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1. Introduction

This paper examines whether UK firms that locate innovative activity in the USA

benefit more than other UK firms from knowledge spillovers originating from US

R&D. Several recent studies have found that gaining access to new technologies is

an increasingly important reason for firms to locate R&D abroad, and that, as the

technological leader in many industries, the USA is one of the principal recipients

of this kind of R&D investment by subsidiaries of foreign firms.1 Evidence that

knowledge spillovers are partly geographical in scope provides a rationale for such

‘technology sourcing’ behaviour in order to overcome geographical barriers.2 In

this context the flow of knowledge from foreign R&D subsidiaries of domestic

multinationals back to the domestic economy may play an important role in the

diffusion of new technologies and productivity growth.

This has interesting implications for government policy. For example, govern-

ments commonly identify increasing the amount of R&D perfomed domestically

as a policy goal, but a more relevant focus may be the amount of R&D performed

by domestic firms, especially if this is located close to the world technological fron-

tier. If so, a policy such as an R&D tax credit that encourages firms to repatriate

R&D activity may be partly counterproductive.

This paper has two main advantages over most previous studies of international

knowledge spillovers. First it uses a firm-level panel data set, which allows for

better modelling of heterogeneity between firms than industry or country-level

1See for example von Zedtwitz and Gassman (2002) and Serapio and Dalton (1999)
2See for example Jaffe, Trajtenberg and Henderson (1993) and Keller (2002)
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studies. Secondly, and more importantly, it uses information from patent data on

the location of inventors and patent citations to create a geographical measure

of firms’ innovative activity. This provides a specific channel through which to

identify international knowledge spillovers associated with technology sourcing.

The structure of this paper is as follows. Section 2 discusses two key motiva-

tions for our approach in the context of previous literature on knowledge spillovers.

Section 3 presents the basic model and Section 4 describes the data. Section 5

explains our methodology and presents the empirical results, and a final section

concludes.

2. Motivation

There are two key motivations behind our empirical approach, one empirical and

one concerning the identification of knowledge spillovers. We discuss each in turn.

2.1. Empirical motivation

Several recent studies of the bahaviour of multinational firms have suggested that

gaining access to new technologies is an increasingly important motivation for

firms locating R&D activity abroad, and especially in the USA. Serapio and Dal-

ton (1999) argue that much of the globalisation of innovative activity has involved

foreign firms locating R&D activities in the USA in order to benefit from tech-

nology sourcing at the leading edge of technological innovation: “Foreign par-

ent companies, particularly in the drugs/biotechnology and electronics industries,

have established or acquired foreign R&D laboratories in the US in order to gain
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access to science and technology, and enhance their global capabilities for tech-

nology development and innovation.” They document the fact that UK firms are

a particularly significant part of this development, with the third highest R&D

expenditures in the USA in 1996 of all foreign countries.

This interpretation of foreign R&D investment is in contrast with earlier inter-

pretations which focussed on the importance of adapting technologies developed

at home to the conditions of the foreign market.3 Other research has found that

firms location decisions differ between the "research" aspect of R&D and the "de-

velopment" aspect. For example, von Zedtwitz and Gassmann (2002) identify four

archetypes of R&D internationalisation based on whether research, development

or both are internationally dispersed. They find that motivations for interna-

tionalising research are largely driven by the desire to access new technologies,

while motivations for internationalising development are usually associated with

adapting existing products and/or concepts. In this paper we attempt to use in-

formation from patent citations to capture firms’ different motivations for locating

R&D in the USA.

Much recent research, especially work using patent citations, suggests that

technology sourcing may be a plausible mechanism for reducing the geographical

localisation of knowledge spillovers. Jaffe et al (1993), and Jaffe and Trajtenberg

(1998), find that even after controlling for other factors, patents whose inventors

reside in the same country are typically 30% to 80% more likely to cite each other

than inventors from other countries, and that these citations tend to come sooner.

3See Le Bas and Sierra (2002) for a discussion
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They also find that localisation does fade over time, but only very slowly.

Singh (2003) uses patent citations to investigate the role of multinational sub-

sidiaries in knowledge diffusion. He finds that greater MNC subsidiary activity

increases cross-border knowledge flows between the host country and the the MNC

home base, but the MNC home base gains more than domestic firms in the host

country. Branstetter (2003) uses patent citations to measure the role of foriegn

direct investment by Japanese firms in the USA in mediating flows of knowledge

between the two countries. He finds that knowledge spillovers received by the

investing Japanese firms tend to be strongest via R&D and product development

facilities. Spillovers from from investing Japanese firms to the USA flow most

strongly through greenfield affiliates in which Japanese firms are deploying supe-

rior technology or managerial practices.

However, we are aware of no studies that attempt to find empirical evidence for

technology sourcing in terms of its effects on firm-level productivity. We believe

that the information from firms’ patents on inventor location and citations used in

this study provides an ideal channel for identifying knowledge spillovers associated

with technology sourcing.

2.2. Identification of knowledge spillovers

The second key motivation behind our empirical approach concerns the economet-

ric identification of knowledge spillovers. Essentially, the dominant approach to

estimating knowledge spillovers suffers from a serious identification problem that

is not always sufficiently discussed, and is rarely addressed.
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The conventional approach follows Griliches (1979) by including a measure

of some external knowledge pool in a production (or cost) function framework.

The dependent variable is usually some measure of firm productivity, or it can be

some measure of firms’ innovative output, constituting a knowledge production

function. Aside from many problems associated with the estimation of production

functions, the most commonly-cited difficulty for identification of spillovers is that

the "spillover pool" of outside knowledge available to a firm must be specified a

priori. This problem is eloquently summed up by Griliches (1992): “To measure

[spillovers] directly in some fashion, one has to assume either that their benefits

are localised in a particular industry or range of products or that there are other

ways of identifying the relevant channels of influence, that one can detect the path

of the spillovers in the sands of the data”.

Most studies address this problem by assuming that a firm is more likely to

benefit from the R&D of other firms that are ‘close’ to it in some technological

and/or geographical sense. In these models the ‘spillover pool’ available to firm i

is equal to:

Gi = ΣjwijRj (2.1)

where wij is some ‘knowledge-weighting matrix’ applied, for example, to the

R&D expenditures of other firms Rj.

The literature contains many different approaches to constructing this matrix.

Perhaps the simplest is to assume that wij is equal to one if the firm is the same

6



industry and zero otherwise. Another method, suggested by Griliches (1979)

and first used in Jaffe (1986), is to use firm-level data on patenting by class of

patent, or sometimes the distribution of R&D spending across product fields,

to locate firms in a multi-dimensional technology space. A weighting matrix is

then constructed using the uncentered correlation coefficients between the location

vectors of different firms.

However, these approaches to estimating spillovers suffer from another funda-

mental identification problem. This is that it is not easy to distinguish a spillovers

interpretation from the possibility that any positive results are “just a reflection

of spatially correlated technological opportunities” (Griliches, 1996). In other

words, if new research opportunities arise exogenously in a firm’s technological

area, then it and its technological neighbours will do more R&D and may improve

their productivity, an effect which may be erroneously picked up by a spillover

measure.

This issue is discussed by Manski (1991) under the general title “the reflection

problem”. True knowledge spillovers correspond to an endogenous social effect,

in the sense that an individual outcome (e.g. productivity) varies with the be-

haviour of the group (e.g. R&D spending). This can be differentiated from an

exogenous social effect, whereby an individual outcome varies with the exogenous

characteristics of the group, or a correlated effect whereby individuals in the same

group tend to have similar outcomes beacuse they have similar characteristics

or face similar environmental influences. Identification of endogenous effects is

not possible unless prior information is available with which to specify the com-
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position of reference groups. This is the role played by a knowledge weighting

matrix, or even a simple industry-level measure of the spillover pool. However,

even if this information is available, identification is not possible if the variables

defining reference groups are functionally related to variables that directly affect

outcomes. This is quite likely to be the case for many of the approaches found in

the literature. For example, technological closeness is likely to be correlated with

exogenous technological opportunity, and firms in the same industry are likely to

be subject to similar supply or demand shocks. Thus the task for anybody trying

to identify knowledge spillovers is to find a set of variables with which to define

firms’ reference groups that are not related to unobserved variables that directly

affect the outcomes being measured.

3. The basic model

The basic approach follows Griliches (1979) and many subsequent papers by in-

cluding measures of the external knowledge stock available to the firm in a firm-

level production function. Thus we assume that the firm’s value added can be

written as follows

Yit = Q(Xit, Git) (3.1)

where Yit is real value added for firm i in year t, Xit is a vector of the firm’s own

inputs including labour, capital and the firm’s own knowledge stock accumulated

by doing R&D, and Git is the external knowledge stock available to the firm.
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As discussed above, a key assumption is how to define Git. Because we want to

identify geographical aspects of spillovers we assume that Git is composed of a

domestic and a foreign component, and do not restrict the response of the firm’s

value added to each component to be the same.

Git = (Dit, Fit) (3.2)

Yit = Q(Xit, Dit, Fit) (3.3)

The key innovation is that we allow the elasticity of value added with respect

to the foreign and domestic external knowledge stocks to depend on a measure of

the geographical location of the firm’s innovative activity. So we have

∂Yit
∂Dit

Dit

Yit
= d(WD

i ) (3.4)

∂Yit
∂Fit

Fit

Yit
= f(WF

i ) (3.5)

where WD
i and WF

i are measures of the amount of the firm’s innovative activity

that is located at home or abroad respectively.

The most important aspect of our basic model is that the location measures

allow identification of knowledge spillovers associated with technology sourcing in

a way that should be less susceptible to the Manski-Griliches critique discussed

earlier. While many studies claim identification of knowledge spillovers in this

context from a positive response of value added to the external spillover pool, we
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only infer the existence of spillovers if the magnitude of that response depends

positively on a direct proxy for a channel of knowledge transfer; in other words

only if

∂f(WF
i )

∂WF
i

> 0 (3.6)

A positive response of value added to the spillover pool could be due to a

spurious "correlated effect" if the variables used to define the spillover pool are

related to unobserved variables that directly affect value added. Inferring the

existence of knowledge spillovers simply from an observed positive response thus

depends on the assumption that no such relationship between the two types of

variables exists. In our approach identification depends only on the much weaker

assumption that the nature of this relationship does not depend on our measure

of the geographical location of innovative activity.

A concern remains thatWD
i andW

F
i are choice variables for the firm, and may

thus be correlated with firm or industry-level technological shocks in a way that

undermines our identification strategy. We have no exogenous instruments for the

location of firms’ innovative activity. However, we use pre-sample information to

construct WD
i and WF

i . This ensures that they are not affected by technology

shocks that also directly affect firm-level outcomes during the sample period.
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4. Data

In order to implement our empirical strategy we need to measure three types of

information: the location of firms’ innovative activity, firms’ productivity perfor-

mance, and the domestic and foreign spillover pools available to firms. To do this

we use three types of data source: data on patenting at the US Patent Office,

firm accounts data, and OECD data on industry level R&D expenditure. We now

describe the sources of these three types of data.

4.1. Patent data

The IFS-Leverhulme database used in this paper is a combination of two datasets.

Full details of the matching between the datasets can be found in Bloom and Van

Reenen (2000), and the process is sketched in the Appendix at the end of this

paper. The first dataset is the NBER patent citations data file which contains

computerised records of over two million patents granted in the USA between 1901

and 1999. This is the largest electronic patent dataset in the world. The second

dataset is the Datastream on-line service which contains accounts of firms listed

on the London Stock Exchange over 1968-2000. The initial sample is all firms

existing in 1985 with names starting with the letters A-L, plus any of the top 100

UK R&D performers not already included, in order to maximise the number of

patents matched to firms. This gives 415 firms.

The intersection of the two datasets gave 266 firms who had taken out at

least one patent between 1975 and 1998, categorised by date of application. The
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reason for restricting our attention to patents applied for after 1975 is that data

on citations is only available for patents applied for after this date.

4.1.1. Inventor location

The main information that we use from the patent data is the country address

of the inventor(s) listed on the patent application. Table 1 lists the primary

inventor’s country for the 63,733 patents matched to the 266 UK firms. For

comparison, the final column lists the share of the primary inventor’s country for

the entire patent database of all patents registered in the USA between 1975 and

1998 (more than 2 million patents). As expected the share of UK inventors is

much higher for the patents owned by the 266 UK firms (31.0% in column (2))

than for the whole sample of patents (3.0% in column (3)). Nevertheless, the US

has the highest share of inventors even for the patents owned by the 266 UK firms

(45.1%). The high share of patents owned by the 266 UK firms but invented in

the USA is probably partly due to home-country bias from using a US dataset,

but also reflects the county’s strong innovative performance and the location of

many UK firms in the USA. An overall bias towards US based patents should not

be a problem as long as it is not different across firms in a way that is related to

other firm characteristics.

4.1.2. Citations

We also use data on patent citations to refine our measures of the location of firms’

innovative activity. We assume that a patent owned by a UK firm but invented
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by an inventor located in the USA is more likely to be associated with technology

sourcing behaviour if it cites other patents whose inventors were located in the

USA. In particular, if a patent owned by a UK firm but invented by an inventor

located in the USA does not cite any other patents whose inventors were located in

the USA, this suggests that the patent is unlikely to be associated with technology

sourcing. Such a patent is more likely to be associated with other motivations for

locating R&D abroad, such as adapting existing technologies to the local market.

The 63,733 patents matched to our 266 UK firms make 472,998 citations to

other patents, an average of 7.4 citations made by each patent. Of these 472,998

citations, 405,788 have information on the country location of the cited inventor.

23.6% of the citations were made by inventors located in the UK, but only 6.5% of

all the citations are to a patent whose inventor was located in the UK. In contrast,

while 56.4% of the citations were made by inventors located in the USA, 64.3%

of all the citations are to a patent whose inventor was located in the USA. Again,

this probably illustrates both the fact that the data is from the US patent office,

and the dominant global position of the USA in innovation.

Table 2 presents a cross-tab of the location of the citing and cited inventor

for the 405,788 citations where this information is available. It is important to

remember that all of these citations were made by patents that are owned by UK

firms, even if the inventor was located in the US. Only 16.9% of citations made

by UK inventors are made to another UK inventor, while 54.1% are made to a US

inventor. In contrast, 74.0% of citations made by US inventors are made to other

US inventors, while only 3.2% are made to UK inventors. This provides some very
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preliminary evidence that most patents owned by UK firms but invented by an

inventor located in the US are building on other knowledge created in the USA.

4.1.3. Self-citations

We want to investigate whether firms are benefitting from external knowledge

that has not been generated within the same firm. Because of this we want to

control for self-citations, where a patent cites another patent that is owned by

the same firm. 8.7% of all citations are made to patents owned by the same

patenting subsidiary (or "assignee"), while a further 1.1% of all citations are

made to a different assignee that is nevertheless part of the same parent firm.

Table 3 shows a similar cross-tab to Table 2, except only for self-citations to a

patent that is owned by the same parent firm. Unsurprisingly, the percentages in

the diagonals (for example a UK inventor citing another UK inventor, or a US

inventor citing another US inventor) are much higher than before. Interestingly,

once we condition only on self-citations, patents owned by UK firms but invented

in the US are not much more likely to cite UK inventors than was the case before

(3.4% in Table 3 compared to 3.2% in Table 2). Thus, even within firms, the

transfer of knowledge from the UK to the USA appears to be small compared to

the transfer of knowledge within the USA.

Table 4 shows the same cross-tab as Table 2 once we have excluded these self-

citations. These citations to patents outside of the same firm are the citations that

we will use to refine our measure of technology sourcing behaviour. As before,

the number of citations made by US inventors to UK inventors is small (3.2% of
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all citations made by US inventors), while the number of citations made by US

inventors to other US inventors outside of their firm is large (71.8% of all citations

made by US inventors).

4.1.4. Application dates

It is generally considered that physical proximity is more important for the flow

of knowledge that is "tacit", in the sense that it is not easily codified or written

down in manuals. The flow of tacit knowledge is more likely to be mediated

through face-to-face meetings and personal interactions between scientists and/or

engineers. It also seems likely that knowledge that has been created recently is

more "tacit" than knowledge that was created longer ago. Thus firms that locate

innovative activity in the US in order to gain access to pools of tacit knowledge

are unlikely to be attempting to access knowledge that was created twenty or even

ten years ago. For this reason we also use information on the application dates

of each citing and cited patent in order to refine our measures of the location of

firms’ innovative activity. In particular we look at citations made to patents that

were applied for within the last three years. For example, if a patent was applied

for in 1989, we restrict our attention to the citations that it makes that are to

patents that were applied for in 1986, 1987, 1988 or 1989. Table 5 shows the same

cross-tab of the country of the citing and cited inventor for all non self-citations of

this type. The proportions are similar to those in Table 4, although UK inventors

are slightly more likely to cite other UK inventors than before, while US inventors

are less likely than before to cite other US inventors. We will return to the patent
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data when we discuss how we calculate our measures of the location of firms’

innovative activity.

4.2. Accounts data

The initial sample of 415 firms was cleaned for estimation. This included ensuring

that employment observations were available, deleting firms with less than five

consecutive observations over 1990 - 2000, and excluding firms for which there

were jumps greater than 150% in any of the key variables (capital, labour, sales).

Capital stock was constructed by a perpetual inventory method as in Bloom and

Van Reenen (2000). The data does not include intermediate inputs, so value

added was constructed as the sum of total employment costs, operating profit,

depreciation and total interest charges. Because of UK accounting regulations,

most of the firms did not report R&D expenditure before 1989, and so the analysis

is restricted to the years 1990-2000.4 An R&D capital stock was constructed

using a perpetual inventory method and an assumed 15% rate of obsolescence.

The results are robust to different rates. R&D activity is also included in the

main labour and capital variables so any estimated returns to R&D are "excess"

returns.5

Although these are "UK firms" in the sense that they are listed on the London

Stock Exchange, a key feature of the data is that it relates to the firm’s global

4Even after 1989 when a firm reports zero R&D it is not clear that this corresponds to a true
zero, although it is unlikely to perform a large amount of R&D. In the results presented in this
paper, a dummy variable was used to denote reported zero R&D expenditure, but the results
are not sensitive to the exact treatment of reported zeros.

5See Griliches (1979)
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activities. As discussed later this has potentially important consequences for the

interpretation of our results. For now we maintain the assumption that, while a

firm’s innovative activity may be located anywhere in the world, its production

activity is located in the UK. We examine the validity of this assumption and the

consequences of any violations later on.

4.3. Spillover pool data

The domestic and foreign spillover pools were constructed using the OECD’s "An-

alytical Business Expenditure on R&D" dataset (ANBERD, 2002) on R&D spend-

ing by two-digit manufacturing industry (ISIC Revision 3) in the UK and the USA.

A stock measure was constructed using a perpetual inventory method and an as-

sumed 15% rate of obsolescence6, with a starting year of 1987. Although there are

various problems with using industry-level measures as discussed above, this data

has the crucial advantage for our purposes that it contains R&D expenditures by

geographical location of the R&D activity. This would be extremely hard if not

impossible to recreate using a weighted sum of other firms’ R&D. Our measure

also has the advantage of including all R&D carried out in each industry in each

country, and not just the R&D of the other sampled firms.

Because the source of identification in our model comes from the way the

response of value added to the spillover pool depends on the geographical location

of innovative activity, the possibility of spurious "correlation effects" due to a

spillover pool constructed at the industry-level should not be a serious problem.

6We experimented with other depreciation rates but the results were not significantly
changed.

17



However, in order to at least partly control for industry level cyclical effects and

shocks not associated with knowledge spillovers, we also include as a robustness

check two-digit industry-level value added in the UK and USA. This was taken

from the OECD’s "Structural Analysis" database (STAN, 2003). It turns out that

none of our results is affected by including these value-added terms.

After cleaning as described above and limiting the sample to manufacturing

firms we are left with 1794 observations on 188 firms, 141 of which are matched

to at least one patent. Table 6 reports summary statistics.

5. Methodology and Results

5.1. Functional form

We consider a Cobb-Douglas production function with constant returns in labour

and capital inputs

Yit = AitL
α
itK

1−α
it Rβ

itD
γ1
jt F

γ2
jt (5.1)

where i indexes a firm, j indexes the firm’s two digit industry, and t indexes the

year. Yit is real value added, Lit is observed labour inputs, Kit is a measure of the

firm’s capital stock, Rit is a measure of the firm’s own R&D stock, and Djt and

Fjt are the R&D stock in the firm’s two-digit industry in the UK and the USA

respectively. We assume that the elasticities of value added with respect to the

external knowledge stocks are a linear function of firm-specific measures of the

location of innovative activity

γ1 = θ1 + θ2W
UK
i (5.2)
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γ2 = φ1 + φ2W
US
i (5.3)

where a positive estimate of φ2 would provide evidence of knowledge spillovers

associated with technology sourcing from the USA.

5.2. Location measures

We use several measures of WUK
i and WUS

i . The basic measure is constructed as

the proportion of the firm’s total patents applied for between 1975 and 1989 where

the inventor is located in the UK or the USA respectively. They are both equal

to zero if the firm has no patents. Becuase our firm panel runs from 1990 to 2000

the location measures are based purely on pre-sample information. As discussed

above, this ensures that the location measurea are not affected by technology

shocks that also directly affect firm-level outcomes during the sample period.

This form for the measure of the geographical location of innovative activity

discards two types of information in the patent data. The first is variation over

time, so that the measure represents an average of the location of the firm’s

innovative activity over the period 1975-1989. The second type of information is

the total number of the firm’s patents. While this may be relevant information,

normalising the location measures to a proportion between zero and one helps

to deal with difficulties associated with firm size and differences in propensity to

patent across industries.

As mentioned above we also use information on patent citations to refine our

measure of WUK
i and WUS

i . A key theme in the literature is that technology
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sourcing is not the only motivation for firms to locate innovative activity abroad.

In particular, firms may do R&D abroad in order to adapt existing technologies

to new markets. Our empirical approach to this issue is to use data on citations

to eliminate patents that are unlikely to represent technology sourcing behaviour.

Consider two extreme cases for a patent that is owned by a UK firm but that was

invented in the US: if the patent only cites patents owned by the same firm and

whose inventors were located in the UK then the patent is more likely to represent

activity associated with adapting an existing technology to the US market; on the

other hand, if the patent cites many patents that are not owned by the firm and

whose inventors were located in the US then the patent is more likely to represent

technology sourcing behaviour. If we want to investigate whether there is evidence

for technology sourcing behaviour in productivity outcomes, then we wish not to

use the first type of patent when constructing our location measures.

To implement this approach, our second measure of WUK
i and WUS

i excludes

patents that do not cite any other patents whose inventors were located in the

same country. We also exclude patents that do cite inventors from the same

country, but only inventors within the same parent firm. The measure of WUS
i is

thus equal to the proportion of the firm’s total patents where: (1) the inventor

is located in the USA and (2) the patent cites at least one other patent whose

inventor was both located in the US and did not work for the same parent firm.

Our third and final measure of WUK
i and WUS

i is the same as the second

measure, except that it also uses information on the time-lag between the citing

and cited patent. As discussed above, technology sourcing behaviour is likely
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to be associated with gaining access to pools of "tacit" knowledge. Given that

knowledge that was created recently is more likely to have tacit characteristics,

we include only citations to patents whose application date is no more than three

years prior to that of the citing patent. The third measure of WUS
i is thus equal

to the proportion of the firm’s total patents where: (1) the inventor is located in

the USA and (2) the patent cites at least one other patent that was applied for

within the last three years and whose inventor was both located in the US and

did not work for the same parent firm.

Table 7 reports summary statistics of the three location measures for the 141

firms that are matched to at least one patent. The mean and median values

of the weights become smaller as the requirements become more restrictive, in

other words as we first condition only on the location of the inventor, then on

location and citation characteristics, and then finally on location, citation and

time-lag characteristics. The measures for the UK become smaller more rapidly

as we condition on citations. This reflects the smaller number of citations that

are made to UK inventors than to US inventors.

We estimate the basic functional form described above in logs

(yit − kit) = α(lit − kit) + βrit + θ1djt + φ1fjt + θ2W
UK
i djt + φ2W

US
i fjt

+θ3W
UK
i + φ3W

US
i + ait (5.4)
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5.3. Estimation

We assume that the residual productivity term takes the form

ait = tt + ηi + uit. (5.5)

where the year dummies control for common macro effects and the firm effect

and stochastic productivity shock may be correlated with the regressors. We allow

for arbitrary heteroskedasticity and possible serial correlation in the stochastic

productivity shock. We include industry dummies in all regressions. We estimate

using Systems-GMM, where the information from the levels equation helps to

alleviate the weak instruments problem associated with first-difference GMMwhen

series are persistent.7 The additional moment conditions take the form

E[∆xi,t−s(ηi + uit)]. = 0 (5.6)

for s = 1 when uit ∼ AR(0) and for s = 2 when uit ∼ AR(1), where xit

indicates the regressors being instrumented. This requires the first moments of

xit to be time-invariant, conditional on common year dummies. We test the vaidity

of the additional moment conditions using a Sargan difference test.

We assume that all firm-level variables are endogenous, while in our final spec-

ification all industry-level variables are treated as strictly exogenous. We examine

specifications where the industry-level R&D stocks are treated as endogenous and

the results are not significantly affected. The results are also robust to lagging

the industry-level variables by one period, in which case they can be treated as
7See Blundell and Bond (1999) for an exposition and a production function example
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pre-determined. We instrument firm-level variables in the differenced equation

with their levels lagged from two to five times inclusive, and in the levels equation

by their first-differences lagged once, as well as by all time and industry dummies

and all exogenous variables.

5.4. Empirical Results

Table 8 presents results for the basic production function and the basic spillover

and value added terms. Column (1) is OLS without imposing constant returns to

scale in labour and capital, while column (2) does impose constant returns. The

hypothesis of constant returns to scale is not rejected at the 5% level. Column (3)

is the basic production function using Systems-GMM. The coefficient on capital

is very similar to the OLS case. The estimated elasticity with respect to own

R&D corresponds to a median private excess rate of return to R&D of about

15%, which is similar to that found in other studies.8 Tests are presented for first

and second order serial correlation in the first-differenced residuals, with robust p

values in brackets. Neither test ever rejects the hypothesis of no serial correlation.

This justifies the use of twice lagged instruments in the difference equation and

once lagged instruments in the levels equation. A Sargan test of overidentifying

restrictions is not significant, and neither is a Sargan difference test of the extra

moment conditions implied by the levels equation.

Columns (4) and (5) introduce the main industry level spillover terms. The

spillover terms are treated as strictly exogenous in column (4) and as endogenous

8See Griliches (1992)
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in column (5). The coefficients are not significantly affected. The main spillover

terms do not enter significantly in either case, and the coefficient on the UK term

becomes close to zero when value added is included to control for industry-level

shocks in column (6). Thus we find no evidence for either domestic or international

knowledge spillovers in a conventional specification. Neither value added terms

are significant, althought they are both positive.

Table 9 presents the key interaction results. Column (1) is OLS, with the UK

and US location interactions included. The coefficients on the basic industry level

R&D variables are insignificant as before, as is the coefficient on the UK location

interaction. However, the coefficient on the US interaction is positive and signif-

icant at the 1% level, suggesting the existence of knowledge spillovers associated

with technology sourcing from the USA. The fact that the UK interaction is not

significant is not very surprising for a sample of UK firms, in that the marginal

effect of locating innovative activity in the UK on the firm’s ability to benefit

from spillovers from UK R&D is likely to be smaller than in the US case. The

significant negative effect of the US location measure WUS
i itself is only observed

conditional on the inclusion of the interaction terms, and it enters positively when

the interactions are not included. The median marginal effect of WUS
i on value

added remains positive.

Column (2) is the same specification estimated by Systems-GMM. The coef-

ficient on the US location interaction is very similar although it is less precisely

estimated. Nevertheless, it remains significant, although not quite at the 5% level.

All the other coefficients are similar to the OLS case. Column (3) uses the second
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type of location weight that is refined using data on citations. The coefficient

on the US interaction term is now both larger and more precisely estimated than

in column (2), and is significant at the 1% level. This suggests that the citation

information does indeed provide a more refined measure of location, and provides

further support for the existence of international knowledge spillovers associated

with technology sourcing. Column (4) uses the third type of location weight that

is further refined using data on the time-lag between citing and cited patents. The

coefficient on the US interaction term is significantly larger and remains significant

at the 1% level, providing further evidence of the technology sourcing hypothesis.

5.5. Location of production activity

A further issue relates to the fact that the data represents firms’ global activity.

Although we have been assuming that production activity is located in the UK,

this is not completely true in practice. It is possible that the location measure

WUS
i is not only proxying for the location of innovative activity, but also for the

location of production. In other words, firms with innovative activity in the USA

are likely also to have productive activity located there. If this is the case, then we

may be picking up not only international spillovers but also domestic spillovers

within the USA, with all the ensuing identification issues that were discussed

earlier.

We attempt to control for this by using the separate reporting of domestic

employment to total employment. 117 out of 188 firms report domestic employ-

ment separately to total employment at least once during 1990-2000. For those
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that do not report separately we assume that all employment is domestic. Of

those 117 firms, 53 report total employment greater than domestic employment

at least once. We drop these firms from the sample and re-estimate our model on

the remaining 135 firms, which we expect to have little or no foreign production

activity. Column (5) presents the same specification as column (4) except now

only for the 135 firms. The results are very similar, although the UK interaction

becomes negative but insignificant. These results suggest that the initial results

were not primarily driven by the location of firms’ production activities.

5.6. Robustness

We consider several robustness checks to the results in Table 9. First we include

further interactions of the industry level R&D measures with a zero-one dummy

that indicates whether the firm has any patents at all or none. This is to check that

the results on the location interactions are not driven by patenting firms having

higher "absorptive capacity" than non-patenting firms, since non-patenting firms

by definitions have values of WUK
i and WUS

i equal to zero. Neither of the inter-

actions with the patenting dummy is ever signficant, and the positive significant

interaction with WUS
i remains, suggesting that the results are not driven by ab-

sorptive capacity.

Secondly we replace the industry level R&Dmeasures with industry level value

added, in order to check that the results are not driven by industry level shocks

unrelated to R&D. None of the value added terms is significant, and when we

include value added and R&D terms together the coefficients on the R&D terms
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are similar to before, suggesting that it is indeed the R&D stocks that are driving

the results.

We also lagged all the industry level R&D terms by one period, so that they

could be considered pre-determined. Again the main results are not affected.

Finally we relaxed the assumption of constant returns to scale in labour and

capital, which did not affect the main results.

6. Summary and Conclusions

The results presented in this paper provide some evidence for the existence of

knowledge spillovers associated with technology sourcing. The idea that firms

might invest in R&D activity in a technologically advanced country such as the US

in order to gain access to spillovers of new "tacit" knowledge has been suggested in

the literature, as discussed above, but we know of no studies that have attempted

to find evidence for this in observed productivity outcomes.

Our main results suggest that the increase in the US R&D stock in manufac-

turing over 1990-2000 was associated with on average a 4% higher level of TFP

for the UK firms in our sample. This compares with an average 6.5% higher level

of TFP associated with the increase in their own R&D stocks over the same pe-

riod. Thus spillovers from the US contributed about two-thirds of the effect of

firms’ own R&D. Our results also suggest that for a UK firm, shifting 10% of its

innovative activity (as measured by patent applications) to the US from the UK

while keeping its overall level of R&D stock the same (e.g. changing WUS
i from

0.30 to 0.40 and WUK
i from 0.70 to 0.80 while keeping Rit the same) is associated
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with an increase in its TFP level by between 3% and 7%. This effect is the same

order of magnitude as that of a doubling in its R&D stock.

Our result has interesting implications for policy. Governments are generally

keen to promote higher levels of domestic R&D activity, and the countries of the

EU have recently expressed an aspiration to raise the level of R&D spending within

the EU to 3% of GDP. However a question arises as to whether a country should

be concerned with the total amount of R&D expenditure located domestically, or

the total amount of R&D performed by domestic firms anywhere in the world,

especially if R&D performed abroad is more productive and provides access to

new technologies. As an example, the UK has recently introduced R&D tax

credits that apply only to R&D located in the UK. This might have partially

counterproductive effects if it encourages firms to repatriate R&D activity from

abroad.
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8. Data Appendix

The full data matching process can be found in Bloom and Van Reenen (2000),
but the main aspects are sketched here. From the population of public firms
quoted on the London Stock Exchange, a random sample of all companies whose
names began with the letters ‘A’ through ‘L’ were selected. Also selected were
the top 100 R&D performing firms in the UK in order to maximise the number of
patents that could be matched. For all of these 415 firms Who Owns Whom 1985
was used to manually match each patenting subsidiary to their parent companies.
This process was subsequently checked for all large subsidiaries and outliers using
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the Internet. Being a manual matching process, the matching accuracy appears to
be quite good, and is certainly substantially greater than a computerised flexible
string search. In direct comparisons this uncovered only about 10% of the matches
found manually.
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Table 1: Country of inventor  

Country of 
Inventor 
 

(1) 
Number of  Patents 

matched to our 
UK firms 

(2) 
% Share of patents 

matched to our 
UK firms 

(3) 
% Share of all USPTO 

patents 

   UK 19,745 31.0 3.0 

   USA 28,731 45.1 55.7 

   Japan 4,411 6.9 18.8 

   Germany 2,481 3.9 7.9 

   France 1,457 2.3 3.0 

   Other 6,908 10.8 11.6 

   Total 63,733 100 100 

Notes: 63,733 patents matched to 266 UK firms; final column refers to all patents registered at the US 
Patent Office between 1975 and 1998 
 
 
 
Table 2: Location of citing and cited inventors: all patents matched to our sample of UK firms 

Cited country: UK USA Other Total 

Citing country:     

     
       UK 16,233 52,024 27,889 96,146 

 (16.9%) (54.1%) (29.0%) (100%) 

     

       USA 7,298 167,912 51,790 227,000 

 (3.2%) (74.0%) (22.8%) (100%) 

     

       Other 3,014 40,784 38,844 82,642 

 (3.6%) (49.4%) (47.0%) (100%) 

     

       Total 26,545 260,720 118,523 405,788 

 (6.5%) (64.3%) (29.2%) (100%) 

     
Notes: 63,733 patents making a total of 472,998 citations; 405,788  
citations have data on the location of the cited inventor 
 
 
 
 
 
 
 



 
 
 
Table 3: Location of citing and cited inventors : only self-citations by our sample of UK firms 

Cited country: UK USA Other Total 

Citing country:     
     
       UK 10,391 654 462 11,507 
 (90.3%) (5.7%) (4.0%) (100%) 
     
       USA 853 22,732 1,261 24,846 
 (3.4%) (91.5%) (5.1%) (100%) 
     
       Other 627 1,100 8,443 10,170 
 (6.2%) (10.8%) (83.0%) (100%) 
     

       Total 11,871 24,486 10,166 46,523 
 (25.5%) (52.6%) (21.8%) (100%) 

     
Notes: 63,733 patents making a total of 46,523 self-citations 
 
 
Table 4: Location of citing and cited inventors : only non self-citations by our sample of UK 
firms 

Cited country: UK USA Other Total 

Citing country:     
     
       UK 5,842 51,370 27,427 84,639 
 (6.9%) (60.7%) (32.4%) (100%) 
     
       USA 6,445 145,180 50,529 202,154 
 (3.2%) (71.8%) (25.0%) (100%) 
     
       Other 2,387 39,684 30,401 72,472 
 (3.3%) (54.8%) (42.0%) (100%) 
     
       Total 14,674 236,234 108,357 359,265 
 (4.1%) (65.8%) (30.2%) (100%) 

     
Notes: 63,733 patents making a total of 426,475 non self-citations; 359,265 of these non self-citations 
have data on the location of the cited inventor 
 
 



 
 
Table 6: Summary statistics 

   Mean   Median  Standard 
Deviation    Min   Max 

      

Observations 9.5 10 1.8 5 11 

Employees 10,711 1,750 27,564 34 288,000 

Value added (£m) 372 49 928 1.5 8,244 

Capital stock (£m) 515 52 1,415 1.3 11,110 

R&D stock (£m) 144 1.8 597 0 4,860 

      

Notes: 188 firms, 1990-2000; all monetary amounts are in 1995 currency, deflated using OECD 
manufacturing sector deflator; value added is constructed as the sum of total employment costs, 
operating profit, depreciation and interest payments; capital stock and R&D stock  are constructed 
using a perpetual inventory method as described in the text 
 
 
 
Table 7: Summary statistics for patenting firms 

 
  Mean   Median 

 
Standard 
Deviation 

   Min   Max 

      

Total patent applications  240 40.5 657 1 5820 

UK Location Weight 0.354 0.274 0.363 0 1 

UK Location + Citation Weight 0.082 0.017 0.145 0 1 

UK Location + Citation Within 3 Years 0.019 0.000 0.054 0 0.5 

USA Location Weight 0.462 0.425 0.379 0 1 

USA Location + Citation Weight 0.417 0.368 0.349 0 1 

USA Location + Citation Within 3 Years 0.162 0.134 0.184 0 1 

      
Notes: 141 firms matched to at least one patent; location weights are constructed as described in the 
text 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table 8 : Basic production function results 

 (1) (2) (3) (4) (5) (6) 

 OLS OLS GMM GMM GMM GMM 

ln (L) it 0.635 
(0.060) 

0.669 
(0.048) 

0.672 
(0.072) 

0.675 
(0.075) 

0.676 
(0.070) 

0.679 
(0.071) 

ln (K) it 0.329 
(0.046) 

0.331 
 

0.328 
 

0.325 
 

0.324 
 

0.321 
 

ln (R&D) it 0.028 
(0.008) 

0.012 
(0.007) 

0.022 
(0.010) 

0.021 
(0.010) 

0.021 
(0.009) 

0.021 
(0.009) 

ln (UK R&D) jt 
   

0.046 
(0.093) 

0.088 
(0.131) 

0.016 
(0.134) 

ln (US R&D) jt 
   

0.002 
(0.061) 

-0.013 
(0.072) 

0.001 
(0.074) 

ln (UK Value Added) jt 
     

0.105 
(0.080) 

ln (US Value Added) jt 
     

0.084 
(0.065) 

       
Industry dummies Yes Yes Yes Yes Yes Yes 
Year dummies Yes Yes Yes Yes Yes Yes 
Firms 188 188 188 188 188 188 
Observations 1794 1794 1794 1794 1794 1794 

1st order serial 
correlation - - -1.217 

(0.223) 
-1.221 
(0.222) 

-1.224 
(0.221) 

-1.226 
(0.220) 

2nd order serial 
correlation - - -0.981 

(0.327) 
-0.972 
(0.331) 

-0.977 
(0.328) 

-1.033 
(0.302) 

Sargan - - 77.69 
(0.457) 

78.74 
(0.423) 

152.34 
(0.500) 

149.23 
(0.571) 

Sargan difference - - 19.73 
(0.411) 

18.94 
(0.438) 

35.68 
(0.427) 

31.70 
(0.516) 

Notes: Dependent variable is the log of value added; the time period is 1990-2000; columns (1) and (2) 
are OLS with robust standard errors in brackets, clustered on industry; columns (2) to (6) impose 
constant returns to scale in labour and capital; the hypothesis of constant returns to scale in labour and 
capital never rejected at the 5% level; columns (3) to (6) are systems-GMM, with one-step robust 
standard errors in brackets, except for tests where p values in brackets; Labour and firm R&D stocks 
are assumed endogenous; industry R&D stocks are assumed strictly exogenous in column (4) and 
endogenous in columns (5) and (6); industry value added is assumed strictly exogenous in column (6); 
endogenous variables are instrumented by levels lagged from two to five times in the differences 
equation and differences lagged once in the levels equation, as well as by all exogenous variables and 
year and industry dummies 
 
 
 
 
 
 
 
 



Table 9 : Interactions results 

 (1) (2) (3) (4) (5) 

 OLS GMM GMM GMM GMM 

Location weight: Location Location Location & 
Citation 

Location & 
Citation 
within 3 

years 

Location & 
Citation 
within 3 

years 
ln (L/K) it 0.669 

(0.048) 
0.679 

(0.069) 
0.677 

(0.070) 
0.671 

(0.071) 
0.619 

(0.074) 
ln (R&D) it 0.012 

(0.008) 
0.020 

(0.010) 
0.019 

(0.009) 
0.017 

(0.009) 
0.023 

(0.012) 
ln (UK R&D) jt 0.044 

(0.094) 
0.036 

(0.092) 
0.037 

(0.092) 
0.031 

(0.089) 
0.094 

(0.106) 
ln (US R&D) jt -0.046 

(0.075) 
-0.025 
(0.063) 

-0.029 
(0.061) 

-0.021 
(0.061) 

0.033 
(0.083) 

      
UK

iW * ln (UK R&D) jt 0.033 
(0.023) 

0.029 
(0.029) 

0.101 
(0.093) 

0.392 
(0.259) 

-0.586 
(0.394) 

US
iW * ln (US R&D) jt 0.070 

(0.020) 
0.065 

(0.033) 
0.082 

(0.029) 
0.160 

(0.052) 
0.201 

(0.060) 
      

UK
iW  -0.285 

(0.160) 
-0.262 
(0.194) 

-0.793 
(0.659) 

-3.124 
(2.251) 

3.642 
(2.615) 

US
iW  -0.635 

(0.226) 
-0.592 
(0.322) 

-0.742 
(0.299) 

-1.515 
(0.519) 

-1.900 
(0.609) 

      
Firms 188 188 188 188 135 
Observations 1794 1794 1794 1794 1267 

1st order serial 
correlation - -1.223 

(0.221) 
-1.223 
(0.221) 

-1.222 
(0.222) 

-1.208 
(0.227) 

2nd order serial 
correlation - -0.972 

(0.331) 
-0.961 
(0.337) 

-0.939 
(0.348) 

-1.011 
(0.312) 

Sargan - 81.83 
(0.332) 

81.02 
(0.355) 

80.22 
(0.378) 

78.68 
(0.425) 

Notes: Dependent variable is the log of value added divided by capital stock; the time period is 1990-2000; column 
(1) is OLS with robust standard errors in brackets, clustered on industry; columns (2) to (7) are systems-GMM; 
one-step robust standard errors in brackets, except for tests where p-values in brackets; firm-level variables 
assumed endogenous and industry level variables assumed strictly exogenous; endogenous variables are 
instrumented by levels lagged from two to five times in the differences equation and differences lagged once in the 
levels equation, as well as by all exogenous variables and year and industry dummies; column (7) restricts the 
sample to “domestic” firms, i.e. firms that never report domestic employment to be less than total employment 


