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Abstract 
 
The highly influential NOAA guidelines (Arrow et al., 1993) for the conduct of contingent 
valuation (CV) studies follows incentive compatibility arguments to recommend the use of a 
single bound dichotomous choice (SBDC) question as the basis for eliciting willingness to pay 
(WTP) estimates for non-market goods.  However, the ‘one shot’, first response nature of the 
SBDC approach is directly at odds with the Discovered Preference Hypothesis (DPH) proposed 
by Plott (1996).  The DPH, which is supported by a considerable body of experimental evidence 
(see, for example, List, 2003), argues that stable and theoretically consistent preferences are 
typically a product of experience gained through practice and repetition.  Under such a hypothesis 
it is the last response in a series of valuations which should be attended to, rather than the first as 
emphasized by the NOAA guidelines.  We develop a unique study design to permit the repetition 
of valuation tasks both with the same and across goods so facilitating the first field based test of 
the DPH using the CV technique.  Results are that while significant discrepancies are observed 
between initial and subsequent WTP responses, these anomalies become insignificant in later 
responses.  These findings raise fundamental questions regarding accepted standard practice for 
CV studies. 
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Introduction 
 
The contingent valuation (CV) method is by far the most commonly applied of all the methods 
available for valuing preferences for non-market goods with literally thousands of applications 
conducted to date (Carson, forthcoming). An early concern regarding such studies was the 
multitude of design permutations which characterized this literature and the impact which these 
variations might have upon willingness to pay (WTP) estimates. This issue was brought into 
sharp focus by debate regarding the CV estimation of damages arising from the Exxon Valdes oil 
spill (Carson et al., 1992, 1994, 2003; Hausman, 1993); debate which was substantially addressed 
through the influential NOAA panel report on CV (Arrow et al., 1993) which provided guidelines 
for future applications. A key recommendation of this report concerned the method through 
which WTP responses should be elicited. Although a wide variety of elicitation techniques are 
available (Carson and Mitchell, 1989; Bateman et al., 2002), mindful in particular of incentive 
compatibility arguments, the NOAA panel recommended the use of a ‘one-shot’ or single-bound 
dichotomous choice (SBDC) referendum style question. Here a CV survey respondent is 
presented with a simple choice between either supporting a given policy program at a specified 
price, or rejecting this opportunity. By varying the specified price across a survey sample 
estimates of summary statistics such as mean WTP may be obtained for policy purposes.  
 
The theoretical case for rejecting all but the SBDC response format can be traced back to the 
work of Gibbard (1973) and Satterthwaite (1975) establishing the potential incentive 
compatibility of one-shot referenda2. However, this work applies to binding referenda involving 
real payments where the consequences of the referendum vote on agency action is clearly 
demonstrated. Whether respondents view the consequences of the vote outcome in hypothetical 
(CV) referenda as similarly binding upon either themselves or affecting agency action is open to 
question. Evidence from economic experiments concerning the incentive compatibility of 
hypothetical single referenda is decidedly mixed. Some studies find convergence of voting 
responses with voting responses in real consequential referenda while other studies report 
divergent results (see Cummings et al. 1997, Taylor et al 2001 and Burton et al 2001). Given this, 
the claimed incentive compatibility properties of the SBDC elicitation format in CV studies 
appear questionable.  
 
A more fundamental critique of the ‘one shot’ nature of the SBDC approach is provided by the 
Discovered Preference Hypothesis (DPH) proposed by Plott (1996).  The DPH argues that stable 
and theoretically consistent preferences are typically the product of experience gained through 
practice and repetition.  Plott notes that markets provide an ideal environment for such repetition 
and learning through which individuals can discover both how best to achieve goals within that 
environment (a process which Braga and Starmer (forthcoming) refer to as ‘institutional 
learning’) and discover features of their own preferences (‘value learning’, ibid). The first 
response SBDC precludes such learning and is in direct conflict with the DPH under which it is 
the last response in a series of valuations which should be attended to, rather than the first. This 
and the empirical questioning of whether incentive compatibility arguments from binding 
referenda can indeed be extended to hypothetical CV studies, raises significant questions 
regarding the common presupposition in favour of the SBDC elicitation method.  
 
Central to the DPH then is the role of repetition within the formation of stable and theoretically 
consistent preferences. Empirical evidence for this learning process is provided by a considerable 
body of experimental evidence gathered across a variety of contexts, examples of which include: 
                                                 
2 Within the CV context this argument is developed through Hoehn and Randall (1987) and Carson et al., (1999). 
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diminution of the WTP/WTA gap and endowment effects over repeated trials (Coursey, Hovis and 
Schulze, 1987; List, 2003; List and Shogren, 1999; Loomes and Sugden, 1998; Plott and Zeiler, 
2003; Shogren et al., 1994 and 2001); reducing hypothetical bias through learning (Bjornstad et 
al., 1997); reduction in the preference reversal anomaly in both real and hypothetical payment 
formats (Cox and Grether, 1996; Cherry et al., 2002; Braga and Starmer, 2003);  and, perhaps most 
pertinently, reduction in preference anomalies amongst more experienced traders or choice makers 
(List and Lucking-Reiley, 2000; List, 2001, 2002a, 2002b). 
 
This evidence suggests that initial valuations of unfamiliar goods (such as those encountered in 
CV surveys) are liable to be based upon poorly formed preferences and therefore prone to be 
influenced by a variety of frequently observed choice heuristics and framing effects resulting in 
apparently anomalous preferences. Under this argument, preference consistency is more likely to 
be observed after repeated valuation trials (Binmore, 1994; 1999), i.e. the initial valuation 
response is viewed as the least rather than the most relevant for welfare estimation and 
subsequent decision making purposes.  
 
The DPH, together with this wealth of evidence of learning effects arising from repeated 
valuation trials, stands in stark contrast with the NOAA panel endorsement of the first response 
SBDC elicitation format. Given this obvious and potentially important conflict, this paper sets out 
to provide a first empirical investigation of the possibility of learning effects within repeated DC 
format CV studies. In so doing we conduct the first field-based test of the DPH using the CV 
technique. This repeats valuation tasks both within and across goods. Results are that while 
significant discrepancies are observed between the initial and subsequent valuation responses, 
these anomalies become insignificant in later responses. These findings raise fundamental 
questions regarding accepted standard practice for CV studies. 
 
The paper is organized as follows. In section 2 we outline a method for conducting repeated DC 
response valuations for the same good while in the following section we extend this design to 
permit repeated valuations across goods thereby building up a series of DC responses allowing 
respondents the opportunity for preference discovery necessary for the DPH to be invoked. 
Formal testing hypotheses are then stated. In Section 4 we outline sampling and analytical 
methodology introducing a novel Monte Carlo based approach to allow testing of learning effects 
across valuation tasks. Section 5 reports results while Section 6 discusses the implications of 
these findings and concludes.  
 
 
2. Research Design (i): Repeated DC valuations within goods.  
 
The SBDC is clearly at odds with the ‘learning through repetition’ argument underpinning the 
DPH. Furthermore, its one-shot nature precludes the repeated trials preference consistency testing 
which is prescribed by the DPH. However, this can readily be addressed by the addition of a 
follow-up DC question to yield the ‘double bound’ DC (DBDC) elicitation format pioneered by 
Hanemann et al. (1991) and Welsh and Bishop (1993). In such DBDC designs the amount 
offered in the second question is determined in part by the response given to the first question 
such that a positive response to an initial WTP amount results in a higher value being presented at 
the second bound.  
 
Although DBDC designs permit a substantial improvement in the statistical efficiency of a given 
sample relative to that provided by applying a SBDC format, nevertheless the validity of the 
DBDC approach has been questioned through several studies which have reported significant 
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differences in the estimated WTP derived from first and second responses (Cameron and 
Quiggin, 1994; Bateman et al, 2001). McFadden (1994) reports results, which “reject at the 1% 
level the hypothesis that first and second responses in the double referendum experiment are 
drawn from the same distribution” (pp705-706). Some commentators have argued that this 
disparity arises from changes in incentive compatibility between the first and second response 
(Carson et al., 1994; Alberini et al., 1997; Carson et al., 1999). However, given the evidence cited 
above regarding whether or not even the first response is indeed incentive compatible, contrasted 
with the substantial evidence of consistent preference formation through repetition, then a DPH 
reading of the DBDC literature might be that these studies provide the first (if inadequate) 
evidence of CV respondents refining their preferences through repetition. Given this, we test such 
a reading by repeating DBDC format studies across a number of goods as described in the 
following section.  
 
 
3. Research Design (ii): Repeated DC valuations across goods.  
 
From a DPH perspective, the two valuation questions presented in a standard DBDC experiment 
provide inadequate opportunities for respondents to discover their preferences. In particular, such 
a test provides no opportunity for repeat exposure to the entire valuation institution. To permit 
such institutional learning (Braga and Starmer, forthcoming) we repeat the DBDC process across 
a series of four goods. The DPH is then tested in two principal ways. First evidence of increased 
preference consistency (a direct prediction of Plott’s hypothesis) is tested by examination of the 
first versus second response disparity found in previous DBDC studies. The DPH expectation 
being that this disparity should diminish as the valuation tasks are repeated for successive goods. 
To control for the possibility that any increase in preference consistency is a by-product of the 
type of goods valued or their order of presentation, a second test uses a split sample methodology 
in which a second group of respondents (Sample 2) are asked DBDC questions regarding the 
fourth a final good valued by the initial group (Sample 1). The DPH expectation here is that, 
controlling for the good, first and second response disparities should be smaller within Sample 1 
(who had been exposed to institutional learning) than amongst Sample 2 (for whom this was the 
only good valued, thereby negating the possibility of institutional learning).   
 
For notational purposes we denote any good presented to a respondent as  where X denotes 
the good in question, i refers to the sample providing the valuation (were i = 1,2) and j denotes 
the order of presentation of that good within the overall list of goods given to that sample 
(therefore j = 1,2,3,4 for i = 1 and j = 1 for i = 2). The goods were non-nested schemes to improve 
animal welfare to be paid for via a compulsory tax on all foodstuffs. Details of the goods 
presented to each sample are as follows:  

i
jX

 
Sample 1: Here respondents were presented with detailed CV scenarios on the following 
list of goods, always given in this order:  
 

(i) Improving living conditions for laying hens ( ) 1
1HENS

(ii) Improving living conditions for chickens ( ) 1
2CHICKS

(iii) Improving living conditions for diary cows ( ) 1
3COWS

(iv) Improving living conditions for pigs ( ) 1
4PIGS
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In order to control for possible sequencing effects (Carson and Mitchell, 1995; Carson et 
al, 1998) goods were presented within an ‘exclusive list’ framework (Bateman et al., 
2004) where goods are presented as alternatives to any other goods given in that list. To 
reinforce this condition, valuations of a given good were elicited prior to valuation tasks 
concerning any subsequent good.  
 
 
Sample 2: Here respondents were presented with just one good to value, namely that good 
which was presented last (fourth) to Sample 1. We denote this good as . 2

1PIGS
 
Remember that the DPH speculates that the divergence in mean WTP between SBDC responses 
(or just the first response from a DBDC study) and that obtained by all responses to a DBDC 
exercise for the same good is due in part to inexperience with CV questions and can be attenuated 
by valuation experience. Given our study design we can now formulate these DPH speculations 
into the following testable hypotheses: 

 
1
oH : For each good we compare mean willingness to pay from first responses (denoted µSBi) with 

those from first and second responses modelled as DBDC (denoted µDBi) data and test the 
hypothesis : µ1

oH SBi = µDBi. The DPH expectation is that Ho is less likely to hold for the first 
good valued than for the last good valued in a series of valuation tasks.  

 
2
oH : The difference (µSBi - µDBi) will be larger for a good if valued first in a list (i.e. good 

being the only good valued by Sample 2) than when that good is presented after 
other valuation tasks in a list (e.g. good  being the fourth good valued by Sample 1).  
To establish this effect of learning we test the hypothesis, :  (µ

2
1PIGS

1
4PIGS

2
oH 2

1PIGS SB1 - µDB1) =  
(µ

1
4PIGS

SB4 - µDB4). 
 

4. Sampling and econometric methodology 
 
The CV questionnaire was administered by face-to face interviews with 400 respondents selected 
by a random sampling process based on the electoral register of Northern Ireland. Respondents 
were randomly allocated to the two treatments such that sample size was 200 respondents for 
both samples.  
 
The data generated by this survey was analyzed using SBDC methods (applied to the first DC 
response for each good valued) and DBDC methods (applied to both first and second DC 
responses for each good valued) as per Hanemann and Kanninen (1999). Details of our modelling 
strategy are presented through the remainder of this section.   
 
Single Bounded Dichotomous Choice Model 
 
In a SBDC exercise CV respondents indicate their WTP by answering yes or no to a set offered 
price. For an individual the probability πyes of responding yes to an offered single bid b1 for a 
certain good can be expressed as follows: 
      
 πyes(yes : β’x > b1)  = H(β’x)  + ei                             (1) 
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where b1 is the value of the bid amount present to the respondent, x represents a set of covariates 
including the bid and β is a vector of parameters to be estimated from the sample data. H is a 
function which expresses the probability and hence the function must return a value between zero 
and one, and it must sum to unity over all possible outcomes.  A cumulative probability 
distribution (cdf) function is used for this purpose.  In the single valuation dichotomous choice 
method there are just two possible outcomes, ‘yes’ and ‘no’ so the sample log-likelihood can be 
expressed as : 
 

LogLike  =      (2) ∑∑
==

−−+
noyes n

i
yes

n

i
yes yy

11
)1log()1(log ππ

 
Where nyes  and nno  are the numbers of respondents replying yes and no respectively to the bid 
values offered and y is a dummy variable indicting an individual’s choice 1 for yes and 0 for no.  
When a linear model is used and H is a logistic cdf using only covariates for the offered bid value 
the probability of a yes response πyes will occur when the WTP exceeds the bid offered. This can 
be expressed as: 
 
 πyes = 1/{1+exp(-αSB - βSBb1)}                             (3) 
 
Where αSB,βSB are the coefficients of constant and bid respectively. The method of maximum 
likelihood is used to estimate the coefficients αSB,βSB. In line with many previous studies (e.g. 
Langford et al, 1998) this study uses a single bounded Logit model. 
 
Double Bounded Dichotomous Choice Model 
 
The DBDC approach extends an initial SBDC-style question with a supplementary DC valuation 
task. If the individual agreed to pay the initial amount then the follow-up question posits a higher 
amount. Conversely if the initial amount is rejected, then the proffered follow-up concerns a 
lower bid level. The probability of a respondent choosing each of the four possible responses 
(yes,yes); (yes,no); (no,yes); (no,no)  is given by : 
 

πyy   = 1 – H(β’xh) 
πyn    = H(β’xh) – H(β’x)        (4) 
πny        = H(β’x)   – H(β’xl) 
πnn  = H(β’xl) 

 
Where x, xh, xl  are the vectors of covariates respectively associated with first bid, second bid 
higher and second bid lower. Where H  is the cdf function chosen. This gives the following log 
likelihood for the sample.  
 

   LogLike=   (5) ∑∑∑∑
====

+++
nnnyynyy n

i
nn

n

i
ny

n

i
yn

n

i
yy nnnyynyy

1111
)log()log()log()log( ππππ

 
where nyy ,nyn ,nny and nnn are the number of occurrences in the sample of each of the four 
outcomes and yy,yn,ny,nn are dummy variables indicating the choice for each individual. 
Following Hanemann et al 1991 we use a logistic cdf for H. This then becomes a double bounded 
logit model. 
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The double-bounded format is often preferred over single-bounded as the latter is statistically 
inefficient requiring relatively large sample sizes to precisely characterize a population’s WTP 
(Herriges and Shogren, 1996). The additional information provided by the follow-up question 
makes the DBDC asymptotically efficient relative to the SBDC. A further advantage of the 
former model is that it is fairly robust with respect to poor bid designs resulting from initial 
parameter misspecification (Hanemann et al., 1991). In effect, the higher second bid provides 
insurance against too low a choice for the initial bid and the lower second bid provides insurance 
against too high a choice for the initial bid (Hanemann and Kanninen, 1999). 
 
Estimates of WTP can be computed from the SBDC and DBDC models. e.g. mean WTP can be 
calculated  for the SBDC model specified in equation (3) using:  
 

µ  = - α/β                                    (6) 
 
The standard errors for µ can be obtained from the variance of Var(µ) =  Var(α/β)  which can be 
calculated using the Delta method first order approximation of variance using Taylor’s when the 
coefficient  variance/ covariance estimates are known.  
 

Tests for differences in mean WTP 
 
Here we outline methods to test  and  that WTP divergence between SBDC and DBDC is 
due to inexperience with CV questions and will diminish for experienced respondents. To show 
this we test the proposition that differences in welfare estimates of mean WTP between SBDC 
and DBDC models are zero (i.e. H

1
oH 2

oH

0:(µ1–µ2)=0). To test this a t-statistic can be calculated as 
follows: 
 
 t = (µ1 – µ2) / √Var(µ1 -µ2)                               (7)  
               
When µ1,µ2 are valued using two independent samples the estimates of the means are 
uncorrelated (Covar(µ1,µ2) = 0) and the variance of the difference of two such means can be 
obtained by summing the individual variances. The variance of the differences of two 
independent means µ1, µ2 can be computed as: 
 

Var(µ1 -µ2) = Var(µ1) + Var(µ2)                               (8) 
 

This is appropriate when comparing differences in mean WTP for independent samples. When 
comparing difference between the first response data used in an SBDC model and the same first 
responses supplemented by follow-up question responses, as per a DBDC exercise, the samples 
can no longer be considered independent since both estimates are computed using the same initial 
responses from the same individual. Hence when estimating Var(µSB - µDB) the Covar(µSB,µDB) 
cannot be ignored as in (8) above. Due to these difficulties with SBDC and DBDC comparisons, 
the Var(µSB - µDB) cannot be obtained from a known closed form solution. An alternative 
approach is presented in this paper. 
  
To obtain the distribution of differences in the sample means, and  to compute an estimate of the 
Var(µSB - µDB)  Monte Carlo techniques can be employed (Efron and  Tibshirani, 1993).  These 
methods use resampling techniques to create a number of sample estimates derived from the 
original sample using the same sampling method as used to obtain the original sample.  Here we 
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obtain for each sample, an estimate (µSB - µDB). The Jack-knife method is chosen to estimate the 
variance VarJ(µSB - µDB). 
  
For an original sample of size n the Jack-knife method uses a set of sample estimates θ which are 
computed from n new samples each of which contain n-1 observations taken from the original 
sample. In this study one observation refers to all data provided by an individual, so when an 
observation is dropped so are all multiple responses given by that individual, replicating the 
original sampling method. The set of samples are composed from the original sample with each 
sample having a different observation removed. The statistic of interest for sample s is θs. Thus a 
distribution of that statistic which reflects the original true distribution is created. Here θs is 
computed as the difference in mean WTP estimates obtained from the SBDC and DBDC models.   
 
The variance for the Jack-knife estimate is obtained from: 
          
 θ = {θ1 , θ2  … θn } 
 
 VarJ(θ)  = { (n-1)/n }(Σ(θs    -  θm))2          (9) 
 
Here the estimate for the difference in θs  is : 
 

θs   =     (µSBs - µDBs) 
 

θm   =    Σ (µSBs - µDBs)/n  
              

Applying these techniques to our survey data we obtain our study results and significance tests, 
which we now present.  
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5. Results 
 
Following Hanemann et al (1991), we estimate parsimoniously specified SBDC and DBDC 
models for each good as presented in Table 1. The models provide parameter estimates of the 
coefficients α, β  for the constant and bid for SBDC and DBDC logistic models. While desirable 
in benefit transfer and policy analysis, additional socio-economic and attitudinal covariates are 
not needed to test for the effects of learning on these welfare estimates.  
 
Table 1 SBDC and DBDC models of WTP to pay for specified animal welfare improvement 
schemes. 
 
 

 Single Bounded Models    (SBDC) Double Bounded  Models   (DBDC) 

Scheme Variable Coeff. Std.Err. t-ratio LL Variable Coeff. Std.Err. t-ratio LL 

αSB 0.92 0.270 3.40 αDB 1.54 0.200 7.70 1
1HENS   

βSB -0.19 0.093 -2.10 
-131.54

βDB -0.56 0.050 -11.2 
-266.61 

            
αSB 1.44 0.283 5.10 αDB 1.57 0.199 7.89 1

2CHICK  
βSB -0.54 0.106 -5.07 -122.62

βDB -0.63 0.052 -12.1 -252.61 

            
αSB 1.32 0.278 4.81 αDB 1.57 0.204   7.70 1

3COWS  
βSB -0.43 0.099 -4.38 -125.55

βDB -0.55 0.047 -11.80 -274.18 

           
αSB 1.29 0.289 4.47 αDB 1.39 0.197 7.07 1

4PIGS  
βSB -0.62 0.121 -5.15 -120.64

βDB -0.68 0.052 -12.94 -263.57 

            
αSB 1.25 0.277 4.49 αDB 1.61 0.202 7.98 

2
1PIGS  βSB -0.42 0.099 -4.23 

 
-126.01 βDB -0.68 0.051 -13.15 

 
-271.88 

 
 
Table 2 presents the results of testing for equality of mean WTP for the same good using SBDC 
and DBDC models. The table provides estimates of the mean WTP for µSB ,µDB (derived from the 
coefficient estimates shown in Table 1 and calculated as µ = -α/β for each model) and the 
difference (µSB - µDB) between these estimates. Standard errors of this difference are calculated 
using the Jack-knife method so as to control for intra-respondent correlation between first and 
second responses for each good. Corresponding t-statistic and probability levels are also reported 
in the final two columns of the table.  
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Table 2:  Comparison of  differences between mean WTP for SBDC and DBDC models for each 
animal welfare improvement scheme  
 

     H0 :  
µSB  = µDB

Scheme Estimate Value Std.Er.1 t-ratio Prob. 

µSB £4.72 
µDB £2.74 

   1
1HENS  

Sample 1 (µSB  - µDB) £1.98 £1.21 1.64 0.10 
µSB £2.68 
µDB £2.51 

   1
2CHICK  

Sample 1 (µSB  - µDB) £0.17 £0.17 1.00 0.32 
µSB £3.10 
µDB £2.87 

   1
3COWS  

Sample 1 (µSB  - µDB) £0.23 £0.26 0.88 0.38 
µSB £2.07    
µDB £2.06    

1
4PIGS  

Sample 1 (µSB  - µDB) £0.01 £0.15 0.07 0.95 
µSB £2.98    
µDB £2.38    

2
1PIGS  

Sample 2 (µSB  - µDB) £0.60 £0.25 2.40 0.02 
 
Note: 1. Standard errors computed using the Jack-knife method to take account of intra-respondent correlation of 

responses.  
Bold type indicates differences in mean WTP which are significant at p≤0.1  

 
The first good valued by respondents in Sample 1 (the treatment with multiple valuation tasks) 
is . Comparison of mean WTP for the SBDC and DBDC models for this good shows by 
far the largest absolute and relative difference in mean WTP of any of the goods values. Although 
standard error is also large the µ

1
1HENS

SB-µDB difference is significantly different from zero at the 10% 
significance level. This anomaly conforms to the existing empirical literature on tests of DBDC 
designs (Carson et al, 1999). However, this finding contrasts markedly with those for the 
succeeding goods valued by Sample 1 such that the significance of difference in mean WTP 
between SBDC and DBDC models falls steadily to p=0.95 for the final good valued, for 
which mean WTP from the two model differs by considerably less than one percent. This latter 
result is in direct contrast with that observed when the same good is presented as the first and 
only good valued by Sample 2 ( ). Here the µ

1
4PIGS

2
1PIGS SB-µDB, difference is significantly different 

from zero at the 2% significance level. Interestingly the pattern of responses observed for  
is most similar to that observed for the  good. Both goods are the first valued by their 
respective samples and both yield significant anomalies which, in the case of Sample 1, disappear 
when respondents have the opportunity to value subsequent goods. Overall then, the results 
shown in Table 2 conform well to the learning effect expectations postulated by the DPH.  

2
1PIGS

1
1HENS

 
A further test of the within good contrast can be calculated by looking at whether the difference 
in mean WTP between SBDC and DBDC for the same good is significantly different for 
experienced respondents (those in Sample 1 valuing  as the fourth good they encounter) as 
opposed to inexperienced respondents (those in Sample 2 valuing  as the first and only 
good they encounter). Results show that experienced respondents do indeed generate significantly 
lower µ

1
4PIGS

2
1PIGS

SB-µDB differences than do inexperienced respondents (p=0.04).  
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A final investigation of the  versus contrast can be obtained by examining the four 
mean WTP measures obtained from applying SBDC and DBDC models to these goods. We can 
denote mean WTP estimates obtained from applying SBDC models to the  and  
values as µ

1
4PIGS 2

1PIGS

2
1PIGS 1

4PIGS
SB1 and µSB4 respectively. Similarly, the mean WTP obtained from applying DBDC 

models to the  and  values are denoted µ2
1PIGS 1

4PIGS DB1 and µDB4 respectively. Table 3 details 
differences between these means and reports significance tests for these differences.   
 
Table 3 : Comparison of mean WTP for the pig welfare schemes presented as either the first 
( ) or fourth ( ) good valued. 2

1PIGS 1
4PIGS

 
 

2
1PIGS  

Mean WTP for pig 
welfare scheme 

presented as first good 
valued 

 

1
4PIGS  

Mean WTP for pig 
welfare scheme 

presented as fourth 
good valued 

 

 
Independent sample t-tests 

 testing equality of mean WTP 

Estimate Value Std.Er. Estimate Value Std.Er. Estimate Value Std.Er. t-ratio Prob. 
µSB1 £2.98 £0.39 µSB4 £2.07 £0.25 µSB1-µSB4 £0.91 £0.46 1.96 0.05    
µDB1 £2.38 £0.21 µDB4 £2.06 £0.21 µDB1-µDB4 £0.32 £0.30 1.08 0.28 

      µSB1-µDB4 £0.92 £0.44 2.08 0.04   
      µDB1-µSB4 £0.31 £0.33 0.95 0.34  

 Note: Bold type denotes differences which are significant at p≤0.1 
 
Table 3 reveals a consistent pattern of differences in mean WTP across treatment and elicitation 
bounds. Where comparison is made between the mean derived from the first response regarding 
the first presented good (i.e. the mean µSB1) then this yields a significant difference with either the 
SBDC or DBDC model based upon responses to the same good presented as the fourth good 
valued. Conversely the DBDC model (recall that this combines first and second responses) from 
the first good does not yield significant differences from measure derived from the same good 
presented as the fourth valued. Overall our results for pig welfare show that it is only the first 
response value stated by inexperienced respondents, which is significantly out of line with all 
other values for this good.  In our concluding section we consider the implications of these 
findings.  
 
 

Conclusions 
 
We contend that this paper highlights a central dilemma for CV research. We question the 
standard presumption in favour of the first response to a DC design focused upon the claimed 
incentive compatibility properties of such a format and contrast this with an approach based upon 
the DPH and supported by a considerable body of experimental evidence to focus instead upon 
the last response to a series of valuation tasks. We have presented findings from a CV study 
designed to contrast the above approaches. These findings are that a familiar, well documented 
and often observed anomaly, the disparity between first and second responses in a double bound 
DC format, disappears when repeated across valuation tasks. Given the persistent nature of this 
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anomaly, this in itself is a notable feature of the paper (as is the novel Monte-Carlo based 
methodology used to analyze these data).  
 
In considering these results, defenders of the traditional, first response approach to CV design 
would need to dismiss not only our central finding of increased consistency and the 
disappearance of the double bound DC anomaly across valuation rounds, but also dismiss the 
DPH itself and the large and steadily increasing body of experimental evidence which supports it 
and dismiss those studies which find that the claimed incentive compatibility of first response 
elicitation formats does not hold within hypothetical CV markets. In contrast those who are 
persuaded by the latter sets of evidence may well view our findings as further support for this 
view.  
 
Our own conclusions are that these findings should not be seen as an excuse to ignore issues of 
incentive compatibility. However, we do question the conventional CV view that first-response 
DC elicitation formats approximate market situations. Importantly such formats do not offer the 
repetition, learning and experience possibilities of real markets. We feel that this is a significant 
failing and one which should be addressed through improved elicitation techniques. Specifically 
we feel that an ideal elicitation format should use repetition and exposure to allow respondents 
the opportunity to gain experience of the valuation mechanism (institutional learning) and 
experience of the good under investigations (value learning) prior to the use of a incentive 
compatible valuation question. Such an approach, we contend, would address much of the 
familiarity, error and consequent anomalies observed in this and many prior CV studies.  
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