0(XX)−1X, does not depend on the α parameters; cf. Kiviet and
Phillips (1992).
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where ⇒ denotes weak convergence in distribution, Ks = δ/σε and W (r) repre-

sents a standard Wiener process defined on [0, 1].

This result follows straightforwardly from the proposition presented in Franses and

Haldrup (1994) [FH], where the distribution of DF tests for time series contaminated

by additive outliers (AO’s) is analyzed. In fact, the relation between equations (2) and

(3) is that the former implies the presence of peaks and troughs in all observations

which can be viewed as AO’s when the letter is considered. As the negative (−δ)
and positive (δ) “AO’s” occur with a “probability” (π =)1/2, the result stated above

is a very simple corollary of the theorem proved by FH 5. Moreover, when the test

regression (3) contains the intercept term (and whether y0 = 0 or not) the standard

Wiener process is replaced by a demeaned (standard) Wiener process. In the case

that the linear trend term is also included in (3), then a (demeaned and) detrended

Brownian motion process arises.

Hence, it is clear that:

i) when δ = 0 the limiting distribution is obviously the usual DF distribution;

ii) when δ 6= 0 the limiting distribution contains the nuisance parameters reflecting
the seasonal cycle and it is shifted to the left;

iii) moreover, this shift depends only on the standardized seasonal, Ks = δ/σε.

To gauge the adherence of this result to small samples, a Monte Carlo study was

performed using TSP 4.5 [Hall and Cummins (1999)]. Table 1 reports some fractiles

for the distributions of DFc(nd) and DFsd when the data are generated by equation

(2) and regressions (3) and (4) are used to test for a unit root. The following features

clearly emerge:

a) the numerical evidence closely agrees with the analytical based expectations,

the shift of the distribution to the left being perceptible even when Ks = 0.1

and T = 80 only, and becoming rather dramatic as Ks grows;

b) using T = 800 to approximate the asymptotic distribution, except for the 0.01

and 0.99 fractiles cases, our results for DFsd coincide with those of Fuller (1996,

table 10.A.2, p. 642); however, in small samples the (adequate) inclusion of the

5Similarly, the limiting distribution of T φ̂ is also easily obtained from the proposition proved in

FH. Notice also that for the non-differenced series only positive outliers occur with “probability”

(π =) 1/2. Actually, using FH’s framework, equation (2) results from considering the DGP as

yt = δδt + ut, ut = ut−1 + �t, with δt = 1 when t mod (2) = 0 and δt = 0 otherwise.
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seasonal intercepts produces also a clear shift of the distribution to the right.

While the reason why this effect occurs is obvious,6 it is also clear that currently

used small samples critical values are not strictly correct when one includes the

seasonal dummies in the set of the deterministic regressors. For this very reason,

in a separate appendix we provide the adequate critical values for the case where

the trend term is added to equation (4) (see table A.1).

Table 1. Fractiles of the distribution of Dickey-Fuller test statistics based on 50 000

Monte Carlo replications. The DGP is ∆yt =
P4

i=1(−1)iδ Dit + �t, �t ∼ nid(0, 1).
δ T 0.01 0.05 0.10 0.50 0.90 0.95 0.99

DFc(nd)

0.0 80 −3.52 −2.90 −2.59 −1.56 −0.42 −0.05 0.64

160 −3.47 −2.88 −2.57 −1.56 −0.43 −0.07 0.62

800 −3.46 −2.86 −2.58 −1.57 −0.45 −0.09 0.56

0.1 80 −3.53 −2.91 −2.60 −1.57 −0.43 −0.06 0.63

160 −3.49 −2.89 −2.58 −1.56 −0.44 −0.08 0.60

800 −3.47 −2.87 −2.59 −1.58 −0.45 −0.10 0.55

1.0 80 −4.76 −3.88 −3.43 −2.12 −0.99 −0.68 −0.11
160 −4.66 −3.83 −3.40 −2.12 −1.01 −0.70 −0.13
800 −4.57 −3.79 −3.39 −2.13 −1.03 −0.72 −0.17

5.0 80 −17.05 −13.80 −12.18 −7.43 −4.31 −3.72 −2.90
160 −16.68 −13.59 −12.05 −7.40 −4.32 −3.72 −2.86
800 −16.26 −13.40 −11.97 −7.41 −4.34 −3.76 −2.95

10.0 80 −33.62 −27.17 −23.97 −14.65 −8.51 −7.34 −5.79
160 −32.86 −26.79 −23.74 −14.58 −8.53 −7.36 −5.74
800 −32.07 −26.43 −23.61 −14.62 −8.55 −7.42 −5.83

DFsd

any 80 −3.42 −2.82 −2.51 −1.51 −0.38 −0.02 0.67

160 −3.43 −2.84 −2.53 −1.53 −0.41 −0.05 0.64

800 −3.45 −2.86 −2.57 −1.57 −0.44 −0.08 0.56

Note: whereas DFc(nd) is obtained from regression (3), DFsd results from regression (4)

Additionally, using unreported numerical results (available from the author), it is

also legitimate to conclude that:

6Intuitively, including the seasonal dummies is equivalent to reducing the sample size, as they

can be viewed as impulse dummies.
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c) the asymptotic prediction is remarkably accurate even for samples as small as

T = 80. In fact, for example, all the fractiles of the distribution of DFc(nd) for

the cases when (δ, σε) is (1/2, 1/2) and (1, 0.2) are identical to those presented

in Table 1 for δ = 1 and 5 respectively.

d) As Ks grows, besides shifting to the left, the distribution of DFc(nd) becomes

also flatter (see also figure 1 in FH).

e) All these features are also present when the trend term is added to equations

(3) and (4), the only effect being a slower rate of convergence of DFsd,t to the

asymptotic distribution. However, for DFct(nd) the small sample distributions

still match very closely the asymptotically based forecasts; for example all the

fractiles still coincide exactly for the cases mentioned in c) even when T is only

80.

3 Implications for Empirical Research

Having observed that neglecting deterministic seasonality has the same effect that un-

accounted additive outliers occurring in all observations, the implications that follow

for the properties of DF tests are obvious: spurious rejections of the unit root null will

arise and the problem may become rather dramatic when the standardized seasonal

is large. Intuitively, this is also simple to understand, as the unaccounted seasonal

cycle produces the wrong impression that in every observation there exists a “shock”

which has a purely transitory effect. When these “shocks” are large relatively to the

standard deviation of the real shocks spurious evidence for stationarity will emerge

very often.

3.1 The random walk case

For example, when the data is generated by equation (2) and equation (3) is used to

test for the unit root then, using common nominal 5% critical values7 for the case

when T = 80: a) when Ks = 0.1 the estimated real size of the DFc(nd) test statistic,

based on 10 000 replications, is 5.12%; b) however, whenKs = 1, the unit root null will

be rejected in about 20.45% of the times; c) for the case of strong seasonal patterns

as those corresponding to Ks = 5 the estimated real size is 99.13%.

7Except when explicitly mentioned, all over this paper we have used the critical values derived

from the response surface analysis of MacKinnon (1991) as these seem to be the most popular among

practitioners.
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As another example, we have considered the case when the seasonal cycle is given

by −δ1 = δ4 = 1 and δ2 = −δ3 = 0.5. When T = 160 the estimated actual size of

DFc(nd) is 13.6%. Since, on the other hand, when δ = 0.75 in (2) the estimated actual

size is 12.76%, the simple DGP adopted here seems to provide a good approximation

to more heterogeneous seasonal patterns provided that δ is close to
P4

i=1 |δi|/4.
Finally, for the random walk with drift case (µ 6= 0), when T = 80 the estimated

actual sizes for the cases Ks = 0.1, 1 and 5 are 5.07%, 32.15% and 100%, respec-

tively. That is, for most macroeconomic time series the over-rejection problem is even

more serious than for those cases where the concern is on (non-) stationary around a

constant level.

3.2 More realistic settings I: size

Fortunately, DGP’s such as the one of equation (2) are considered only in very special

circumstances, implying also that testing for an autoregressive unit root is rarely

based on equations (3) and (4). That is, a more realistic setting is the one provided

by

ψ(L)∆yt = µ+
4X

i=1

(−1)i δ Dit + θ(L)εt, (5)

where ψ(L) may contain some root(s) on the unit circle but not equal to unity (i.e.,

only seasonal unit roots are allowed).

To cope with the nuisance parameters governing the additional autocorrelation,

the “never-mind-deterministic-seasonality-practitioner” is assumed to base inferences

on the regression

∆yt = α+ β t+ φ yt−1 +
kX

j=1

λj∆yt−j + �nd,t, (6)

where k represents the lag truncation parameter, which we assume to be estimated

using the general-to-specific (GS) t-sig modelling strategy, based on 5% (asymptotic)

level tests, recursively performed on the λj parameters. Other lag length selection

procedures could have been considered but, following the recommendations in Camp-

bell and Perron (1991), Hall (1994) and Ng and Perron (1995), the t-sig procedure

seems to be the most popular in empirical research. The corresponding τct(nd) statistic

(φ̂/σ̂φ̂) is denoted with ADFct(nd).

On the other hand, the investigation on the finite sample size performance uses

as benchmark case the statistic ADFsd,t (τsd,t = ψ̂/σ̂ψ̂) produced by the “correct”
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regression

∆yt =
4X

i=1

αiDit + β∗t+ ψ yt−1 +
kX

j=1

γj∆yt−j + �sd,t, (7)

where, using a somewhat loose notation, we also denote with k the lag truncation

parameter. However, it should be clear that while this parameter is also selected

using the GS, t-sig 5% procedure, there is no presumption that it equals the k of

equation (6). Actually, the results of Taylor (2000) suggest that the k estimated

using equation (6) will tend to exceed the one resulting from equation (7).

In both cases, it is also assumed that the researcher uses a “seasonally modified”

deterministic rule procedure for setting the upper bound for k, kmax. Namely, kmax =

4, 8 and 12 were employed for T = 48, 80 and 160 respectively.8 Following an almost

universally adopted practice kmin is always set to zero.

The DGP’s that we have considered for investigating the small sample size prop-

erties are the following:

DGP1: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ1εt−1, (8)

DGP2: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ4εt−4, (9)

DGP3: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ1εt−1 − θ4εt−4, (10)

DGP4: yt = µ+ yt−4 +
P4

i=1(−1)iδ Dit + εt, (11)

DGP5: (1 + 0.9L)(1 + 0.4L2)∆yt = µ+
P4

i=1(−1)iδ Dit + εt. (12)

Given the seminal work of Schwert (1989) and the research that followed, equation

(8) dispenses detailed comments 9. Model (9) is the “seasonal twin” of DGP1 and

DGP3 combines the features of DGP1 and DGP2, producing a gap in the autocorre-

lation function of the differenced series at lag 2.

Besides the nonseasonal unit root, DGP4 contains all the seasonal unit roots and

therefore reflects the concerns of GLN, Franses (1996), Rodrigues and Osborn (1999)

and Rodrigues (2000). Preliminary numerical evidence on this case has been reported

8These seem what we might call as resulting from a “consensual” or “popular” ls procedure, where

the l procedures presented by Schwert (1989) are adapted to the quarterly case. Two features must

be noticed: a) the length of the autoregressions is not really a multiple of four, as they are equal to

5, 9 and 13, respectively; b) for the T = 48 and 80 cases the upper bounds for the augmenting lag

lengths do not satisfy Said and Dickey (1984) condition that kmax/T
1/3 → 0 as T → ∞. However,

these features have a negligible impact on the numerical evidence.
9However, see also Pantula(1991). Interestingly enough, it should be pointed out that the

three time series that Schwert refers as motivating examples are monthly time series not season-

ally adjusted.
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in Lopes (2002). On the other hand, DGP5 corresponds to a near semiannual unit

root case, while the complex roots are distant from the unit circle. The motivation

for considering this case arose from the observation that the seasonal unit root most

commonly reported in empirical research is the root −1. Moreover, as Ghysels and
Osborn (2001, p. 92) point out, a changing seasonal pattern is more likely to involve

adjacent quarters then, say, reverting the roles of summer and winter. That is, the

root −1 is a priori more plausible than the complex roots.
Several other ARIMA models were also considered as DGP’s but the evidence that

we got adds little to the one which is presented. Therefore it is omitted. The same

argument applies to the zero drift DGP/no trend in regression case. Moreover, though

we have considered Ks = δ = 0, 0.1, 1, 5 and 10, only the cases Ks = δ = 0, 1 and 5

are reported, the remaining cases also adding little evidence to the analysis. Hence,

it must be noted that table 2 contains only the most important numerical evidence.

As the main purpose is the evaluation of commonly used procedures, the 5% nominal

critical values were again taken from MacKinnon (1991), both for the ADFct(nd) and

ADFsd,t statistics.

Hence, the main question seeking an answer is now the following: Does the GS,

t-sig (5% level) method robustifies unit root inferences based on a non-similar test

regression? Before observing table 2, where the answer is provided, one must take

into consideration that:

i) the conjecture is that adding lags of the dependent variable to the test regression,

while possibly leaving the asymptotic distribution unchanged, might alleviate

the spurious stationary evidence problem in small samples as those regressors

might approximate the effect of the omitted seasonal intercepts;

ii) recent research by Taylor (2000) has highlighted the shortcomings of the most

common lag selection methods – and particularly of the GS t-sig procedure

– when the test regression contains deterministic regressors, even when their

presence is necessary to render the tests similar. That is, the inclusion of such

regressors produces a systematic finite sample bias towards zero in the estimators

of the autoregressive augmenting parameters, thereby leading to lag structures

which are too much parsimonious [see also Ng and Perron (2001)]. In turn, the

effect of this under-fitting is well known for the DGP’s that we have considered:

poor size properties in small samples.

Then, the most salient features concerning the small sample size behaviour emerg-

ing from table 2 are the following:
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Table 2. Size estimates of ADFct(nd) and ADFsd,t at the nominal 5% level using the GS

t-sig 5% strategy(based on 10 000 replications)

T (kmax) 48(4) 80(8) 160(12)

δ θ1 θ4 ADFct(nd) ADFsd,t ADFct(nd) ADFsd,t ADFct(nd) ADFsd,t

DGP1: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ1εt−1
0 0.4 – 0.383 0.312 0.244 0.222 0.131 0.122

0.8 – 0.882 0.860 0.707 0.683 0.465 0.446

1 0.4 – 0.146 0.312 0.102 0.222 0.076 0.122

0.8 – 0.692 0.860 0.456 0.683 0.210 0.446

5 0.4 – 0.138 0.312 0.096 0.222 0.075 0.122

0.8 – 0.501 0.860 0.280 0.683 0.151 0.446

DGP2: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ4εt−4
0 – 0.4 0.215 0.181 0.180 0.152 0.116 0.101

– 0.8 0.323 0.300 0.261 0.240 0.274 0.257

1 – 0.4 0.356 0.181 0.187 0.152 0.104 0.101

– 0.8 0.614 0.300 0.456 0.240 0.474 0.257

5 – 0.4 0.406 0.181 0.164 0.152 0.101 0.101

– 0.8 0.676 0.300 0.455 0.240 0.469 0.257

DGP3: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ1εt−1 − θ4εt−4
0 0.4 0.4 0.582 0.518 0.648 0.594 0.617 0.585

0.8 0.8 0.375 0.338 0.274 0.240 0.127 0.117

1 0.4 0.4 0.453 0.518 0.369 0.594 0.341 0.585

0.8 0.8 0.335 0.338 0.187 0.240 0.116 0.117

5 0.4 0.4 0.558 0.518 0.330 0.594 0.326 0.585

0.8 0.8 0.425 0.338 0.177 0.240 0.109 0.117

DGP4: yt = µ+ yt−4 +
P4

i=1(−1)iδ Dit + εt

0 – – 0.045 0.076 0.061 0.057 0.064 0.061

1 – – 0.053 0.041 0.078 0.055 0.072 0.061

5 – – 0.011 0.040 0.075 0.056 0.060 0.060

– – DGP5: (1 + 0.9L)(1 + 0.4L2)∆yt = µ+
P4

i=1(−1)iδ Dit + εt

0 – – 0.264 0.289 0.145 0.171 0.070 0.074

1 – – 0.164 0.284 0.089 0.167 0.067 0.075

5 – – 0.182 0.204 0.094 0.141 0.068 0.069
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a) except for the seasonal unit roots case (DGP4), a clear and strong picture of

serious size distortions immediately arises. However, it should be also clear

that the reasons which lie behind this behaviour are very different for the two

statistics.

b) As expected, the inflated rejection frequencies tend to decrease as T grows. This

is a reflection of the consistency of the GS t-sig method, which provides little

comfort for most practitioners.

c) The (non-)similarity of the (ADFct(nd)) ADFsd,t test statistic(s) is also clear but

for the latter this is a two-edged-knife, particularly in the cases of DGP’s 1, 3

and 5. In other words, though performing better than the ADFct(nd) statistic in

56% of the cases of table 2, the ADFsd,t statistic is obviously less robust to the

problem mentioned in ii) above and, as the sample size grows, the under-fitting

problem vanishes more slowly than for this one 10.

d) Although alleviating somewhat the size distortion problem, the t-sig method

is a poor remedy for the non-similarity of ADF tests neglecting determinis-

tic seasonality. Actually, except for the case of DGP5, even when there is no

such behaviour in the data, the ADFsd,t statistic is not so badly oversized as

ADFct(nd). Furthermore, for the (unreported) case of the random walk (e.g.,

DGP1 with θ1 = 0), size distortions are very small for the latter but they are

relatively large for the ADFct(nd) statistic, particularly when T = 48 and 80.

The exception mentioned in a) deserves some attention, the t − sig method per-

forming remarkably well in the case of DGP4. Following Rodrigues (2000), it should

be noted that equation (11) can be written as

∆yt = µ+ ϕyt−1 + φ1∆yt−1 + φ2∆yt−2 + φ3∆yt−3 +
4X

i=1

(−1)iδ + εt,

where ϕ = 0 and φ1 = φ2 = φ3 = −1 and the corresponding regressors are non-
stationary. Hence, their t-statistics, and particularly the one of φ3, do not follow a

standard distribution. Therefore, using the critical values taken from the standard

normal distribution leads to a test of H0 : φ3 = 0 whose power converges very quickly

to one as T grows. So quickly, indeed, that even in relatively small samples that null is

10To further substantiate this argument, additional (unreported) numerical evidence is available

concerning DGP5: average estimated lag lengths, estimated coefficients and power estimates for the

t-test on the third augmenting lag coefficient for the regression with k = 3.
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always rejected. That is, initiating the t-sig procedure with kmax ≥ 3 invariably leads
one to stop at least when k = 3, allowing to capture the presence of the non-stationary

regressors and thereby ensuring the good size behaviour of the tests.

3.3 More realistic settings II: power

Obviously, a study of the power performance of both statistics is also helpful for

applied researchers. Hence, the question is now the following: Is the poor remedy

provided by complementing the non-similar test regression with the GS t-sig method

cheap, as it should be? The answer is: No, clearly not!, as the numerical evidence

presented below shows.

Before proceeding, one explanation must be provided. While it is quite obvious

that power must be adjusted for size in the case of ADFct(nd), it is not so clear that the

same correction should be applied over ADFsd,t. However, Taylor (2000) has already

pointed out this problem. That is, though Hall (1994) and Ng and Perron (1995)

showed that most lag selection data based methods do not asymptotically affect the

distribution of ADF statistics, the case changes completely for finite samples. As

Taylor (2000) emphasizes, published critical values assume that k is fixed and do not

take into account neither the values of kmax and kmin nor the significance level used

in the GS t-sig method. Therefore, we have generated the finite sample critical values

for some cases and, since these are useful for empirical research, we report them in

the Appendix (table A.2 11).

For the power performance analysis the following DGP’s were considered:

DGP6: yt =
P4

i=1(−1)iδ Dit + 0.01 t+ ρ yt−1 + εt, (13)

DGP7: yt =
P4

i=1(−1)iδ Dit + 0.01 t+ φ4 yt−4 + εt, (14)

DGP8: (1− φ1L)(1 + 0.9L)(1 + 0.4L
2)yt =

P4
i=1(−1)iδ Dit + 0.01 t+ εt. (15)

While DGP6 and DGP7 are “classical”, DGP8 seems to be the most empirically

relevant for our purposes. That is, there is again a near-semi-annual unit root (−1)
but the complex (annual) roots lie far from the non-stationary region.

Then, what emerges from table 3 is that the remedy, although poor, is indeed very

expensive: the estimated power of ADFct(nd) is higher than the one of ADFsd,t in only

11.1% of the cases and in most of these the gain is insignificant. Unsurprisingly, almost

all of these cases occur when Ks = δ = 0. Contrasting with this, the estimated gains

11As can be seen, our critical values are much different from those obtained from MacKinnon

(1991) and differ also from those in Cheung and Lai (1995), both of which assuming a fixed k.
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Table 3. Size-adjusted and estimated power (for 5% level tests) of ADFct(nd) and ADFsd,t
using the GS t-sig (5%) lag selection method (based on 10 000 replications)

[T ](kmax) ρ(φ4)[φ1]

δ ADFct(nd) ADFsd,t ADFct(nd) ADFsd,t ADFct(nd) ADFsd,t

DGP6: yt =
P4

i=1(−1)iδ Dit + 0.01 t+ ρ yt−1 + εt

0.95 0.90 0.85

[80](8)

0 0.069 0.073 0.123 0.124 0.211 0.209

1 0.070 0.072 0.108 0.123 0.161 0.209

5 0.067 0.071 0.104 0.123 0.149 0.210

[160](12)

0 0.124 0.122 0.344 0.339 0.615 0.607

1 0.105 0.123 0.215 0.339 0.332 0.608

5 0.102 0.124 0.208 0.341 0.321 0.608

DGP7: yt =
P4

i=1(−1)iδ Dit + 0.01 t+ φ4 yt−4 + εt

0.90 0.80 0.70

[80](8)

0 0.041 0.048 0.055 0.064 0.080 0.094

1 0.035 0.048 0.043 0.064 0.063 0.093

5 0.045 0.047 0.067 0.062 0.068 0.089

[160](12)

0 0.061 0.068 0.124 0.134 0.246 0.261

1 0.056 0.066 0.115 0.133 0.223 0.262

5 0.056 0.067 0.143 0.134 0.238 0.259

DGP8: (1− φ1L)(1 + 0.9L)(1 + 0.4L
2)yt =

P4
i=1(−1)iδ Dit + 0.01 t+ εt

0.95 0.90 0.85

[80](8)

0 0.146 0.198 0.239 0.320 0.360 0.464

1 0.071 0.197 0.118 0.317 0.193 0.461

5 0.077 0.164 0.133 0.262 0.218 0.396

[160](12)

0 0.117 0.137 0.314 0.341 0.585 0.604

1 0.102 0.137 0.274 0.340 0.509 0.604

5 0.104 0.131 0.283 0.334 0.540 0.602
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in power resulting from accounting for deterministic seasonality are not only much

more pervasive but, above all, they are much more significant. For example, for the

case of DGP8 with Ks = δ = 1 the power gains are, in relative terms, always above

100% and, in two cases where power is more difficult to obtain, above 150%. That

is, accounting for the “seasonal AO’s” really pays in power terms. Obviously, the

reverse side of the coin of the previous subsection bears the liability for this: the non-

removal of the “AO’s” through the seasonal intercepts tends to produce more liberal

lag lengths which, in turn, have the usual implication in terms of power performance.

4 Empirical Illustration

To illustrate empirically the previous analysis a simple example is provided concern-

ing some Portuguese economic time series (see Table 4) 12. Since the only purpose

is to illustrate that analysis, we neglect the possibilities of double unit roots, outliers

(besides the “seasonal” ones), structural breaks (including seasonal mean shifts), het-

erocedasticity, non-stationary stochastic seasonality and non-linearities. The logic is

also very simple: a) when the two estimated lag truncation parameters are close we

prefer using the p-value computed for the ADFsd,t statistic; b) otherwise, when the

k’s are somewhat dissimilar, a more thoughtful but simple investigation is performed

using ARIMA modelling.

While for most of the series the evidence for a unit root is about the same, whether

or not one considers deterministic seasonality, for three of them interesting divergen-

cies occur. Moreover, the discrepancies could be even larger if asymptotic p-values,

that do not take into consideration the presence of data based lag augmentation, were

used.

The series for private and public consumption, GFCF, exports, imports and in-

flation are in the first group. However, a tendency for the procedure that accounts

for deterministic seasonality to produce evidence more supportive of the unit root

hypothesis is observed. The remaining three series seem to illustrate the analysis of

subsection 3.2., i.e., it appears that they provide examples of the spurious rejection

situation.

Since the selected lag length is the same, the case of the production index for the

electricity industry is the most straightforward: a dramatic decision reversal occurs

when the practitioner is sticked to the popular 5% level rule.

12All the series were collected using the publications from I.N.E. (Instituto Nacional de Estat́ıstica).

They are obviously available from the author on request.
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Table 4. Empirical results for some Portuguese economic time series

sample kmax ADFsd[t] (k) [p] ADFc[t](nd) (k) [p]

GDP 77:1—98:4 8 −2.02 (1) [0.59] −3.29 (6) [0.06]
Priv. Cons. 77:1—98:4 8 −2.49 (4) [0.35] −2.67 (4) [0.25]
Pub. Cons. 77:1—98:4 8 −2.20 (5) [0.50] −2.22 (5) [0.51]
GFCF 77:1—98:4 8 −2.16 (8) [0.52] −2.23 (8) [0.48]
Exports 60:1—98:4 12 −2.92 (7) [0.18] −2.92 (7) [0.15]
Imports 60:1—98:4 12 −2.89 (12) [0.19] −2.94 (12) [0.13]
Inflation 74:2—00:4 12 −1.79 (3) [0.38] −1.87 (12) [0.37]
IPI—Total 74:1—95:4 8 −2.36 (4) [0.41] −3.09 (8) [0.10]
IPI—Electr. 68:1—98:4 12 −3.44 (12) [0.07] −3.47 (12) [0.04]

Notes: 1) “IPI” means industrial production index; 2) with the exception of the inflation

rate, all the series were previously logarithmized; 3) the p-values for the ADFsd[t] statistics

were estimated using Monte Carlo simulations based on 50 000 replications; 4) the p-values

for the ADFc[t](nd) statistics were estimated using a routine built in TSP 4.5 based on Cheun

and Lai(1995).

In a certain sense, the other two cases are even much stronger: neglecting deter-

ministic seasonality in the GDP and IPI—total series drastically reduces the amount

of evidence supporting the presence of a unit root. Moreover, a closer inspection re-

veals that in both cases the ADFct(nd) statistics are (presumably) producing spurious

evidence for trend stationarity. In fact, provided deterministic terms are properly con-

sidered, Box-Jenkins analysis clearly supports the shorter autoregressions associated

with the ADFsd,t statistics. Simply allowing that longer autoregressions cope with the

similarity problem is not enough in these cases.

5 Concluding Remarks

The answer to the title question is now clear: We certainly should care! The reasons

are also quite obvious. We should not neglect deterministic seasonality because: a)

otherwise tests will not be invariant to the parameters of the seasonal cycle; b) as

a consequence, in the case of the simplest I(1) process, i.e., the random walk, the

implications for the size properties of the tests may be disastrous, and the general-

to-specific t-sig lag selection method is a poor remedy for the problem in this case

and in more empirically relevant settings; c) moreover, although the remedy is poor,

it is very expensive too because size-adjusted power may be much lower than in the
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benchmark case of the similar test.

Therefore, the main recommendation for empirical work is a straightforward ex-

tension of the one provided by Ghysels, Lee and Noh (1994, p. 432) concerning tests

for seasonal unit roots: the inclusion of the seasonal dummies in the test regressions

“... appears to be a prudent decision in empirical applications in order to perform tests

for” both the nonseasonal and the “seasonal unit roots”. This is because the com-

mon perception that deterministic seasonality has nothing to do with testing for the

long-run properties of the data is incorrect. Not accounting for its presence leads to

non-similar Dickey-Fuller test statistics, plagued with problems of spurious evidence

for stationarity and a rather poor power behaviour.

This paper has also left some routes open for further research. In particular,

concerning lag selection methods, our numerical evidence simply confirms and extends

the one presented by Taylor (2000) on the size properties of Dickey-Fuller tests: in

small samples and when deterministic regressors are required for similarity, the GS

t− sig method may perform very poorly. The following alternative methods seem to

deserve attention:

a) the two-stage procedure suggested in Taylor (2000), where in the first stage the

test regression is estimated omitting the deterministic regressors and selecting

the lag truncation order using a data-based procedure. In the second stage the

estimated k is imposed on the similar test regression.

b) Adapting the ADFGLS tests proposed by Elliot, Rothenberg and Stock (1996)

to the case of seasonally observed variables, possibly using the modified infor-

mation criteria suggested by Ng and Perron (2001) to select the lag truncation

parameter.

Concerning a), preliminary numerical evidence where we have omitted only the sea-

sonal intercepts indicates that although alleviating the size distortion problem in some

cases, in many other situations, and particularly when T = 48 and 80 only, significant

over-rejections still subsist, and the procedure may behave worse than the ADFsd,t
statistics. Moreover, exact similarity with respect to the parameters of the seasonal

cycle is not strictly achieved. Suggestion b) seems to be more promising, both in terms

of power and size performance. However, the values of the parameters for the local-

to-unity GLS detrending need to be determined for the case of seasonally observed

data.
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6 Appendix

Table A.1. Fractiles of the distribution of Dickey-Fuller test statistic

τsd,t (DFsd,t) based on 50 000 Monte Carlo replications

T 0.01 0.05 0.10 0.50 0.90 0.95 0.99

48 −3.94 −3.32 −3.02 −2.04 −1.11 −0.80 −0.19
100 −3.94 −3.36 −3.07 −2.11 −1.17 −0.87 −0.25
160 −3.94 −3.37 −3.10 −2.14 −1.19 −0.89 −0.27
400 −3.95 −3.39 −3.11 −2.16 −1.24 −0.93 −0.31
800 −3.95 −3.40 −3.12 −2.17 −1.24 −0.92 −0.29
2000 −3.99 −3.42 −3.13 −2.18 −1.25 −0.94 −0.30

Table A.2. Finite sample critical values for the ADFsd and ADFsd,t statistics using the

GS t-sig, 5% level method (based on 50 000 replications)

T (kmax; kmin) 48 (4;0) 80 (8;0) 160 (12;0)

ADFsd ADFsd,t ADFsd ADFsd,t ADFsd ADFsd,t
1% −3.64 −4.32 −3.60 −4.32 −3.57 −4.19
5% −2.93 −3.60 −2.96 −3.61 −2.92 −3.55
10% −2.59 −3.24 −2.63 −3.26 −2.61 −3.24

Note: T denotes the available sample size (and not the regression length).
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