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In this paper we consider the situation where two independent random walks
are used in various frequently-employed nonlinear test and estimation pro-
cedures. We show analytically and by simulation that all nonlinear test
and estimation procedures wrongly indicate that (i) the two independent
random walks have a significant nonlinear relationship, and (ii) the spuri-
ous nonlinear relationship becomes stronger as the sample size approaches
infinity.
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1 Introduction

The seminal study of Granger and Newbold (1974) showed that when two
independent random walks are used in a linear regression, one tends to find
a significant relationship between the variables. This phenomenon is termed
‘spurious regression.’ Granger and Newbold discovered this phenomenon by
undertaking a Monte Carlo experiment and later Phillips (1986) provided a
rigorous and elegant proof.

The results in the two papers served as a springboard to a subsequent
long series of investigations of the phenomenon for different types of re-
gression and different types of data generating process. While Granger and
Newbold (1974) and Phillips (1986) used driftless random walks, Entorf
(1997) analyzed two independent random walks with non-zero drifts. It is
now well understood that the spurious regression phenomenon also occurs for
a wider class of time series; I(2) processes (Haldrup, 1994), non-stationary
fractionally integrated processes (Marmol, 1998), stochastic unit root pro-
cesses (Granger and Swanson, 1997) and some particular types of stationary
processes (Tsay and Chung, 2000, Granger et al, 2001, Kim et al, 2003).

All these studies, however, rely on the use of linear regression and, there-
fore, demonstrate the existence of ‘spurious linear regression.’ To the best
of our knowledge, no previous papers investigate the possibility of spurious
nonlinear relationship between two independent variables. The use of lin-
ear regression is mainly motivated not by underlying economic insights or
theories, but by its computational convenience and tractable interpretation
of the results. It is more plausible and less restrictive to assume that the
relationship between many economic variables is better characterized by a
nonlinear specification. Many nonlinear models can provide better economic
insights and have been increasingly used by applied economists.

This paper investigates the finite sample and large sample behavior of
some popular nonlinear tests when they are employed to test if there exists
a nonlinear relationship between two independent random walks. The paper
is organized as follows. Section 2 briefly explains the nonlinear tests used in
our study. We present in Section 3 some Monte Carlo evidence for spurious
nonlinearity and provide theoretical explanations for the findings. Section
4 concludes the paper.

2 Nonlinear Tests

We consider two independent random walks yt and xt generated from the
data generating process (DGP):

yt = yt−1 + εyt, (1)

xt = xt−1 + εxt.
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where t = 1, 2, ..., T and the error terms εyt and εxt are assumed to satisfy
the following conditions.

Assumption 1. (i) εyt is i.i.d(0, σ
2
y), (ii) εxt is i.i.d(0, σ

2
x) and (iii) εyt and

εxt are independent.

To investigate a possible nonlinear relationship between yt and xt, a re-
searcher might conduct various nonlinear tests. Most nonlinear tests are
usually based on the model:

yt = x̃
0
tθ + g(xt,α,β) + εt

where x̃t = (1, xt)
0 and θ = (θ0, θ1)

0. The function g(xt,α,β) captures a
possible nonlinear contribution of xt, and α,β are some parameters govern-
ing the nonlinear behavior of that function. The nonlinear function g is
assumed to satisfy g(xt,α,β = 0) = 0 so that the natural null hypothesis
is then H0 : β = 0. We include in our study five popular nonlinear tests
and one newly developed nonlinear test by Hamilton (2000). All six tests
are based as a preliminary step on the OLS regression of yt on x̃t. For our
subsequent discussion, we define θ̂ to be the OLS estimator from that re-
gression, êt to be the residuals (êt = yt − x̃0tθ̂) and ft to be the fitted value
(ft = x̃

0
tθ̂).

1. The Ramsey RESET test: The Ramsey RESET test (regression specifica-
tion error test) proposed by Ramsey (1969) exploits the idea that if there is
no nonlinearity, then any nonlinear transformation of ft should not be useful
in explaining yt. The test is based on the following auxiliary regression:

êt = x̃
0
tθ̃ +

rX
k=1

âkf
k+1
t + ṽt (2)

for some r ≥ 1. The null hypothesis is H0 : a1 = ... = ar = 0. The Ramsey
RESET test statistic is

RESET = TR2
d→ χ2(r)

where R2 is the uncentered R2 from (2). When r is large, fk+1t can be
highly correlated. To avoid the multicollinearity problem, the largest r∗(< r)
principal components are used.

2. The McLeod and Li test: The McLeod and Li test developed in McLeod
and Li (1983) is obtained by applying the standard Ljung and Box Q-statistic
to the squared residuals ê2t . This test captures departures from linearity in
mean. The test statistic is

McLeod = T (T + 2)
mX
k=1

ρ̂ (k)2

T − k
d→ χ2(m)
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where ρ̂ (k) is the sample kth order autocorrelation function of ê2t given by

ρ̂ (k) =
TX

t=k+1

(ê2t − σ̂2)(ê2t−k − σ̂2)/
TX
t=1

(ê2t − σ̂2)2

with σ̂2 = T−1
PT
t=1 ê

2
t .

3. The Keenan test: Keenan (1985) suggests a test based on Tukey’s non-
additivity test using f2t as in the RESET test. The procedure to obtain the
statistic is as follows: (i) regress yt on x̃t to obtain ft and êt (ii) regress f

2
t

on x̃t and calculate the residuals denoted by ξ̂t, and (iii) regress êt on ξ̂t and
obtain the residuals v̂t. The Keenan test asks whether the squared fitted
value f2t has any additional forecasting ability for yt. The test statistic is

Keenan = (T − 4) ê
0ξ̂(ξ̂

0
ξ̂)−1ξ̂

0
ê

v̂0v̂
d→ χ2(1) (3)

where ê, ξ̂, v̂ are T × 1 vectors of êt, ξ̂t, v̂t respectively.

4. The neural network test: The neural network test proposed by White
(1989) is based on the following nonlinear specification

yt = x̃
0
tθ +

qX
k=1

βkψ(x̃
0
tγk) + εt

where ψ(z) = (1 + e−z)−1. The null hypothesis is H0 : β1 = ... = βq = 0
for particular choice of q and γk. Usually γk are randomly drawn from the
uniform distribution within [0, 1]. The test statistic is

Neural = TR2
d→ χ2(q)

where R2 is the uncentered R2 from the OLS regression of êt on x̃t and
ψ(x̃0tγ1), ...,ψ(x̃0tγq). As in the RESET test, the largest q∗(< q) principal
components are used to avoid the multicollinearity problem when q is large.

5. The White dynamic (first order) information matrix test: The dynamic
information matrix test proposed by White (1992) is based on the following
dynamic information matrix indicators:

mt(xt, θ,σ) = S vec[ sts
0
t−1]

where st = st (xt, θ,σ) is the conditional score function of the likelihood of
a linear model yt = x̃0tθ + εt with εt ∼ N(0,σ2) and S is a nonstochastic
selection matrix that can be used to focus attention on particular elements
of st. The score function is

st (xt, θ,σ) = σ−1(ut, utxt, u2t − 1)0
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where ut = εt/σ. Let ŝt = st(xt, θ̃, σ̃) and m̂t = S vec[ŝtŝ
0
t−1] where θ̃ and σ̃

are the quasi-maximum likelihood estimators. Three test statistics can be
obtained

White1 = T−1M̂
0
T Ĵ

−1
T M̂T

d→ χ2(q)

where M̂T = T
−1PT

t=1 m̂t, ĴT = T
−1PT

t=1 m̂tm̂
0
t−(T−1

PT
t=1 m̂tŝ

0
t)(T

−1PT
t=1

ŝtŝ
0
t)
−1(T−1

PT
t=1 ŝtm̂

0
t) and q is the dimension of mt;

White2 = TR2
d→ χ2(q)

where R2 is the uncentered R2 from the OLS regression of the generalized
residual ût = (yt − x̃0tθ̃)/σ̃ on x̃t and m̂t/ût;

White3 = TR2
d→ χ2(q)

where R2 is the uncentered R2 from the OLS regression of one on m̂t and
ŝt.

6. The flexible nonlinear test: The flexible nonlinear test in Hamilton (2000)
is based on

yt = x̃
0
tθ + λm(gxt) + εt

where m(·) is a unknown nonlinear function. Naturally, the null hypothesis
is H0 : λ = 0 and its test statistic is given by

Hamilton =
[ê0Hê− σ̂2tr (MHM)]2

σ̂4
³
2tr{[MHM − (T − k − 1)−1Mtr (MHM)]2}

´
d→ χ2(1)

where M = IT −X(X 0X)−1X 0, X is the T × 2 matrix made of x̃t, and H is
a T × T matrix whose (i, j)th element Hij is given by

Hij = 1− h
2
|xi − xj | if

h

2
|xi − xj | ≤ 1

= 0 otherwise

with h = 2[T−1
PT
t=1 (xt − x)2]−1/2 where x = T−1

PT
t=1 xt. The Hamilton

test is different from the previous five tests in that the user does not need
to specify the nonlinear function m(·) and this is why the method is called
‘flexible’.

3 Spurious Nonlinearity

We first present some simulation evidence for spurious nonlinearity. Two
independent random walks yt and xt are generated through (1) and then the
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six tests discussed in Section 2 are employed to test whether yt is nonlinearly
related to xt for various sample sizes T = 50, 100, 500, 1000 and 10000. The
simulation results are reported in Table 1. First of all, it is striking that
even with T as low as 50, the rejection rates of all six tests are considerably
larger than the nominal level 5%. All White tests reject the null of linearity
in favor of nonlinearity almost 100% of the time, displaying most severe
spurious nonlinearity. They are followed by the McLeod (67%) and Hamilton
(51%) tests. The RESET (40%), Keenan (38%) and Neural (38%) tests
are the most resistant among the six tests considered. As the sample size
increases, the rejection rates for the White, McLeod and Hamilton tests
quickly converge to one while the rate of convergence is much slower for the
other tests. For example, for the Keenan and Neural tests, rejection rates
are 95% and 96% even when T is 10000. We have conducted an additional
simulation for these tests and confirmed that the rejection rate does converge
to one eventually.

The simulation results suggest that none of the six test statistics converge
in distribution to their intended asymptotic distributions shown in Section
2, and in fact they tend to diverge to infinity. Given this strong simula-
tion evidence, we now provide a theoretical explanation for this spurious
nonlinear regression phenomenon. In particular, we investigate the asymp-
totic behavior of the RESET and Keenan tests since these two are not only
among the most frequently used nonlinear tests by applied economists, but
they also render the theoretical analysis tractable. Theorem 1 below shows
the limiting distributions of the RESET and Keenan tests when scaled by
T−1.

Theorem 1 Suppose yt and xt are generated by (1) and Assumption 1
holds. When r = 1 for the RESET test, we have

T−1RESET ⇒ Ψ2eζ/ΨζζΨee,

T−1Keenan⇒ Ψ2eζ/(ΨζζΨee −Ψ2eζ),
where

Ψeζ = σ3yζ (2ω − π)

½Z 1

0
W (r)V (r) dr −

Z 1

0
W (r) dr

Z 1

0
V (r) dr

¾
+σ3yζ

2

½Z 1

0
W (r)2 V (r) dr −

Z 1

0
W (r)2 dr

Z 1

0
V (r) dr

¾
−σ3yζ3

½Z 1

0
W (r)3 dr −

Z 1

0
W (r)2 dr

Z 1

0
W (r) dr

¾
−σ3yζ2 (2ω − π)

"Z 1

0
W (r)2 dr −

½Z 1

0
W (r) dr

¾2#
,

Ψζζ = σ4yζ
2 (2ω − π)2

"Z 1

0
W (r)2 dr −

½Z 1

0
W (r) dr

¾2#
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+2σ4yζ
3 (2ω − π)

½Z 1

0
W (r)3 dr −

Z 1

0
W (r) dr

Z 1

0
W (r)2 dr

¾
+σ4yζ

4

"Z 1

0
W (r)4 dr −

½Z 1

0
W (r)2 dr

¾2#
,

Ψee = σ2y

Z 1

0
V (r)2 dr −

½Z 1

0
V (r) dr

¾2
− σ2yζ

2

"Z 1

0
W (r)2 dr −

½Z 1

0
W (r) dr

¾2#
,

ζ =

R 1
0 W (r)V (r) dr − R 10 W (r) dr

R 1
0 V (r) drR 1

0 W (r)2 dr −
nR 1

0 W (r) dr
o2 ,

ω =

Z 1

0
V (r) dr − ζ

Z 1

0
W (r) dr,

π = 2ω + ζ

R 1
0 W (r)3 dr − R 10 W (r)2 dr

R 1
0 W (r) drR 1

0 W (r)2 dr −
nR 1

0 W (r) dr
o2 ,

and W(r) and V(r) are independent Wiener processes on C [0, 1].

The limiting distributions are not Chi-square distributions and the re-
sults confirm our observation from the simulation that the statistics diverge
to infinity, rejecting the null of linearity in favor of spurious nonlinearity.

4 Summary

While most papers in the spurious regression literature exclusively focus on
the linear regression framework, in this paper we present both small sample
and large sample evidence showing that ‘spurious nonlinear regressions’ can
occur when two independent random walks are used in nonlinear estimation
and testing procedures. Thus, this paper shows that the so-called spuri-
ous regression phenomenon can occur in practice more frequently and more
widely than previously perceived. We conclude the paper by emphasizing
the point that when interpreting nonlinear test results in favor of nonlin-
earity, applied economists should weigh the evidence against the persistence
structure of the time series under investigation.
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APPENDIX

Proof of Theorem 1. We first consider the Keenan test. The test statistic
in (3) can be written as

T−1Keenan =
(
PT
t=1 êtξ̂t)

2PT
t=1 ξ̂

2
t

PT
t=1 v̂

2
t

+ op(1) (4)

=
(T−5/2

PT
t=1 êtξ̂t)

2

(T−3
PT
t=1 ξ̂

2
t )(T

−2PT
t=1 ê

2
t )− (T−5/2

PT
t=1 êtξ̂t)

2
+ op(1)

where êt = yt − θ̂0 − θ̂1xt, ξ̂t = f2t − â − b̂xt, v̂t = êt − δ̂ξ̂t, and â, b̂, δ̂
are the corresponding OLS estimators. There are three terms in (4) and we
examine them separately. The first term is

T−5/2
TX
t=1

êtξ̂t = {2(T−1/2θ̂0)θ̂1 − (T−1/2b̂)}{T−2
TX
t=1

(yt − y) (xt − x)}

+θ̂1{T−5/2
TX
t=1

(yt − y) (x2t − x2)}

−θ̂31{T−5/2
TX
t=1

(xt − x) (x2t − x2)}

−{2(T−1/2θ̂0)θ̂21 − θ̂1(T
−1/2b̂)}{T−2

TX
t=1

(xt − x)2}

where y, x, x2 are the sample means of yt, xt, x
2
t respectively. The limit of

each term of T−5/2
PT
t=1 êtξ̂t is as follows:

θ̂1 ⇒
σy

nR 1
0 W (r)V (r) dr − R 10 W (r) dr

R 1
0 V (r) dr

o
σx

·R 1
0 W (r)2 dr −

nR 1
0 W (r) dr

o2¸ ≡ σy
σx

ζ.

Note that T−3/2
PT
t=1 xt ⇒ σx

R 1
0 W (r) dr, T−3/2

PT
t=1 yt ⇒ σy

R 1
0 V (r) dr

and T−2
PT
t=1 xtyt ⇒ σxσy

R 1
0 W (r)V (r) dr from which we have:

T−1/2θ̂0 ⇒ σy

½Z 1

0
V (r) dr − ζ

Z 1

0
W (r) dr

¾
≡ σyω,

T−2
TX
t=1

(yt − y) (xt − x) = T−2
TX
t=1

xtyt − (T−3/2
TX
t=1

xt)(T
−3/2

TX
t=1

yt)

⇒ σxσy

Z 1

0
W (r)V (r) dr − σxσy

Z 1

0
W (r) dr

Z 1

0
V (r) dr,
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T−5/2
TX
t=1

(yt − y) (x2t − x2) = T−5/2
TX
t=1

x2t yt − (T−2
TX
t=1

x2t )(T
−3/2

TX
t=1

yt)

⇒ σ2xσy

Z 1

0
W (r)2 V (r) dr − σ2xσy

Z 1

0
W (r)2 dr

Z 1

0
V (r) dr,

T−5/2
TX
t=1

(xt − x) (x2t − x2) = T−5/2
TX
t=1

x3t − (T−2
TX
t=1

x2t )(T
−3/2

TX
t=1

xt)

⇒ σ3x

Z 1

0
W (r)3 dr − σ3x

Z 1

0
W (r)2 dr

Z 1

0
W (r) dr,

T−2
TX
t=1

(xt − x)2 ⇒ σ2x

"Z 1

0
W (r)2 dr −

½Z 1

0
W (r) dr

¾2#
,

T−1/2b̂ =
T−5/2

PT
t=1 (xt − x) (f2t − f2)2

T−2
PT
t=1 (xt − x)2

= 2(T−1/2θ̂0)θ̂1 +
θ̂
2
1{T−5/2

PT
t=1 (xt − x)2 (x2t − x2)}

T−2
PT
t=1 (xt − x)2

⇒ ζ
σ2y
σx

2ω + ζ

R 1
0 W (r)3 dr − R 10 W (r)2 dr

R 1
0 W (r) drR 1

0 W (r)2 dr −
nR 1

0 W (r) dr
o2

 ≡ ζ
σ2y
σx

π.

Combining all the limit results, we obtain

T−5/2
TX
t=1

êtξ̂t ⇒ σ3yζ (2ω − π)

½Z 1

0
W (r)V (r) dr −

Z 1

0
W (r) dr

Z 1

0
V (r) dr

¾
+ σ3yζ

2

½Z 1

0
W (r)2 V (r) dr −

Z 1

0
W (r)2 dr

Z 1

0
V (r) dr

¾
− σ3yζ

3

½Z 1

0
W (r)3 dr −

Z 1

0
W (r)2 dr

Z 1

0
W (r) dr

¾
− σ3yζ

2 (2ω − π)

"Z 1

0
W (r)2 dr −

½Z 1

0
W (r) dr

¾2#
≡ Ψeζ .

Next, we turn to the second term T−3
PT
t=1 ξ̂

2
t which is given by

T−3
TX
t=1

ξ̂
2
t = {2(T−1/2θ̂0)θ̂1 − (T−1/2b̂)}2{T−2

TX
t=1

(xt − x)2}
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+2θ̂
2
1{2(T−1/2θ̂0)θ̂1 − (T−1/2b̂)}{T−5/2

TX
t=1

(xt − x) (x2t − x2)}

+θ̂
4
1{T−3

TX
t=1

(x2t − x2)2}.

The only new term is the last term whose limit is given by

T−3
TX
t=1

(x2t − x2)2 = T−3
TX
t=1

x4t − (T−2
TX
t=1

x2t )
2

d→ σ4x

Z 1

0
W (r)4 dr − σ4x

½Z 1

0
W (r)2 dr

¾2
.

Hence, it follows that

T−3
TX
t=1

ξ̂
2
t ⇒ σ4yζ

2 (2ω − π)2
"Z 1

0
W (r)2 dr −

½Z 1

0
W (r) dr

¾2#

+2σ4yζ
3 (2ω − π)

½Z 1

0
W (r)3 dr −

Z 1

0
W (r) dr

Z 1

0
W (r)2 dr

¾
+σ4yζ

4

"Z 1

0
W (r)4 dr −

½Z 1

0
W (r)2 dr

¾2#
≡ Ψζζ .

The last term in (4) can be written as

T−2
TX
t=1

ê2t = T−2
TX
t=1

{(yt − y)− θ̂1 (xt − x)}2

⇒ σ2y

Z 1

0
V (r)2 dr −

½Z 1

0
V (r) dr

¾2
−σ2yζ2

"Z 1

0
W (r)2 dr −

½Z 1

0
W (r) dr

¾2#
≡ Ψee.

Therefore, we have the desired result:

T−1Keenan⇒ Ψ2eζ
ΨζζΨee −Ψ2eζ

.

Next, we turn to the RESET test. When r = 1, the statistic is TR2 and
R2 is the uncentered R2 from the following auxiliary regression:

êt = θ̃0 + xtθ̃1 + â1f
2
t + ṽt. (5)
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Now let us compare this regression with the regression in the third step for
the Keenan test, which is

êt = δ̂ξ̂t + v̂t (6)

= δ̂(f2t − â− b̂xt) + v̂t.

Hence, it can be easily seen that the two auxiliary regressions in (5) and (6)
are identical, which implies that the uncentered R2 can be calculated using
(6) and is given by

R2 =
(
PT
t=1 êtξ̂t)

2PT
t=1 ξ̂

2
t

PT
t=1 ê

2
t

.

Therefore, we have

T−1RESET =
(T−5/2

PT
t=1 êtξ̂t)

2

(T−3
PT
t=1 ξ̂

2
t )(T

−2PT
t=1 ê

2
t )

⇒ Ψ2eζ
ΨζζΨee

which completes the proof. ¥
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Table 1. Proportion of rejections of nonlinear tests at nominal 0.05 level

T 50 100 500 1000 10000

RESET 0.40 0.63 0.89 0.96 1.00
McLeod 0.67 0.99 1.00 1.00 1.00
Keenan 0.38 0.55 0.80 0.85 0.95
Neural 0.38 0.56 0.80 0.85 0.96
White1 1.00 1.00 1.00 1.00 1.00
White2 1.00 1.00 1.00 1.00 1.00
White3 1.00 1.00 1.00 1.00 1.00
Hamilton 0.51 0.73 0.98 1.00 1.00
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