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Abstract

There are compelling arguments for employing declining discount rates in cost-
benefit analysis. HM Treasury (2003) has recently made this an official require-
ment in the UK. While declining discount rates represent a major advance in
the economics of time, certain problems remain to be ironed out. This paper
highlights one such problem: using declining discount rates ‘naively’ — ignor-
ing the time inconsistency of resulting policy plans — can do more harm than
good. We demonstrate that naive hyperbolic discounting can result in the col-
lapse of a renewable resource. If the regeneration rate of the resource is within
a given range, and stock levels are close to the minimum viable population,
then an unforeseen collapse of the stock can occur.

This result emerges from both a simple three-period model and an infinite-
horizon, continuous-time model with hyperbolic discounting of the sort exam-
ined in Barro (1999). The model generates two important insights. First, it
provides an explanation for resource collapses such as that of the Peruvian
anchovy and Atlantic cod. Second, it suggests that governments ignore the
time-inconsistency problems inherent in declining discount rates at their peril.
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1 Introduction

Ever since the discounted utility model was proposed by Samuelson (1937), economists and
policymakers have employed a constant discount rate to value flows of future consumption.
However, a major problem with conventional discounting is that costs and benefits in the
distant future are discounted back to peanuts. For instance, the present value of benefits
of climate change mitigation and the costs of dealing with nuclear waste are so small that
they are often categorised as being more ‘political’ than ‘economic’ issues.

Three relatively recent strands of literature, however, suggest that using a constant dis-
count rate is misguided. Instead, it should be a declining function of time.1 First, So-
zou (1998) and Weitzman (1998) show that if the correct discount rate is uncertain, the
‘certainty-equivalent discount rate’ will decline over time to the lowest possible rate. For
instance, when discount rate uncertainty is characterised by a gamma distribution, the
discount rate will decline asymptotically to zero. Second, Li and Löfgren (2000) demon-
strate that the current generation has a ‘tyranny’ over future generations unless the utility
discount rate is a declining function of time. Third, experimental evidence suggests that
people discount the future hyperbolically, employing a higher discount rate to trade-offs
now than to trade-offs in the future. While the evidence supporting hyperbolic discounting
appears to be relatively strong,2 there good reasons to recommend a cautious interpreta-
tion.3

The three approaches suggest that planners should, and individuals do, employ declining
discount rates in making intertemporal decisions. The arguments for declining discount
rates have been accepted by the UK Government, and HM Treasury (2003) requires their
use in the appraisal of government investments and policies.

Unfortunately, however, declining discount rates generally give rise to time-inconsistent
plans, as Ramsey (1928) and Strotz (1956) observed.4 Time inconsistency implies that
plans made today will not be carried out tomorrow, unless a commitment mechanism is
available. As Strotz (1956) notes, the desire to commit one’s future self to avoid calamity
is not a novel human experience:

[Y]ou must bind me hard and fast, so that I cannot stir from the spot where you will stand me
. . . and if I beg you to release me, you must tighten and add to my bonds.

Homer, The Odyssey, Book XII, (c 800 BC).

The time-inconsistency generated by declining discount rates is extremely convenient in
modelling ‘irrational’ behaviour. Akerlof (1991) used hyperbolic discounting — where the
discount rate declines hyperbolically — in the context of procrastination, drug addiction

1Critical reviews of this literature are contained in Groom et al. (2003) and Pearce et al. (2003).
2Harris and Laibson (2001a) note that a large number of experiments has been conducted, with a

variety of rewards such as money, durable goods, sweets, relief from noise and so on. For instance, see
Thaler (1981), Kirby (1997) and a review in Ainslie (1992). Dasgupta and Maskin (2002) cite evidence for
hyperbolic discounting from animal studies.

3See, for instance, the interpretation of Rubinstein (2001) and Read (2001), and the comments of
Mulligan (1996).

4The sole exception is logarithmic discounting, as shown in Heal (1998).
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and organisational failure. Since then, hyperbolic discounting has been applied to a large
range of economic phenomena.5 Because hyperbolic discounting can generate ‘irrational’
behaviour, one might feel uneasy with its use in government policymaking.

The two models developed in this paper suggest that embedding time inconsistency in
our government decision-making process does provide cause for unease. The first model
examines a planner using quasi-hyperbolic discounting in managing a renewable resource
over three periods. It shows that a ‘naive’ planner may unwittingly manage the resource
into a collapse. The second model examines a planner employing hyperbolic discounting to
manage a resource over an infinite time horizon, in continuous time. An analogous result
follows. The underlying intuition of both models is straightforward. The naive planner
intends to consume the stock rapidly in the short-term, but plans to show restraint over
the medium-term to allow the stock to return to the long-run equilibrium. Without
commitment, however, time-inconsistency means that the medium-term never comes.

The paper thereby demonstrates that using hyperbolic discounting can lead an otherwise
rational planner to manage a resource to the brink of collapse. It sounds a cautionary note
to governments around the world who are considering employing declining discount rates
in long-term policymaking. The models may also help to explain why it is that fish stocks
were collapsed by apparently well-intentioned and rational planners in the early 1990s.

The paper proceeds as follows. In section 2, we set out a three-period model of con-
sumption of a renewable resource under quasi-hyperbolic discounting. In section 3, we
develop the continuous-time hyperbolic discounting model. This model follows the form
of Barro (1999) and Li and Löfgren (2001), but unlike those papers we find the consump-
tion and resource paths which would result from naive hyperbolic discounting. In section
4, predictions from the model are applied to two case studies. Conclusions and policy
recommendations are outlined in section 5.

2 The Three-Period Model

Consider a planner who manages the harvesting of a renewable resource (eg fish), where Ei

denotes the resource stock at the beginning of period i. The planner permits consumption
ci of the resource in period i. The resource is regenerated between the end of each period
and the beginning of the next. The regeneration dynamics of renewable resources typically
show two features; a ‘carrying capacity’, representing a limit on population growth, and
a ‘minimum viable population’, the population below which the species is doomed to
extinction. The second of these features is important here. A tractable linear specification
capturing this is:

Ei+1 =

{
(Ei − ci)(1 + g) if (Ei − ci)(1 + g) ≥ E∗

0 otherwise
(1)

5Laibson (1994), Laibson (1997) and Laibson et al. (1998) have considered the problem of undersaving in
depth. Harris and Laibson (2001a) and Harris and Laibson (2001b) extend this work to model buffer-stock
saving. Retirement timing is considered by Diamond and Koszegi (1998). Drug addiction is examined
by Gruber and Koszegi (2001), while O’Donoghue and Rabin (1999a), O’Donoghue and Rabin (1999b)
and Benabou and Tirole (2000) have examined procrastination. Cropper and Laibson (1999) consider the
effect of hyperbolic discounting in environmental project evaluation.
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Figure 1: Exponential, hyperbolic and quasi-hyperbolic functionsa

aFor (a) the exponential function (e−ρt), ρ = 5%, (b) the quasi-hyperbolic function, β = 0.5 and
δ = 0.98, and(c) the Barro (1999) hyperbolic function, e−[ρt+φ(t)], we use the parameters from section 3.

where g is the natural rate of regeneration of the resource. Equation (1) implies that
if resource stocks are below the minimum viable population, E∗, at the beginning of a
period, then the population of the resource collapses to zero.

Instantaneous utility of consumption is assumed to be isoelastic:

u(c) =
c1−γ − 1

1− γ
, γ < 1 (2)

where γ is the Arrow-Pratt coefficient of relative risk-aversion.6 Note that with γ ≥ 1,
consumption can never be zero and hence a resource collapse is ruled out.7 Otherwise,
the model is robust to changes in specification of the utility function,8 and equivalent
results are found with other classes of utility function such as the negative exponential:
u(c) = 1− exp(−ωc).

The social planner employs ‘quasi-hyperbolic’ discounting, using the discount factors
{1, βδ, βδ2}, where β, δ ∈ (0, 1). This form of discounting is shown in Figure 1(b).9 Quasi-
hyperbolic discounting is a tractable way of modelling the qualitative properties of the
more general hyperbolic function. The utility of consumption over all three periods for
consumers in the first period is therefore:

U(c) = u(c1) + βδu(c2) + βδ2u(c3) (3)

6See Pratt (1964) and Arrow (1965).
7This implies that a collapse is impossible with log utility, as the isoelastic family u(c) = c1−γ−1

1−γ

simplifies to log utility as limγ→1 by L’Hôpital’s rule. However, in section 2.3, an additional assumption is
proposed which overcomes this limitation.

8This robustness arises from the discontinuity in the budget set. Without this discontinuity, the utility
function would have to satisfy limc→0 u′(c) 6= ∞ in order to give rise to a resource collapse. These issues
are discussed further in section 2.3.

9This appears to have been originally employed by Phelps and Pollak (1968), then Akerlof (1991) and
has been popularised by Laibson (1997).
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Figure 2: Intertemporal budget constraint.

In section 2.1, we derive the conditions under which the naive social planner will oversee
an unanticipated resource collapse. The impact of enabling the planner to commit to a
consumption plan is considered in section 2.2. Limitations of the model are presented in
section 2.3.

2.1 The Naive Planner

The optimal consumption plan is found by standard backwards induction, with a little
twist. First, the actual second period consumption is determined. The conditions giving
rise to a ‘collapse’ — when the resource is consumed to extinction in period two — are
found in Theorem 1. Next, the second period consumption as anticipated in period one
is determined, and the conditions under which no collapse is anticipated are presented in
Theorem 2. Finally, in Theorem 3 we prove that there is an overlap in the conditions
required in Theorems 1 and 2: that is, an unanticipated resource collapse may occur.

In the third and final period, the entire stock of the resource will be consumed unless the
stock has already been depleted below the minimum viable population. Hence:

c3 ≤
{

E3 = (E2 − c2)G for E3 ≥ E∗,
0 for E3 < E∗ (4)

where G = 1 + g for ease of notation.

The budget constraint between the second and third periods given by equation (4) is
shown in Figure 2. The discontinuity at the minimum viable population, E∗, implies that
if consumption in period two exceeds a certain maximum level, the resource will become
extinct and c3 = 0. This maximum level of second period consumption is given by:

c∗2 ≡ E2 − E∗

G
(5)

Utility derived by the second period planner is given by:

U2 =
c1−γ
2 − 1
1− γ

+ βδ
c1−γ
3 − 1
1− γ

(6)
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Figure 3: Boundary solutions: (a) extinction is avoided; and (b) extinction is optimal.

Assuming an optimum on the upper part of the budget constraint (ie. c2 ≤ c∗2, which we
shall call an ‘interior solution’), the budget constraint in equation (4) may be expressed
as:

E2 ≥ c2 +
c3

G
(7)

The Lagrangian for the optimisation program is therefore given by:

L =
c1−γ
2 − 1
1− γ

+ βδ
c1−γ
3 − 1
1− γ

+ λ2

(
E2 − c2 − c3

G

)
(8)

where λ2 is a Lagrange multiplier. After applying the Kuhn-Tucker conditions we have
the following Euler equation:

c3 = (βδG)
1
γ c2 (9)

Substituting this into the budget constraint in equation (7) yields the optimum second
period consumption as a function of the environmental stock at the beginning of the second
period:

c2 =
E2

1 + G−1(βδG)
1
γ

(10)

Now, if the result of this optimisation yields (c2, c3) such that c2 > c∗2, then the assumption
of an interior solution was incorrect. Employing equations (5) and (10) it can be shown
that c2 will exceed critical consumption c∗2 if the minimum viable population, E∗ is such
that:

E∗ >

(
(βδG)

1
γ

1 + G−1(βδG)
1
γ

)
E2 (11)

If equation (11) holds, an interior solution is inapplicable and the optimum is one of the
two boundary solutions, illustrated in Figure 3. Curve (a) shows the case where optimal
consumption is the highest possible without extinction. In contrast, curve (b) shows
boundary solution where extinction of the resource in the second period is optimal. This
case is of interest to us. Extinction of the resource in the second period will occur if and
only if:

u(c∗2) + βδu(E∗) < u(E2) + βδu(0) (12)
6



The left-hand side of equation (12) is the utility from consuming as much of the resource as
possible without extinction (ie c2 = c∗2). The right-hand side is the utility from consuming
the resource to extinction in the second period. For reasonable values of the parameters,
a non-empty set of values (E2, E

∗) can be found where extinction occurs.10 In Theorem
1, the first of three theorems in this section, we find the necessary and sufficient condition
for premature extinction of the resource.

Theorem 1 [Collapse actually occurs] Iff G < f(βδ, x, γ) then equation (12) holds
and a collapse will occur, where f(βδ, x, γ) = x[1− (1− βδx1−γ)

1
1−γ ]−1 and x = E∗/E2.

Proof 1 See Appendix 1.

The intuition of Theorem 1 is straightforward. If the regeneration rate G is small relative
to the discount factor between periods two and three (βδ), and if society starts the second
period with low levels of the renewable resource — near to the minimum viable population
— then society is best off consuming the resource to extinction in period two.

We now turn to examine the planned consumption in period two which, with naive hy-
perbolic discounting, may be different from actual consumption. In period one, the naive
planner thinks (erroneously) that it will discount exponentially from the second period
onwards. In other words, it anticipates using a discount factor of δ, rather than the ac-
tual factor, βδ. As such, actual second period consumption turns out to be higher than
anticipated consumption. Consider the anticipated Euler equation for an interior solution:

c3 = (δG)
1
γ c2 (13)

Consequently, anticipated second period consumption is:

c2 =
E2

1 + G−1(δG)
1
γ

(14)

In comparison with the actual second period consumption given in equation (10), antic-
ipated consumption is lower, due to the absence of β in equation (14). Hence the naive
social planner might anticipate second period consumption to be low enough to avoid ex-
tinction (c2 ≤ c∗), and yet actual second period consumption results in the extinction of
the resource. Extinction is not anticipated if:

u(E2) + δu(0) < u(c∗2) + δu(E∗) (15)

The left-hand side of equation (15) is the anticipated utility from consuming the stock to
extinction in the second period, while the right-hand side is the (erroneous) anticipated

10For purposes of illustration, assume β = 0.6 and δ = 0.99, which is roughly consistent with the
empirical evidence on intertemporal choice in Ainslie (1992). A 5% regeneration rate for a renewable
resource is also plausible. So letting β = 0.6, δ = 0.99, γ = 0.4, g = 0.05, then a simple calculation shows
that unless the planner starts the second period with stocks 44% above the minimum viable population,
then it will be optimal to consume everything in the second period, leaving nothing for the third. Hence
if the minimum viable population is 100 fish, than an initial stock of above 144 fish is necessary to avoid
collapse. In other words, if the resource stock is not much above the minimum viable population, it is
optimal to consume it to extinction.
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utility from consuming as much as possible without extinction. If this inequality holds,
the naive planner does not anticipate extinction at the end of the second period.

Again, for reasonable values of the parameters we can find a non-empty set of values
(E2, E

∗) in which an unforeseen extinction occurs.11 In Theorem 2 we find the necessary
and sufficient condition under which the planner does not anticipate extinction of the
resource.

Theorem 2 [No collapse is anticipated] Iff G > f(δ, x, γ) then equation (15) holds
and no collapse is anticipated, where f(δ, x, γ) = x[1− (1− δx1−γ)

1
1−γ ]−1.

Proof 2 See Appendix 1.

The intuition of Theorem 2 is as follows. Even if stock levels are close to the minimum
viable population at the start of the period, a collapse will not be anticipated if the
regeneration rate G is large enough relative to the anticipated discount factor (δ). In
other words, if the resource grows quickly enough, anticipated returns from conserving the
resource in period two are high enough that the planner anticipates saving some of the
resource for period three. Hence no collapse is foreseen.

Now, to complete the mathematical triptych, notice that if equations (12) and (15) both
hold, then extinction will take place without the naive planner foreseeing it. For ease of
reference the two conditions are:

u(c∗2) + βδu(E∗) < u(E2) + βδu(0)
u(E2) + δu(0) < u(c∗2) + δu(E∗)

(16)

Combining Theorems 1 and 2, we now show that if the regeneration growth rate of the
resource is within a certain range and stock levels are close to the critical threshold, an
unforeseen resource collapse will occur.

Theorem 3 [Unforeseen collapse occurs] Iff f(δ, x, γ) < G < f(βδ, x, γ), then equa-
tion (16) holds, implying an unforeseen collapse o the stock in period two.

Proof 3 See Appendix 1.

The underlying intuition of these three theorems can be seen by considering the isoelastic
utility function when γ = 0. This restriction gives us a linear utility function: u(c) = c−1.
Theorem 3 tells us that provided x[1− (1−δx1−γ)

1
1−γ ]−1 < G < x[1− (1−βδx1−γ)

1
1−γ ]−1,

an unforeseen extinction of the resource will occur in the second period. For γ = 0 this

11For the parameter values noted in footnote 10: β = 0.6, δ = 0.99, γ = 0.4, g = 0.05, extinction will
occur and will not be foreseen for E∗ = 100 and 100 < E2 < 144.
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Figure 4: Unforeseen resource collapse with linear utility.

requirement is:12

1
δ

< G <
1
δβ

(17)

With linear utility, the anticipated marginal rate of substitution (MRS) between periods
two and three consumption is 1/δ.13 The actual MRS, 1/βδ, is higher than the anticipated
MRS. In other words, the actual indifference curve is steeper than anticipated. Finally,
G is slope of the budget constraint, which can also be thought of as the marginal rate
of transformation (MRT). Equation (17) tells us that an unforeseen collapse occurs if the
actual indifference curve is steeper than the budget constraint, which is steeper than the
anticipated indifference curve:

anticipated MRS < MRT < actual MRS (18)

Figure 4 nicely illustrates this situation. The planner anticipates saving the renewable
resource entirely for consumption in period three, but it turns out to be optimal to consume
the resource to extinction in period two. The general case for isoelastic utility is shown
in Figure 3. We see in Figure 3 that the additional discount factor β means that the
anticipated MRS < actual MRS. In other words, the extra β rotates the anticipated
indifference curve clockwise once period two arrives. If this rotation is such that the
optimum second period consumption becomes E2, then an unforeseen collapse will occur.

Thus a naive social planner using hyperbolic discounting will condone a consumption
plan that could give rise to an unforeseen resource collapse. This result does not rest on
any assumption of uncertainty in the minimum viable population. Nor does it require
lags between human action and impact on the environment. The mere use of hyper-
bolic discounting (whether deliberate or accidental) in a standard model of intertemporal
optimisation with a renewable resource means that an unforeseen collapse is possible.

12As the size of the resource endowment approaches zero under negative exponential utility, the same
linear condition is required to guarantee the possibility of an unforeseen collapse applies, as shown in
Appendix 2.

13Here we are adopting the conventional economic definition that the slope = MRS = || dc2
dc3
||.
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2.2 The Committed Planner

Suppose the planner in period one can commit later generations to its desired consumption
plan. It is straightforward to show that period one consumption is given by:

cc
1 = E1 [1 + βδX(1 + δY )]−1 (19)

where the c subscript denotes consumption permitted by the committed planner, and
where X ≡ (βδG)

1−γ
γ and Y ≡ (δG)

1−γ
γ . This can be shown to be the same as the naive

first period consumption, for the reason that naive consumption is determined under the
misapprehension that later generations can be committed. The second period consumption
when a commitment mechanism is available is:

cc
2 = E1G

βδX

1 + βδX(1 + δY )
(20)

In contrast, it can be shown that second period naive consumption is given by:

c2 = E1G
βδX(1 + δY )

(1 + βδX)(1 + βδX(1 + δY ))
(21)

Comparing the two, it is clear that period two consumption by the naive planner is greater
than that of the committed planner:

c2 =
(

1 + δY

1 + βδX

)
cc
2 =

(
1 + δ(δG)

1−γ
γ

1 + βδ(βδG)
1−γ

γ

)
cc
2 =

(
1 + δ

1
γ G

1−γ
γ

1 + β
1
γ δ

1
γ G

1−γ
γ

)
cc
2 > cc

2 as β < 1

(22)
Hence in period two, the naive planner without a commitment mechanism permits higher
consumption than it would otherwise. Higher consumption in period two implies to lower
consumption in period three, corresponding to an increase in the likelihood of a resource
collapse. Hence if the naive planner can find a mechanism to commit itself to its planned
consumption trajectory in periods two and three, the probability of a resource collapse
would be decreased.

After a review of the psychological evidence on hyperbolic discounting, Loewenstein (1996)
concludes that people do behave at least partially naively. If such naiveté is also present
in environmental policymakers, then mechanisms to commit ourselves to sound future
environmental practices — such as investment in renewable technologies perhaps — will
be worth investigating.14 Commitment mechanisms are discussed in more detail in section
5.

2.3 Limitations of the Model

A limitation of the model is that results do not hold for isoelastic utility when γ ≥ 1,
because for γ ≥ 1, limc→0 u(c) = −∞, and extinction of the resource can never be on an
optimum consumption path. This difficulty can be circumvented if we note that society
has other sources of consumption than the renewable resource. For simplicity, suppose the

14Whether commitment improves welfare depends upon the weighting of the three temporal selves’
welfare, which itself involves an interesting range of issues. We do not consider these here. For a broad
treatment of some of these intergenerational equity issues, see Portney and Weyant (1999).
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other activities increase consumption in each period by the constant A. Then the budget
constraint for the second and third periods is:

c3 =

{
E3 = (E2 − (c2 −A))G + A for E3 ≥ E∗,
A for E3 < E∗ (23)

With this modified budget constraint it is straightforward to prove that, even with γ ≥ 1,
an unanticipated resource collapse is possible.

With the exception of this modification required for γ ≥ 1, results are robust to changes in
the utility function. Equivalent results are found under negative exponential and quadratic
utility. The model is also robust to utility functions with the property that limc→0 u′(c) =
∞. In normal consumer optimisation, utility functions with this property (such as the
entire isoelastic family) do not permit corner solutions, so a resource collapse would be
ruled out. However, because of the discontinuity in the budget set, our model operates
with such utility functions without difficulty.

The use of a discrete-time model with three periods is illustrative and allows simple,
tractable results. However, it also limits our ability to compare results with those from
the standard discounted utilitarian model. As such in the next section, a continuous-
time model of renewable resource consumption under hyperbolic discounting is developed,
showing that the basic result remains intact.

3 The Infinite-Horizon Model

As before, consider the consumption of a renewable resource, E, but now with marginally
more sophisticated dynamics, given by a quadratic approximation to the logistic model,
illustrated in Figure 5. We work in continuous time. The carrying capacity, χ, the
minimum viable population, µ, and the population at the ‘maximum sustainable yield’,
σ, are the main features of the regeneration dynamics.15

The resource regeneration rate is specified by:

g(E(t)) = −pE(t)2 + qE(t)− r (24)

where p, r, q > 0. The resource regeneration dynamics are represented by the parabola
in Figure 6 (which is also the Ė = 0 isocline), for parameters (p, q, r) = (0.0001, 0.1, 10).
Figure 6 illustrates three important properties of the system:

χ =
q +

√
q2 − 4pr

2p
(25)

µ =
q −

√
q2 − 4pr

2p
(26)

σ =
q

2p
(27)

Resource stock dynamics are simply regeneration less consumption at time t:

Ė = g(E(t))− c(t) (28)

15See Clark (1990) for more detail on the generalised logistic model and other biological growth models.
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Figure 5: Resource dynamics: (a) logistic and (b) a quadratic approximation.

Consumption provides instantaneous utility u(c(t)), and the planner finds the consumption
path which maximises the discounted present value of the stream of utilities. The utility
functional is:

U [c(τ)] =
∫ ∞

τ
u(c(t))D(t− τ)dt (29)

where τ is the current date, and D(t− τ) is the discount function. In the standard model
with a constant discount rate ρ, the discount function is D(t − τ) = e−[ρ·(t−τ)]. When a
planner employs hyperbolic discounting, the discount function must be modified. Barro
(1999) employs a tractable specification:

D(t− τ) = e−[ρ·(t−τ)+φ(t−τ)] (30)

where the inclusion of φ(t− τ) ≥ 0 allows for hyperbolic discounting. With this discount
function, shown in Figure 1(d), the discount rate ρ + φ′(v) will be declining if φ′′(v) ≤ 0,
where v = t− τ is the distance from the current time, τ , to a future point in time, t. An
exponential function satisfies these requirements:

φ′(v) = be−θv (31)

where b = φ′(0) > 0 and θ > 0. Hence the discount rate, initially ρ + b, declines at the
constant rate θ towards ρ as the time horizon increases. Integrating this equation, and
normalising so that φ(0) = 0 yields our specification for φ(v):

φ(v) =
b

θ

(
1− e−θv

)
(32)

Using this framework, in section 3.1 we determine the consumption path for an environ-
mental policymaker able to commit itself (and its later selves). We briefly discuss the
optimisation problem for the sophisticated planner in section 3.2. In section 3.3, we find
actual and anticipated trajectories for the naive planner, and note that an unforeseen
collapse is a possible outcome under isoelastic utility.
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3.1 The Committed Planner

With log utility and a planner able to commit itself to follow a consumption plan developed
at time τ , the consumption trajectory is the result of the following optimisation:

max
c

U [c(τ)] =
∫ ∞

τ
log c(t)e−[ρ·(t−τ)+φ(t−τ)]dt (33)

subject to:
Ė = −pE(t)2 + qE(t)− r − c(t) (34)

Applying the Maximum Principle we obtain the optimal growth rate in consumption:

ċ

c
= q − 2pE(t)− ρ− φ′(t− τ) (35)

Equations (34) and (35) constitute a non-linear, non-autonomous system of differential
equations. This system resembles the standard Ramsey-Cass-Samuelson optimal economic
growth problem, but has several important differences. The system can be understood
by examining the Ė = 0 and ċ = 0 isoclines. When Ė = 0, consumption must equal the
resource regeneration rate:

c = g(E) = −pE2 + qE − r (36)

Hence the Ė = 0 isocline is given by the parabolic curve in Figure 6. When ċ = 0, from
equation (35) we see that either:

c = 0, or E(t) =
q − ρ− φ′(t− τ)

2p
(37)

Hence the ċ = 0 isocline is the horizontal axis and the vertical line given by E(t) in
equation (37). Because φ′(t − τ) → 0 as t → ∞, from equation (37) it follows that as
t →∞ the vertical ċ = 0 isocline is given by:

Ê =
q

2p
− ρ

2p
= σ − ρ

2p
(38)

This specifies the value of the resource stock at the equilibrium with non-zero consumption.
We find the standard result that the equilibrium resource stock is ρ

2p below the population
at maximum sustainable yield, σ. Given the long run equilibrium resource population in
equation (38), equilibrium consumption can be found from (36):

ĉ = g(Ê) = −pÊ2 + qÊ − r (39)

=
q2 − ρ2

4p
− r (40)

Figure 6 shows the phase-plane for the system, divided into isosectors with three illus-
trative stable manifolds. The manifolds were calculated for initial resource stocks of
E(τ) = 500, 400 and 150 with the following parameter values: (p, q, r) = (0.0001, 0.1, 10),
ρ (long run discount rate) = 0.02, b = φ′(0) = 0.5 and θ (rate of decay of φ′(v)) = 0.5.
With these parameters values, equation (38) gives an equilibrium resource population to
be Ê = 400, and from equation (39) we see that equilibrium consumption is ĉ = 14. The
equilibria at the carrying capacity χ and the minimum viable population µ are stable and
unstable respectively, but neither are optimal as they yield zero consumption.

13
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Figure 6: Phase-plane diagram of the nonlinear optimal consumption problem.

This system has one important difference to the standard Ramsey model. The system
of differential equations is non-autonomous as consumption growth in equation (35) is
an explicit function of t. A result of this is that the equation for the vertical ċ = 0
isocline gives E(t) as a function of t, meaning that this isocline moves as time passes.
This implies that the equilibrium with non-zero consumption is shifting over time.16 The
stable manifolds are shooting for a moving target. For instance, the dotted manifold
in Figure 6(b) shows the optimum trajectory given an initial stock E(τ) = E∗ = 400.
Given this initial condition, optimal consumption under exponential discounting is ĉ = 14,
starting and remaining at the equilibrium. With hyperbolic discounting, however, at
t = τ the vertical ċ = 0 isocline is mathematically negative. Hence consumption begins
as though we are in the top-right isosector, on a pathway heading down and to the left.
As time passes, the vertical ċ = 0 isocline shifts rightwards until it crosses the dotted
manifold, at which point the manifold turns and heads upwards following the isocline until
both (asymptotically) reach equilibrium at Ê = 400 and ĉ = 14. Li and Löfgren (2001)
prove that the committed hyperbolic discounting pathway asymptotically approaches the
constant discounting analogue as the discount rate declines.17

This example is illustrative of a more general feature of the system. Because preferences
are time-inconsistent, there is no, single, stable manifold as in standard problems. For each
given initial condition E(τ), there is a unique c(τ) which will lead to the Pareto-dominant
equilibrium. For each (E(τ), c(τ)) pair there is also a unique stable manifold. In other
words, there are an infinite number of stable manifolds on the phase plane.

Figures 7 and 8 show time paths for consumption and population levels, for the three initial
values of E(τ) = 500, 400 and 150. The assumption of hyperbolic discounting is clearly
evident in the shape of the consumption trajectory: the rate of consumption decline is
faster in earlier periods, reflecting higher impatience. Notice that for initial resource stock

16Note, for instance, that when t = τ , φ′(0) = b, so the vertical isocline starts below its final value
(mathematically, it can even be negative).

17Their rigorous proof involves finding the asymptotic error rate in approximating the non-autonomous
path to an autonomous flow, employing theory developed in Benäım and Hirsch (1996).

14
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Figure 7: Resource consumption with a committed planner.

of E(τ) = 400, described by Figure 8(b), the resource starts at its long run equilibrium,
but due to hyperbolic discounting and the salience of the present, falls before it returns to
its equilibrium level. Essentially, the planner is choosing to commit later periods to lower
consumption levels, so that more can be consumed today.

It remains to note one limitation of the committed solution, highlighted by Barro (1999).
Our solutions were found for a given starting time, τ , which implies that the ability to
commit arose precisely at that starting time. If the possibility of commitment had already
existed, all current and future values of consumption would have been determined at the
point the commitment mechanism appeared. Indeed, if the commitment mechanism had
always existed, then τ is effectively minus infinity and φ′(t− τ) is zero for all t ≥ 0.

Moreover, in the context of renewable resources, mechanisms to commit future generations
are not immediately obvious. We discuss these in more detail in section 5. For now, we
turn to paths in the absence of commitment.

3.2 The Sophisticated Planner

If a commitment mechanism is not available, maximisation using the Pontragin Princi-
ple or Ramsey-like perturbation arguments is impossible. Future planners have different
preferences and will not adhere to the first-best optimum determined at time τ . As such,
we seek a solution analogous to the second-best optimum proposed by Phelps and Pollak
(1968). Time τ planner chooses its strategy, c(τ), to be a best response to future plan-
ners’ selection of c(t). The planner at time τ therefore needs to understand the impact
of changes in c(τ) on the future level of the renewable resource, E(t), and then work out
how this will affect future consumption.

Such an analysis is neatly performed by Barro (1999), who shows that in a decentralised
economy with log utility, the consumption program resulting from this intertemporal game
is observationally equivalent to a consumption program under exponential discounting.18

18As ingenious as this approach is, we are inclined to agree with Solow (1999) that ‘...this does not feel
anything like the way policy is talked about or could be talked about in a democracy, especially since any
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Figure 8: Resource stock evolution with a committed planner.

Barro (1999), however, does not analyse the system under the assumption of naivety, and
we turn now to the main purpose of the model, which is to show that a naive planner will,
up until it is too late, think that it can escape a resource collapse.

3.3 The Naive Planner

The concept of naiveté, developed by Strotz (1956) and Akerlof (1991), does not appear
to have been widely used in continuous-time models. Strotz (1956) sketched out several
anticipated consumption paths for a naive individual, but no actual consumption path.
Neither Barro (1999) nor Li and Löfgren (2001) consider the implications of naivety. Given
the mounting evidence that people behave as, at the least, partial naifs, we develop an
appropriate model here.

In continuous-time, a naive social planner believes at time τ that it can commit its future
selves to a consumption plan. However, at time τ + ε, the naive planner refuses to respect
its preferences at time τ and consumes more than planned. Nevertheless, the planner at
time τ + ε retains the erroneous belief that things will be different from now onwards.

The anticipated trajectories of the naive planner are straightforward. At any time τ , the
anticipated trajectory is given by the commitment trajectory for the stock of resources
E(τ). Hence the variation on the Ramsey formula in equation (35) applies:

ċ

c
= q − 2pE(t)− ρ− φ′(t− τ) (41)

Figure 9(c) shows the anticipated consumption paths at τ = 5, 15 and 30. These obviously
have the same shape as the committed pathway. Indeed trajectory anticipated by the naive
planner at τ = 0 is just the committed trajectory. The derivation of the actual time path
of the naive planner, shown in Figure 9(b), is a little more difficult. At any given moment
in time, the naive planner intends to consume according to the commitment optimum.
Hence its level of consumption at time τ is given by the solution to the non-linear system

current generation is notoriously bad at guessing what future generations will want or do.’
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Figure 9: Resource consumption with (a) committed, (b) naive, and (c) anticipated
by naive planners.

of differential equations in (35) and (34). Rewriting the system here for convenience:

ċ = c · g′(E)− c(ρ− φ′(t− τ)) (42)
Ė = g(E)− c (43)

Although there is no analytical solution to this non-autonomous and non-linear system,
numerical methods provide us with a solution c(τ) = f(E(τ)). For a given level of the
resource stock, the function f(·) tells us the actual consumption by the naive planner.
Combining this solution with the budget constraint gives us a differential equation in E
which we can also solve numerically:

Ė = g(E)− f(E) (44)

Solution of equation (44) gives the actual time path for the resource population levels,
E. Then, using c(τ) = f(E(τ)), we calculate the time path for consumption. Illustrative
paths, using the same parameters as before, are shown in Figures 9 and 10. Figure 9
shows that at any time τ , the naive planner anticipates reducing consumption, starting
from time τ + ε. Of course, when time τ + ε arrives, the planned reduction in consumption
is no longer optimal!

Obviously, with log utility (as assumed above), the actual resource population levels can
never collapse (as u(0) = −∞). Instead, with the naive planner, resource levels asymp-
totically approach the minimum viable population, µ. Consumption asymptotically ap-
proaches zero. With isoelastic utility and γ < 1, however, a collapse is possible. As
the naive planner anticipates (erroneously) that it can commit future selves, a collapse is
only anticipated once a committed planner in the same situation would find it optimal to
collapse the resource. Note that this does not imply that the resource will be collapsed
immediately; with a concave utility function some degree of consumption smoothing will
be optimal even with a positive discount rate.

A collapse will inevitably occur once stock levels fall sufficiently close to the minimum
viable population, µ, that the utility arising from a ‘managed collapse’ exceeds the utility
from ensuring the conservation of the stock. We define the stock level at which collapse is
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Figure 10: Resource stock evolution with (a) committed, (b) naive, and (c) anticipated
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optimal, Ẽ, to be ε units above the minimum viable population, so that Ẽ = µ+ ε. Hence
no collapse is anticipated by the naive planner while stock level E(τ) > µ + ε. However,
the moment that E(τ) = µ + ε the naive planner will be startled to find that it is now
optimal to begin the collapse of the resource. Hence, as in the discrete time model, we find
that an unforeseen resource collapse is a possible outcome for a naive hyperbolic planner
with γ < 1.

4 Applications of the Model

Seven species of Atlantic cod collapsed in the early 1990s, resulting in a fishing moratoria
and ‘one of the worst social and economic nightmares in the nation’s history’, according to
Walters and Maguire (1996). The collapse was caused in part by over-optimistic estimates
of current stock levels and systematically over-optimistic forecasts of future stock levels.
Indeed, over-optimistic forecasts continued to be made even when, year after year, it
emerged that previous forecasts were incorrect. Given the huge economic costs of the
collapse, such naively optimistic planning is surprising.

The collapse of the Peruvian anchovy, once the world’s largest fishery, is also puzzling.
Anchovy fishing fleet capacity increased over the 1960s to the extent that the authorities
feared a collapse of anchovy stocks, according to Aguero (1987). They responded by
restricted the length of the fishing season. Experts such as the Instituto del Mar del
Peru (1981) warned that the fishery should be closed, or it would not survive the next
shock from El Niño. In 1972-73, El Niño arrived, the authorities opened the fishery and
the anchovy population was all but destroyed. The result was an ‘anchovy crisis’ with
worldwide effects on food prices.19 Why did the authorities open the fishery, contrary to
expert advice, knowing that a collapse was likely? They clearly did not want the fishery
to collapse; they had tried to protect stocks prior to 1973. Nor is the problem merely a
‘tragedy of the commons’, as access to the fishery was regulated.20 Was running the risk

19See Idyll (1973).
20While Hardin (1968) coined the term ‘tragedy of the commons’, the problem has been understood for

centuries and considered by philosophers from Aristotle (1992, 2. 3.1261b33-37) in The Politics, to Hume
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Figure 11: Comparison between forecast and actual populations of northern Atlantic
cod.

of a collapse simply irrational?

The models in this paper obviously suggests an alternative explanation for these two
events. If planners were engaging in hyperbolic discounting, one would expect to see
consistently optimistic forecasts showing return of the stock to optimum levels, while
actual stock levels decline.

The Northern Atlantic Fisheries Organisation (NAFO) and its apparent successor Cana-
dian Atlantic Fisheries Scientific Advisory Committee (CAFSAC) employed virtual pop-
ulation analysis to estimate and forecast Atlantic cod stock levels, including the northern
cod shown in Figure 11. After the collapse, Walters and Maguire (1996) used more sophis-
ticated virtual population analysis to show that NAFO had significantly overestimated the
true population levels. These overestimates of current population encouraged harvesting
at higher than optimal levels and was one of the factors in the demise of the northern
Atlantic cod.

The other significant factor was NAFO’s consistently over-optimistic predictions of future
stock levels, also shown in Figure 11. The NAFO forecast in 1982 shows steady population
increases. It became clear a year later that the 1982 prediction for 1983 population levels
had been over-optimistic. In 1983, predictions for the next two years show another rise in
stock levels. Estimates in 1984, however, again revealed the 1983 predictions to have been
too optimistic. The pattern repeats itself for the data available in 1984, 1986 and 1991.

There are, to be sure, several possible explanations for this over-optimism. Walters and
Maguire (1996) note that the ‘abundance indices’ were inaccurate. Irrespective of the
mathematics, one wonders why modelling strategies were not improved in the light of
consistently over-optimistic forecasts. It is hinted that the reasons were as much political
as scientific. Walters and Maguire (1996) admit that:

(1739, Book 3). For instance, in Hume’s A Treatise on Human Nature, he contrasts the ease with which
two neighbours may drain a jointly owned meadow, with the difficulty of a thousand persons organising
to drain a commons.
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results are presented in complex, delicate, and often confused environments of debate between
fishing interests and regulatory authorities over appropriate policy and resource allocation
decisions. In such fora, we are often under more or less explicit pressure from fishery man-
agers to understate the uncertainty in our assessments...

Fishing interests and policy makers, while wanting to ensure a sustainable catch in the
long run, also want the analysis of fishing scientists to justify high catches in the present.
In other words, like people in all endeavours, policymakers weight the present in a par-
ticularly ‘salient’ way, to use the terminology of Akerlof (1991). These are precisely the
characteristics expected when hyperbolic discounting is employed. Indeed, the trajectories
of actual and anticipated northern cod stocks in Figure 11 is not unlike the theoretical
predictions for a continuous-time, hyperbolic discounter in Figure 10.

One could similarly argue that the Peruvian authorities managed the Peruvian anchovy in
a manner consistent with naive hyperbolic discounting. Upon the advice of experts such
as the Instituto del Mar del Peru (1981), they initially made efforts to avoid collapse of
the stock, presumably with a view to sustainable harvesting from a valuable natural asset.
In 1972-73, with the arrival of El Niño, experts advised the government that opening the
stock to fishing would lead to a collapse. Reversing their preference for maintenance of
the anchovy revealed in previous years, the authorities opened the fishery and stock levels
collapsed.

This decision could be explained by a number of reasons, among them uncertain science
and management failure. However, a time-inconsistent preference for the short term is
also very plausible. In the short term of 1972-73, the authorities were subject to pressure
from an increasingly industrialised and powerful anchovy industry to open the resource.
The political benefits of opening the resource would accrue immediately (i.e. in 1972-
73), whereas the costs — cessation of anchovy fishing in later years — accrued in the
future. The salience of the present dominated the decision-making process, resulting in
a resource collapse. Based upon our hyperbolic discounting model, one might speculate
that if the Peruvian authorities had been able to commit to a plan of action several years
in advance which accounted for stochastic events such as El Niño, the collapse might have
been avoided.

Unfortunately, another application for the model may be emerging at a global level. Coun-
tries agreed to targets under the Framework Convention on Climate Change and its Kyoto
Protocol which many, including the USA, now seem unwilling to implement. Under the
Framework Convention in 1990, developed countries agreed to stabilise their emissions at
1990 levels by 2000. (In large part, they failed to do so.) Under the subsequent Kyoto
Protocol, developed countries agreed to reduce their greenhouse gas emissions to 95% of
1990 levels by 2008-2012. Despite undoubtedly genuine intentions at the time of signature
in December 1997, performance to date has been less than encouraging. Moreover, Pearce
(2003) argues that where targets have been met, this was more by accident than design.

While many factors may be partially responsible for the impending failure to meet the
climate change challenge, it could also be explained by the hypothesis that our political
leaders are behaving as naive hyperbolic discounters. The cost of emission reductions
are borne in the present, while the benefits accrue relatively far into the future. The
naive discounter would plan to achieve its reductions, starting soon. Given the higher
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discount rate on the present, however, it would not be optimal to start now. If hyperbolic
discounting has played a role, then our model suggests that a real commitment mechanism
with teeth stronger than the penalties currently applicable under international law is
critical. This, of course, is more easily said than done.

5 Conclusion

The main thrust of this paper is that employing hyperbolic discounting in environmental
policy may have unintended and disastrous consequences. This is not to suggest, however,
that the current policy shift, from constant to declining discount rates, is ill-advised. On
the contrary, it represents an important leap forward for both environmental and economic
theory and policy. All the same, time inconsistency may prove to be a thorn in the side
of this policy change, which will otherwise lead to better provision for future generations.

Given the evidence suggesting that individuals discount the future in a naively hyperbolic
way, it is plausible that policymakers will suffer, and possibly have already suffered, from
the same temptation. Perhaps the best antidote to the risk of collapse demonstrated in this
paper is simply an awareness that such problems may arise. The sophisticated hyperbolic
discounter will not experience an unforeseen collapse, and hence will be able to construct
regulation accordingly. It is only a naive planner who will fail to anticipate a resource
collapse until it is too late.

The other remedy to the naivety problem is to establish appropriate commitment mecha-
nisms. Legal commitment mechanisms are not all that promising at a national level; even
less so at an international level.21 Few nations have constitutionally entrenched environ-
mental laws, and even constitutionally entrenched provisions can always be amended by
later referendum.

Economic commitment mechanisms are probably more appealing. The possibility of irre-
versible investment in environmental technologies would appear to provide a mechanism
to commit later generations. Consider the following example. Suppose that once the
fixed costs of renewable energy research, development and infrastructure provision have
been incurred, the relative marginal costs between renewables and fossil fuel power gen-
eration would favour renewable generation. Sinking irreversible investment into research,
development and infrastructure, then, would compel future generations to use renewable
energy.

In the absence of such solutions, further research into the significance of the time inconsis-
tency problem is necessary. Perhaps this will show that a form of logarithmic discounting
— the only form of declining discount rate to be intertemporally consistent — should
provide the foundation for long-term policymaking. No doubt time will tell.

21Barrett (1990), however, examines the conditions under which treaties are self-enforcing.
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Appendix 1 Proofs of Theorems

Proof of Theorem 1

Necessary and Sufficient Condition. Substituting from equations (2) and (5) into
equation (12) yields the condition that a collapse will occur if and only if:

c∗2
1−γ − 1
1− γ

+ βδ
E∗1−γ − 1

1− γ
<

E1−γ
2 − 1
1− γ

+ βδ
−1

1− γ
(45)

(E2 − E∗/G)1−γ + βδE∗1−γ < E1−γ
2 (46)

Simplification yields:
1− βδx1−γ > (1− x/G)1−γ (47)

where x = E∗/E2 denotes the ratio of the minimum viable population to the stock in the
second period. Rearrangement gives:

G < x
[
1− (βδx1−γ)

1
1−γ

]−1
(48)

Therefore, satisfaction of equation (48) is necessary and sufficient for satisfaction of equa-
tion (12) and for a collapse to occur. This completes the proof of Theorem 1.

Sufficient Condition. The proof above states the necessary and sufficient condition for a
collapse to occur. However, we need only show that a collapse is possible, so finding a suf-
ficient condition is enough. Simpler sufficient conditions than equation (48) are available.
For instance, a first order Taylor approximation around the right hand side of equation
(47) reveals that:

(1− x/G)1−γ < 1− (1− γ)x/G (49)

And therefore, using equations (47) and (49), an alternative sufficient condition for a
collapse is:

1− βδx1−γ > 1− (1− γ)x/G (50)

Simplifying this expression gives:

x >

(
Gβδ

1− γ

) 1
γ

(51)

And therefore,

G <

(
1− γ

βδ

)
xγ (52)

Hence if the regeneration rate G of the renewable resource is small enough to satisfy
equation (52), then the inequality in equation (12) will hold and the resource stock will
collapse in the second period. Equation (52) therefore provides a sufficient condition for
collapse.
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Proof of Theorem 2

Necessary and Sufficient Condition. Analogously to Theorem 1, substitution from
equations (2) and (5) into equation (15) gives:

E1−γ
2 < c∗2

1−γ + δE∗1−γ (53)

E1−γ
2 < (E2 −E∗/G)1−γ + δE∗1−γ (54)

Simplification yields:
1− δx1−γ < (1− x/G)1−γ (55)

where x = E∗/E2 denotes the ratio of the minimum viable population to the stock in the
second period. Rearrangement gives:

G > x
[
1− (δx1−γ)

1
1−γ

]−1
(56)

Therefore, satisfaction of equation (56) is necessary and sufficient for satisfaction of equa-
tion (15) to hold and for no collapse to be foreseen. This completes the proof of Theorem
2.

Sufficient Condition. As before, we are primarily interested in the sufficient condition.
To simplify, note that in the relevant range for x the following inequality holds:

(1− x/G)1−γ > 1− x/G (57)

Therefore a sufficient condition is given by:

1− δx1−γ < 1− x/G (58)

Simplifying gives:
x < (Gδ)

1
γ (59)

And therefore,

G >

(
1
δ

)
xγ (60)

Hence provided the regeneration rate of the renewable resource is large enough to satisfy
equation (60), then the inequality in equation (15) will hold and the planner will not
anticipate a collapse in the second period.

Proof of Theorem 3

Necessary and Sufficient Condition. From Theorem 1, we know that provided G <

x[1−(βδx1−γ)
1

1−γ ]−1, the top inequality of equation (16) holds. From Theorem 2 it follows
that provided G > x[1 − (δx1−γ)

1
1−γ ]−1, then the bottom inequality of equation (16) is

also satisfied. Hence if:

x
[
1− (δx1−γ)

1
1−γ

]−1
< G < x

[
1− (βδx1−γ)

1
1−γ

]−1
(61)
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then both inequalities hold and equation (16) is satisfied, implying an unforeseen extinction
of the resource stock in the second period. This completes the proof of Theorem 3.

Sufficient Condition. Analogously, a sufficient condition for a unforeseen collapse of
the stock in the second period follows from combining the sufficient conditions found in
Theorems 1 and 2. Hence if:

xγ

δ
< G <

(
1− γ

β

)
xγ

δ
(62)

then equation (16) is satisfied, implying an unforeseen extinction of the resource stock in
the second period. Note that this can only be satisfied for β + γ < 1, which is relatively
restrictive. Nevertheless, equation (62) provides a sufficient condition for an unforeseen
collapse.
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Appendix 2 Collapse with Exponential Utility

In this appendix we derive the conditions for a resource collapse under negative exponen-
tial utility in order to illustrate that our results are relatively robust to changes in utility
function. We also show that, if the environmental stock and the minimum viable popula-
tion are very small, the condition for collapse under exponential utility approximates that
under linear utility. This finding corroborates results in the main paper. Beyond these
purposes, however, Appendix 2 does not contain highly significant material and may be
skipped without great loss.

Our utility function is given by:

u(c) = 1− exp(−ωc) (63)

By optimisation equivalent to that under isoelastic utility we have the Euler equation for
an interior solution:

c2 = c3 − log βδG

γ
(64)

Substituting this into the budget constraint in equation (7) yields the optimum second
period consumption as a function of the environmental stock at the beginning of the second
period:

c2 =
Gγ

Gγ + γ + log βδG
.E2 (65)

If this yields (c2, c3) such that c2 > c∗2, then the assumption of an interior solution is
unjustified. As before, we note that extinction of the resource in the second period will
occur if:

u(c∗2) + βδu(E∗) < u(E2) + βδu(0) (66)

The naive planner will not anticipate extinction if:

u(E2) + δu(0) < u(c∗2) + δu(E∗) (67)

Noting that u(0) = 0 we can combine equations (66) and (67) to get a single condition for
an unanticipated extinction:

u(c∗2) + βδu(E∗) < u(E2) < u(c∗2) + δu(E∗) (68)

As with isoelastic utility, with negative exponential utility and reasonable values of the
parameters, we can always find a non-empty set of values (E2, E

∗) resulting in an unfore-
seen extinction. For instance, for β = 0.6, δ = 0.99, ω = 1, g = 0.05, and also E2∗ = 1,
then an unanticipated extinction in the second period will be the optimal course of action
if the minimum viable population is 0.6 < E∗ < 1. In Theorem 4 we show that unforeseen
extinction of the resource is always possible if 1

β < G < 1
βδ .

Theorem 4 [Unforeseen Collapse under exponential utility] If 1
β < G < 1

βδ , then
∃ Ω = {(E2, E

∗) : E2 > E∗ > 0 } 6= ∅ satisfying equation (68).
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Proof 4 Examining the left-hand side of equation (68) and substituting from equations
(5) and (63) yields the condition for a collapse:

exp
(
−ω(E2 − E∗

G
)
)

+ βδ (exp(−ωE∗)− 1) > exp(−ωE2) (69)

→ e−ωE2

(
e

ωE∗
G − 1

)
> βδ

(
1− e−ωE∗

)
(70)

As E∗ → E2 we have:
1
βδ

>

(
eωE2 − 1

)
(
e

ωE2
G − 1

) (71)

Applying similar operations to the right-hand side of (68) yields the condition for a collapse
to be unforeseen:

1
δ

<

(
eωE2 − 1

)
(
e

ωE2
G − 1

) (72)

Combining these two conditions together gives:

1
δ

<

(
eωE2 − 1

)
(
e

ωE2
G − 1

) <
1
βδ

(73)

This equation represents the requirement for an unforeseen resource collapse under neg-
ative exponential utility. Interestingly, if we consider the requirement as E2 → 0, using
L’Hôpital’s rule:

1
δ

< lim
E2→0

(
eωE2 − 1

)
(
e

ωE2
G − 1

) <
1
βδ

(74)

1
δ

< lim
E2→0

ωeωE2

ω/GeωE2G
<

1
βδ

(75)

1
δ

< G <
1
βδ

(76)

As this holds by assumption, we conclude that there exists a non-empty set of pairs (E2, E
∗)

satisfying equation (68).

Hence, we observe that as E2 → 0, the condition for a resource collapse under negative
exponential utility is that found under linear utility. For small values of E2 (and hence
E∗) the condition approximates that under linear utility. The intuition for this can be
shown by noting that the negative exponential utility function is well approximated by a
linear function for values of consumption near zero. The first order Taylor approximation
is u(c) = 1− exp(−ωc) ≈ ωc. This, then, corroborates our results for isoelastic utility in
the main paper, where linear utility was presented as a special case.
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