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Abstract: 

This paper characterises the analytical solution to a two period competitive storage model of 

commodity prices with periodic harvest distributions, extending the analytical results in 

Chambers and Bailey (1996).  We present a sufficient condition is for the general model such 

that stocks are never depleted in the harvest period.  The partial analytical solution for the 

price function in the harvest period is derived under the assumption of a linear demand 

function.  This solution provides the conditions under which stock-outs in the nonharvest 

period can become an absorbing state.   
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 1.  Introduction  

Recent extensions to the competitive storage model of commodity prices of (Deaton and 

Laroque (DL), (1992)) have incorporated periodic harvest distributions (Chambers and Bailey 

(CB) 1996, Osborne, 2003) to allow both for different harvest sizes across time and periods in 

which a harvest does not occur, but the commodity is traded and consumed.  It is difficult to 

characterise the resulting equilibrium price functions since analytical solutions are not 

available and so the literature has relied on numerical solutions.  This note presents analytical 

results which characterise the equilibrium price functions at low levels of stock in a two 

period model.  The periodicity is represented as the harvest occurring every second period.  

Firstly, a sufficient condition is derived so that stock-outs never occur in a period when there 

is a harvest.  Secondly, the partial analytical solution for the price function in the harvest 

period is derived when the demand function is assumed to be linear. This implies that a stock-

out can reoccur in every nonharvest period even at the maximum possible harvest.  Hence, 

depending on the parameters of the model, stockouts in the nonharvest period can become an 

absorbing state.  This property of the model arises from the common assumption of a linear 

demand function.  Section 2 briefly presents the competitive storage model of Chambers and 

Bailey (1996), upon which the analysis is based.  Section 3 presents the sufficient condition 

such that storage is always profitable in the harvest period.  Section 4 presents the analytical 

solution and other results for the linear demand case.  Section 5 concludes.   

 

2.  The Competitive Storage Model with Periodic Disturbances 

Following CB (1996) assume that time periods (denoted t) can be grouped into “epochs”, with 

different time period types (denoted i) within each epoch.  The simplest representation is to 

assume two time periods within each epoch, one when the harvest occurs (i=h, the harvest 

period) which is followed by a period with no harvest, (i=n, the nonharvest period).  An 

equally valid representation is a “large” harvest followed by a “small” harvest.  Uncertainty 

arises from the harvest realisation (z) and from demand shocks (v).  These two elements 

cannot be separately identified and are denoted iw z v≡ + .  The following assumptions are 

made regarding the relative production in each season, consumer behaviour and the capital 

market:  

 (i) hw  has compact support ,h h hW w w ≡    and cumulative distribution function hQ , 

with expectation denoted ( )h

h h h h

W
w Q dwω ≡ ∫ . 

 (ii) nw  has compact support ,n n nW w w ≡    and cumulative distribution function nQ ,  

with expectation denoted ( )n

n n n n

W
w Q dwω ≡ ∫ . 



 - 3 - 3

 (iii) n hw w−∞ < <  and n hw w< < ∞ . 

 (iv) hQ  exhibits First Order Stochastic Dominance over nQ , (although this does not 

require that the supports of the two distributions do not overlap).  

 (v) Consumer demand is represented by the function ( )D p  with the inverse denoted 

( ) ( )1P q D q−≡ .   

 (vi) The range of the demand function ( )D p  is bounded above, such that ( )0D  is 

defined, and that the range of ( )P q  is ,nw +∞  . 

 (vii) The capital market interest rate is r, and the rate of wastage caused by storage is 

δ ; the discounted cost of storage θ  is such that ( ) ( )0 1 / 1 1rθ δ< ≡ − + < . 

 Denote the equilibrium spot price as tp  and the equilibrium price function in any 

time period of type i, for i = h,n, as ( )i
tf x , where tx  is current stock of the commodity given 

by the harvest and any inventory carried into the period.  Assume each equilibrium price 

function is non-negative, non-increasing and continuous.  Consumers and risk neutral 

speculators jointly determine demand for a commodity, although consumers behave passively 

in the market.  Speculators form a (rational) expectation of price in the following period of 

type j, for j = n,h.  If this expected price is ‘low’, then all stock is sold to consumers in t, and 

speculators have zero demand for inventory.  A “stockout” occurs in the period, and the spot 

price is given by the inverse demand function, ( ) ( )i
t t tp f x P x= = .  If the expected price is 

“high” i.e. greater than the price from selling all current stock to consumers, then speculators 

demand the commodity for storage.  In this case, an amount ( )( )i
tD f x  is sold to consumers, 

the (positive) inventory level is then ( )( )i
t tx D f x−  and the available stock in the next period 

is ( ) ( )( )( )1 1 1j i
t t t tx w x D f xδ+ +≡ + − − .  The level of inventory is chosen to equate the spot 

price and the discounted expectation of price in the next time period given by  

 ( ) ( ) ( )( )( ) ( )1 1
j

i j j i j
t t t t tW

p f x f w x D f x Q dwθ δ+
 = = + − − ∫ . 

CB prove the existence of unique stationary price functions if , which are continuous, non-

negative, and non-increasing that satisfy  

( ) ( ) ( )( )( ) ( ) ( ){ }max 1 ,
j

i j i j
t W

p f x f w x D f x Q dw P xθ δ = = + − − ∫ .  (1) 
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Thus, in equilibrium, the spot price is either the expected future price or the price given by the 

demand curve, whichever is greater2.   

 Let * jp  denote the discounted expected price if no inventories are carried over from 

period i, which is given by  

 ( ) ( ) ( )*
j

j j j j

W
p Ef w f w Q dwθ θ= ≡ ∫ .        (2) 

Following DL (1992), * jp  is “the current price at which, with no inventory demand, a unit 

held into the next period would make zero expected profit”, and is the price at which the 

solution switches between the two possible regimes given in (1).  The equilibrium price 

function is above the demand function when the price from selling all current stock is less 

than this critical price i.e.  

 ( ) ( )i
t t tp f x P x= >  when ( ) * j

tP x p< .       

In this case, carrying inventories is profitable, * j
tp p< , the equilibrium price function is 

given by the first term in (1), and ( )1 1
j

t tp f x+ += .  Alternatively, ( ) ( )i
t t tp f x P x= = , when 

( ) * j
tP x p> , in which case no inventories are held, there is a stock-out and ( )1 1

j
t tp f w+ += .  

In summary, as the amount of inventory carried between the periods varies, the equilibrium 

price function ( )if x  switches between the discounted expected price (positive inventories) 

and the demand function (zero inventories), at the critical price * jp .  This critical price also 

defines the maximum value of the stock for which the equilibrium price function is the 

demand function.  For values of the stock below *ix , where ( )* 1 *i jx P p−≡ , the period i price 

function is given by the demand curve.     

 Figure 1 portrays a possible solution to the model (similar to Figure 2 in CB).  Above 

the critical prices *np  and *hp , the functions ( )hf x  and ( )nf x , are the demand function, 

respectively.  Below these prices the functions lie above the demand function.  In the example 

shown, the functions do not intersect and ( ) ( )h nf x f x≥ .  CB (1996) characterise the 

relationship between the critical prices in each period type.  By strengthening the assumption 

of FOSD to one of nonoverlapping supports of the distributions 

(i.e. n n h hw w w w−∞ < < < < < ∞), they show that * *n hp p>  i.e. the minimum price at which 

it is not profitable to carry inventory into the nonharvest period ( *np ) is greater than the 

minimum price at which is not profitable to carry inventory into the harvest period, ( *hp ).  

However they assert that even this result is  

                                                 
2 In the terminology of CB: harvest corresponds to odd and nonharvest corresponds to even.  The 
results of CB apply for any number of period types within each epoch. 
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Figure 1 

Possible solution to two period model with periodic disturbances 
 
 
 
 
 
 
 
 
 
 
 
       
 
 

 

insufficient to identify the relationship between the price functions themselves, and that any 

further analytical results would require additional assumptions on the disturbances and/or the 

demand function.  The remainder of this note addresses this issue. 

 

3.  A Sufficient Condition for Positive Storage in the Harvest Period.3 

In this section, Proposition 1 presents a sufficient condition for the harvest period price 

function to lie above the demand curve for all values of the stock.  Then, stockouts never 

occur in the harvest period and therefore inventory is always carried into the nonharvest 

period.4 

 

Proposition 1. 

( ) ( )h n nP w E P wθ  <    is a sufficient condition for ( ) ( )hf x P x> , over all x in ,hw +∞  .  

          

Proof. See Appendix. 

 

This condition requires that the price given by the inverse demand curve at the worst harvest 

must be less than the discounted expectation of the inverse demand curve over the nonharvest 

period distribution.  If satisfied, ( ) ( )hf x P x=  is never an optimal solution in the harvest 

                                                 
3 The stationarity of the functions allows us to omit the time subscript in the remainder of the paper.  
4 Osborne (2003) shows that a stockout is impossible in a period prior to one where there is no harvest 

or demand uncertainty, which trivially implies that ( )hf x  is never the demand function.  Thus this 

analysis is most applicable when the distribution of the harvests is heterogeneous across periods i.e. 
small and large harvests alternate.  Then the conditions under which a stockout occurs in the harvest 
period is non-trivial.   

  * h
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period and inventory, ( )( )hx D f x− , is always positive.  Then, the price function is given by 

the discounted expectation of next period price  

 ( ) ( ) ( )( )( ) ( )1
n

h n h n

W
f x f w x D f x Q dwθ δ = + − − ∫ .   (3) 

 This result allows us to order the price functions over a restricted range of the stock. 

For values of the stock x, where *[ , ]n nx w x∈  (recall * 1 *( )n hx P p−≡ ), the price function in 

the nonharvest period is the demand function, ( ) ( )nf x P x= .  Hence, if the condition in 

Proposition 1 is satisfied, for any given value of x within that range, ( ) ( )h nf x f x> ; the 

harvest period function is always greater than the nonharvest period function.  In Figure 1, 

( )hf x  is a possible harvest period price function if Proposition 1 is true i.e. ( ) ( )hf x P x>  

for all x, and hence ( ) ( )h nf x f x>  when ( ) ( )nf x P x= .  However, this ordering of the price 

functions levels of the stock below *nx , does not imply that spot prices are higher in either the 

harvest or nonharvest period, since the level of stock will not be constant over time.  Neither 

does it imply that this ordering will be maintained at values of the stock greater than *nx , 

where it is possible that the functions will cross.5   

 The characterisation of the equilibrium price functions implied by Proposition 1, 

extends the results in CB.  However their assumption of nonoverlapping supports of the 

distributions implies ( ) ( )h nP w P w< , which is clearly more stringent than 

( ) ( )h n nP w E P w<    .  Note however that since θ < 1, for a sufficiently small value of θ  the 

condition in Proposition 1, ( ) ( )h n nP w E P wθ<    , is more demanding than ( ) ( )h nP w P w< .  

Conversely, for θ  close to 1 it is less demanding.  Therefore, although it is not possible to 

compare the restrictiveness of the conditions in general, there are values of θ  for which 

Proposition 1 is satisfied under weaker conditions than the assumption in CB. 

  In the case where a harvest occurs every period, DL prove in Theorem 2 that the 

limit distribution of inventories has a compact support and price follows a renewal process 

when the condition ( ) ( )P w EP wθ<  is satisfied.  The proof requires that inventories are 

positive in some time periods but become zero in finite time i.e. a stock-out occurs with 

probability equal to one and the inventory does not become infinite.  In the periodic case, the 

analogous condition for such a proof is ( ) ( )h n nP w E P wθ< .  This ensures that at the 

maximum harvest, inventories are non-zero between harvest and nonharvest periods, but are 

                                                 
5 Numerical analysis (not shown here) reveals that even if Proposition 1 is true, the price functions will 

meet for some values of the parameters at stock levels greater than *nx . 
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depleted with probability equal to one in the nonharvest period.  Given ( ) ( )h hP w P w< , 

because ( ).P  is a decreasing function, the condition is satisfied trivially when the condition 

in Proposition 1 holds.  Thus the solution to the heterogeneous harvest case shares important 

properties of the simpler nonperiodic case. 

 

4.  Linear Demand Case  

The result in Proposition 1 provides a characterisation of the price functions in the general 

case. However, as suggested in CB, it is necessary to make additional assumptions about 

functional form to gain further knowledge of the price functions.  In this section the partial 

analytical solution to (1) for the harvest period is presented, based on the assumption that the 

demand function is linear its argument.  

 

Proposition 2. 

Assume that the inverse demand function is given by ( )P x ax b= + , where 0a < , 0b > , and 

/hw b a< − .  From (1), the nonharvest period equilibrium price function is the demand 

function, for all *[ , ]n nx w x∈ , i.e. ( ) ( )n
tp f x P x= = .   

(i) Consider a level of stock in the harvest period *[ , ]hx x x∈  such that 

( )( ) 0hx D f x− > , and ( ) ( )( )( ) *1n h nw x D f x xδ+ − − ≤ , for all n nw W∈ .  Then the 

equilibrium price function in the harvest period is linear and is given by the expectation of the 

demand function over the nonharvest period distribution, discounted by θ , i.e. 

 ( ) ( ) ( )( )( ) ( )1
n

h n h n n

W
f x P w x D f x Q dwθ δ = + − − ∫ , 

which can be written as  

( )hf x xα β= + ,       (4) 

where  

( )
( )

1

1 1
a a

θ δ
α

θ δ
−

= >
+ −

; ( )
( )
( )1 1

na b
θ θ δθβ ω

θ δ θ δ
+ 1−

= +
1+ − + 1−

;     

(ii) The maximum level of the stock in the harvest period, x , such that a stockout always 

occurs in the nonharvest period i.e. ( ) ( )( )( ) *1n h nw x D f x xδ+ − − ≤ , for all n nw W∈ , is 

defined as  

( )( ) ( )( )*1 1

1
h n nx p P w b P

a
θ θ ω

δ
  = + − − −  −   .  

 (5)
 

(iii) The maximum harvest leads to a stockout in the nonharvest period (i.e. hw x< ), if  
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( ) ( ) ( )( )*1

1
h n h nP w P p P wθ ω θ

δ
 − > + − − 

    (6) 

          

Proof. See Appendix. 

 

The analytical solution for the harvest period price function given in (4) is defined over levels 

of the harvest period stock such that a stockout does not occur in the harvest period.  All of 

the inventory carried into the nonharvest period is depleted (a stock-out always occurs in the 

non-harvest), irrespective of the realisation of the demand shock nw .  The maximum level of 

the harvest period stock for which (4) applies, x , is defined in (5), and is determined by the 

parameters of the demand function, the wastage rate δ , and the distribution of nonharvest 

period disturbances.  The term ( )*h np P w−  is the difference between the price at which a 

unit of inventory would make zero expected profit and the maximum possible price in the 

nonharvest period.  The second term, ( )nb Pθ ω− , is the difference between the intercept of 

the linear inverse demand function and the inverse demand curve at the mean of the 

nonharvest period disturbances, discounted by the storage cost6.   

Furthermore, if the condition in (6) is satisfied, then once a stockout occurs in the 

nonharvest period, and even if the maximum harvest occurs in the next harvest period, there 

will be a stockout in the nonharvest period.  Thus stockouts become permanent in the 

nonharvest period.  In this case, price follows a renewal process in each harvest “cycle” 

because stocks are depleted in every nonharvest period.  In addition since x  is an increasing 

function of δ , a higher wastage rate increases the range of harvest over which this “absorbing 

state” characteristic dominates.   

To be more precise, whenever *h hw x< , and for the lowest values of the harvest period stock, 

i.e *,h hx w x ∈   , the solution is the demand curve, ( ) ( )hf x P x= .  For * ,hx x x ∈   , the 

( )hf x  is the discounted expectation of the demand curve given in (4), and there is a stockout 

in the nonharvest period.  Finally, when x x> , the harvest period solution is the discounted 

expectation of the nonharvest period function given by (3), the function in the nonharvest 

period is not the demand curve, and we do not know how to characterise the analytical 

solution for ( )hf x .  Figure 2a presents the numerical solution to the model where the 

parameter values are chosen to show these three regimes of the equilibrium price function (δ   

 

                                                 
6  In the linear case ( ) ( ) ( )( ) ( )nn

n n n

W

n n n

W
w Q dwP w Q dw P P νω== ∫∫ , and this simplification is used in 

Proposition 3. 
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Figure 2a 

Numerical solution with linear demand function 

1.5a = − , 5b = , [ ]~ 0.4,0.85nw U , [ ]~ 0.8,1.25hw U , 15%δ = , 3%r = , 825θ = 0. . 

 

 

Figure 2b 

1.5a = − , 5b = , [ ]~ 0.4,0.85nw U , [ ]~ 0.8,1.25hw U ,  1%δ = , 3%r = , 94θ = 0. . 

  

is exaggerated and set equal to 15%).  Note that hQ  exhibits FOSD over nQ , the supports of 

the distributions overlap and 0nω > .  For this combination of the parameters, 2.23x = , 

which is greater than 1.25hw = .  Thus (6) is satisfied implying that stock-outs are an 

“absorbing state”.  Note also that the price functions cross in this case. In Proposition 3  we 

specialise Proposition 1 to the linear demand case.   

     *hx  *nx        STOCK   x  

 
*np  

*hp  

 
 

       STOCK 
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Proposition 3. 

If   

( )1h n b
w

a
θω θ> − − ,        (7) 

then  

( ) ( )hf x P x> , for all ,hx w ∈ +∞  . 

           

Proof.  See Appendix 

 

The condition then takes a simpler form, (7). If it holds then *h hw x>  and the solution given 

in (4) applies for the range of harvest period stock x, ,hx w x ∈   . Furthermore, storage is 

always positive at the end of the harvest period and the harvest period function lies strictly 

above the nonharvest period function when it equals the demand function.  The condition 

requires that the minimum of the harvest distribution, is greater than a weighted average of the 

mean of the nonharvest period distribution, nω , and the stock value at which the price given 

by the demand curve is zero, /b a− .   

This lower bound is increasing in the mean of the nonharvest distribution nω , the slope of the 

inverse demand function a, and the wastage rate δ .  Thus a higher nω  or δ , or a more elastic 

demand function all imply that (7) is harder to satisfy and stockouts are more probable in the 

harvest period, cet. par.  The effect of the elasticity of demand is consistent with the 

numerical analysis in DL.  

 The condition in Proposition 3 is less restrictive than the nonoverlapping support 

assumption of CB, ( h nw w> ), for values of θ  such that 
/

/

n

n

w b a

b a
θ θ

ω
+≡ < <1
+

.  The value of 

θ  in the numerical example is 0.92, implying that (7) is weaker than h nw w>  for wastage 

rates up to 5% when the interest rate is 3%. 

 The numerical solution to the model is presented in Figure 2b using the previous 

parameter values but for a lower wastage rate, (δ  = 1%), which ensures Proposition 3 is 

satisfied.  Hence the harvest period price function is above the demand curve for all values of 

the stock, showing that even at the lowest possible harvest hw , speculators always demand 

the commodity for inventory.  With the lower wastage rate, (6) is not satisfied and stockouts 

in the nonharvest period are not an absorbing state, ( 1.25hw =  and 0.96x = ).   

 

5.  Conclusion 
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This note has characterised the equilibrium price functions in a two period competitive 

storage model of commodity prices, when harvests have periodic distributions.  We present a 

sufficient condition for stockouts not to occur in the harvest period.   

Assuming a linear demand function allows us to derive the analytical solution for the harvest 

period price function  over an interval of the  range of the stock.  In the linear demand case, 

we characterise the condition ((6) above) such that the stock reaching the harvest period is 

permanently zero.    

 The conditions underlying the characterisation of the equilibrium price functions 

above are not directly comparable to the assumption made in CB of nonoverlapping support 

of the periodic distributions.  However, if the wastage and interest rates are low enough, our 

results hold under weaker conditions.  
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7.  Appendix 
 
 

Proof of Proposition 1 

All stock is consumed in the harvest period and no inventory is carried into the nonharvest 

period when *n
tp p≤ , in which case  

 ( ) ( )h
tp f x P x= = , ( )1 1

n
t tp f w+ += ,   

from (1), where ( ) ( )*
n

n n n

W
p f w Q dwθ= ∫ .  This implies ( )*np P x≤  i.e. the discounted 

expected price in the nonharvest period is less than the price attainable from selling all current 

stock.  Conversely, stock is always carried into the nonharvest period and ( )P x  is never the 

solution in the harvest period if  

  ( )( ) *max nP x p<       (A1) 

i.e. the highest possible price in the current period is less than the discounted expected price 

in the nonharvest period.  By definition ( ) ( )nP x f x≤  in the nonharvest period, therefore 

( ) ( ) ( ) *
n n

n n n n

W W
P w Q dw f w Q dw pθ θ≤ ≡∫ ∫ . Since ( )

,
arg max

h

h

w w
P w w

 ∈ +∞ 

= , a sufficient 

condition for (A1) is  
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  ( ) ( ) ( )E
n

h n n n

W
P w P w Q dw P Wθ θ  < ≡  ∫ .   (A2) 

If  (A2) is satisfied, holding stocks until the nonharvest period is always profitable.   

         

Proof of Proposition 2 

(i) Recall (1): the solution in the harvest period is given by  

( ) ( ) ( )( )( ) ( ) ( ){ }max 1 ,
n

h n n h n n

W
f x f w x D f x Q dw P xθ δ = + − − ∫  

If ( ) ( )hf x P x= , then the analytical result is directly available.  If ( ) ( )hf x P x> , then ,  

( ) ( ) ( )( )( ) ( )1
n

h n n h n n

W
f x f w x D f x Q dwθ δ = + − − ∫ . 

For all values of the stock x in the nonharvest period, such that *[ , ]n nx w x∈ , then, 

( ) ( )nf x P x= , ( ) ( )( )( ) *1n h nw x D f x xδ+ − − ≤  and  

( ) ( ) ( )( )( ) ( )1
n

h h n h n n

W
f w P w x D f x Q dwθ δ = + − − ∫   (A3) 

Then for any draw of the harvest in the nonharvest period, nw , the solution is given as 

( ) ( )( )( )1n hP w x D f xδ + − −  = ( ) ( )
1

h
n f x b

a w x b
a

δ
   − + − − +         

. 

Simplifying and integrating over the nonharvest period distribution gives 

( ) ( )( )( ) ( )1
n

n h n n

W
P w x D f x Q dwδ + − − ∫      

  = ( ) ( )( )1
n

n n n h

W
a w Q dw b ax f x bδ+ + − − +∫ .   (A4) 

Denote ( )n

n n n n

W
w Q dwω = ∫ .  Substituting (A4) into (A3) and solving for ( )hf x  gives  

( ) ( ) ( ) ( )
( ) ( )1

1 1
h nf x a b ax b

θ δθ ω
θ δ θ δ

−
= + + +

+ 1− + 1−
.    

Denoting  

( )
( )

1

1 1
a

θ δ
α

θ δ
−

=
+ −

, and ( )
( )
( )1 1

na b
θ θ δθβ ω

θ δ θ δ
+ 1−

= +
1+ − + 1−

,  

gives Proposition 2(i). 

( )hf x xα β= + .       (A5) 

Clearly 
( )

( )
1

1
1 1

θ δ
θ δ

−
<

+ −
 giving aα > , because 0a < .   

 

(ii) Let x  denote the maximum value of the stock in the harvest period, such that  

( )hf x xα β= +  i.e.  
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 ( ) ( )( )( ) *1n h nw x D f x xδ+ − − ≤ .     (A6) 

Then for all ,n n nw w w ∈   ,  

( ) ( )( )( )( ) ( ) ( )( )( )( )1 1n n h n hf w x D f x P w x D f xδ δ+ − − = + − − . 

Assume (A6) holds exactly at the maximum harvest in the nonharvest period nw , i.e.  

( ) ( )( )( ) *1n h nw x D f x xδ+ − − = .  

Substituting the inverse demand function, the equilibrium price in the harvest period from (4), 

using ( )* 1 *n hx P p−= , and simplifying gives  

( ) ( )( )( )
*

1
h

n p b
aw ax x b a

a
δ α β  −+ − − + − =  

 
, 

and solving for x  gives 

( )
( )( )

( )
( )

*

1

h np aw b b
x

a a

β
α δ α

− + −
= −

− − −
.      (A7) 

Noting  

( )1 1

a
a α

θ δ
− =

+ −
; 

( )
( )

1

1 1

nb a
b

θ θω
β

θ δ
− −

− =
+ −

, 

this simplifies further to   

( ) ( )( ) ( )( )*1 11

1
h n nx p aw b b a b

a

θ δ
θ ω

δ
 + − 

= − + − − + − 
.  (A8) 

Noting ( )P x ax b= + , gives the result in Proposition 4.    

 
(iii) To show hw x< , substitute (A8) and ( )P x ax b= + , which gives 

 
( )( ) ( )*1

1
h h n naw b p P w Pθ θ ω

δ
 + > + − + −   

and with some simple manipulation this becomes, 

 
( ) ( ) ( )( )*1

1
h n h nP w P p P wθ ω θ

δ
 − > + − −  . 

 
Proof of Proposition 3 

by substitution. 


