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Abstract

This paper studies sabotage in tournaments with at least three
contestants, where the contestants know each other well. Here, every
contestant has an incentive to direct sabotage specifically against his
most dangerous rival. In equilibrium, contestants that choose higher
productive effort are sabotaged more heavily. This might explain find-
ings from psychology, where victims of mobbing are sometimes found
to be overachieving. Further, sabotage equalises promotion chances:
in an interior equilibrium it is a matter of chance who will win, even
when contestants differ a lot in their abilities. This, in turn, has
adverse consequences on who might want to participate in a tourna-
ment. Since better contestants anticipate that they will be sabotaged
more heavily, it may happen that the most able stay out and the
tournament selects one of the least able with probability one. Several
extensions are studied, for example, easy victims, different prize struc-
tures, and handicaps. Further, implications for the optimal design of
tournaments and, more generally, career tracks in organisations, are
considered.
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1 Introduction

Labor market tournaments have the double role of selecting the most able
individuals and supplying incentives. Although many economists have voiced
the opinion that the selection aspect is at least as important as the incentives
aspect (e.g. Rosen 1986, Schlicht 1988, Glazer and Hassin 1988), the focus
of the bulk of research has clearly been on the latter. This paper explicitly
addresses the selection aspect. The question is whether tournaments, and
more generally relative comparison contests, tend to select the most able in-
dividuals. Since there is usually an irreducible component of luck in winning
a tournament, the relevant question is not whether the most able will always
win, but rather whether they have the greatest chances of winning.
In most tournament models, it is clearly the case that more able con-

testants have a greater chance of winning.1 But the picture changes radically
once we take into account that tournaments - like other relative comparison
contests - give each contestant an incentive to sabotage his rivals (Lazear
1989). Here “sabotage” is a catchall term for different kinds of activities
that are intended to hinder the productive efforts of other contestants. These
range from strategic withholding of information, less mutual help, outright
forms of mobbing, and actual physical sabotage.
There is one obvious problem in using a tournament for selection in the

presence of sabotage. The result might be the promotion of the best sabo-
teur who might be not very good at working productively - and promoting
the best saboteur is not necessarily in the interest of the firm. This is a
particularly striking example of the more general point that ability is a mul-
tidimensional property, and that the abilities and personality traits needed
to win a tournament are not always the same as those needed at a higher
level in a hierarchy.
This paper focusses on a more subtle point. It starts with two observa-

tions. In many real world tournaments, there are more than two contestants
who compete for a single prize. And the contestants often know each other
well, especially if they work together closely and regularly. Then each contes-
tant knows who is his most dangerous rival. Intuitively, sabotaging a strong
rival improves one’s own chance of winning more than sabotaging a weaker
rival does. Therefore, each contestant has an incentive to sabotage this rival

1Lazear and Rosen (1981), Nalebuff and Stiglitz (1983), Green and Stocky (1983),
Rosen (1986).
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most fiercely.
I show, in a tournament model with linear production functions which is

very close to the classic model of Lazear and Rosen (1981), that the result of
this effect is an equalization of winning probabilities. In an interior equilib-
rium of a tournament between at least three contestants, each contestant has
the same chance of winning. In other words, who will win the tournament is
a matter of pure chance, even if some contestants are much more able than
other contestants.
In fact, the selection properties of tournaments may even be much worse.

Since the most able individuals are sabotaged most, they may well have a
lower expected utility from participating in the tournament. Once we take
into account that participation in a tournament is endogenous, it turns out
that only the least able individuals may want to participate. In that case, a
tournament selects one of the least able with probability one.
Having derived these results, I go on to consider some extensions. As a

robustness check, I consider risk aversion and more general production and
cost functions. An especially interesting case is when some contestants are
“easy victims” (easier to sabotage than others). I show that easy victims are
sabotaged more heavily and have lower chances of winning the tournament.
Another set of extensions concerns the tournament design. I study a

different prize structure, when there are n− 1 equal winner prizes, and only
the contestant with the lowest output gets loser prize which is strictly smaller.
Here, the incentives to sabotage are very different than in the case of only
one winner prize. In any pure strategy equilibrium, every contestant will
sabotage only one of his rivals. Moreover, there is one contestant (“the
victim”) who is sabotaged by all his rivals, and has the least chance of getting
one of the prizes. Obviously, if the contestants have identical cost functions,
anyone might be the victim. By continuity, even if the contestants differ in
their abilities, one of the more able ones might turn out to be the victim.
Therefore, there is no guarantee that on average better contestants will be
selected by this kind of tournament.
I also consider competitive handicaps (as proposed by Lazear and Rosen

1981). I show that contestants who benefit from the handicap are sabotaged
more heavily, whereas the contestants who are disadvantaged by the handicap
are sabotaged less. In an interior equilibrium, it is still a matter of pure
chance who wins. However, now existence of interior equilibria depends on
the size of the handicaps as well as on the differences in ability.
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Some evidence on sabotage
Since sabotage is usually illegal, it is difficult to test the importance of

sabotage empirically. Nevertheless, there is considerable evidence for the
importance of sabotage. Some anecdotal evidence is given by the following
quotation (cited from Murphy 1992, fn. 4):

John Dvorak, PC Magazine editor (September 27, 1988) explains how
a friend received his promotion: “He managed to crack the network
messaging system so that he could monitor all the memos. He also
sabotaged the workgroup software and set back the careers of a few
computer naive souls who didn’t realize that someone was manipulat-
ing their appointment calendars. They would miss important meetings
and be sent on wild-goose chases, only to look like complete buffoons
when they showed up for appointments that were never made.”

More importantly, Drago and Garvey (1998) use survey data to test the
basic model of sabotage in tournaments due to Lazear (1989)). They find that
when promotion incentives are strong, contestants tend to help each other
less, corroborating Lazear’s model.2 Recent evidence from experimental eco-
nomics also underlines the importance of sabotage in tournaments. Harbring
and Irlenbusch (2002, 2003) find that the contestants tend to sabotage each
other even more than one would expect on the basis of the game theoretic
analysis. However, none of these papers directly addresses the question who
will be sabotaged most fiercely.
There is a huge literature from psychology on bullying and mobbing in

the workplace (see Einarsen et al. (eds.) (2003) for a survey). It is generally
agreed that bullying is a multifaceted fact. Part of the behavior under inves-
tigation seems to be related to sabotage in tournaments. For example, Zapf
and Einarsen (2003, 172) write that “Bullying due to micropolitical behavior
indicates harassment of another person in order to protect or improve one’s
own position in the organization.” Vartia (1996) finds that competition for
tasks and advancements and competition for the superior’s favour and ap-
proval belong to the most often perceived reasons for bullying - which fits
nicely to the tournament literature. See also and Björkvist et al. (1994) who

2There are also papers using data from sports that give some empirical support to
Lazear’s model, see Becker and Huselid (1992) (auto racing) and Garicano and Palaciios-
Huerta (2000) (European soccer).
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find that experienced reasons to harassment were predominantly envy and
competition about jobs and status.
In some studies, victims of bullying in the workplace are found to be

“overachieving”: more achievement oriented, punctual, accurate and consci-
entious than the control group (Zapf and Einarsen 2003, 178). While this is
often explained with regard to group norms, the present paper offers another
explanation. As I show below, people that choose higher productive effort
are sabotaged more heavily. The reason is that they are more dangerous
rivals in a contest for promotion.
Another finding is that victims of bullying tend to be more vulnerable

than the control groups, e.g. “low in social competencies, bad conflict man-
agers, unassertive and weak personalities” (Zapf and Einarsen 2003, 174ff).
I capture this in a stylized way by considering the role of easy victims.

Related literature
The incentives to sabotage were pointed out early in the tournament liter-

ature (Nalebuff and Stiglitz 1983, p. 40). The present paper is most closely
related to Lazear (1989) and Chen (2003). Lazear considered the optimal
tournament reward structure from the incentives aspect and showed that, in
the presence of sabotage, the optimal prize structure is compressed. How-
ever, Lazear does not discuss the possibility of directing sabotage specifically
against stronger rivals and the implications of this for the selection proper-
ties. Chen (2003) also studies sabotage in selection tournaments. However,
he is mostly concerned with the fact that some contestants may have a com-
parative advantage in sabotaging. My paper complements Chen’s in several
ways. Since Chen only considers the case of decreasing returns to sabotage,
he does not get the result that winning probabilities are equalized. Moreover,
Chen does not consider the participation decision, does not discuss easy vic-
tims, and considers only the case of a single prize. On a more technical level,
Chen’s analysis assumes the existence of interior equilibria. An additional
contribution of my paper is that I derive necessary and sufficient conditions
for the existence of interior equilibria for the case of a quadratic cost function.
Other papers that study sabotage include Drago and Turnbull (1991) (who
study how bargaining between workers about effort and mutual help affects
optimal incentive schemes), Chan (1996) (who studies external recruitment
as a means of keeping sabotage incentives low) and Kräkel (2000) (who con-
siders the effect of relative deprivation in tournaments with sabotage).
Sabotage-like activities have been studied in other contexts as well. Shu-
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bik’s (1954) model of a “truel” (three person duel) is closely related to the
present paper. Here the “truelist” with the lowest shooting ability may have
the best chances of survival. The reason is that the contestants have an in-
centive to shoot at the truelist who is the best shot. Baumol (1992) considers
sabotage in the process of innovation. Skaperdas and Grofman (1995) and
Hess and Harrington (1996) model negative campaigning in election races.
Konrad (2000) studies sabotage in rent seeking contests. Auriol et al. (2002)
show that, when the principal cannot commit to long term contracts, career
concerns in teams give the agents incentives to sabotage, even if they are not
involved in a tournament scheme. The results of the present paper are also
relevant to these other contests.
In addition,the paper also contributes to the small but growing literature

on the selection properties of tournaments and other kinds of contests. One
important paper in this literature is Rosen (1986), who studied a sequential
elimination tournament. Meyer (1991) works out how to design a repeated
contest between the same contestants in order to get the most information
about the contestants. Clark and Riis (2001) study a selection tournament
in the case where performance deterministic. They show that by making the
winner prize depend on which of two test standards are passed, the tourna-
ment can be designed to select the most able contestant as a winner. However,
they do not consider sabotage. Hvide and Kristiansen (2003) consider risk
taking in a selection contest. This literature contrasts with the statistical
theory of selection (e.g., Gibbons, Olkin and Sobel 1977) in that equilibrium
effects are important and lead to new, and often surprising, conclusions.

The paper proceeds as follows. Section 2 sets out the model. Section
3 studies how sabotage equalizes promotion chances. Section 4 considers
the decision whether to participate in a tournament. Section 5 discusses
extensions. Section 6 considers implications for the design of tournaments,
and section 7 concludes.

2 The model

There are n contestants. For simplicity, the contestants are assumed to be
risk neutral but this is not crucial. Contestant i chooses his productive effort
xi and his sabotage efforts si1, ..., si(i−1), si(i+1), ..., sin, where sij denotes the
sabotage of contestant i against contestant j. He has a personal cost of doing
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so which is given by

ci

Ã
xi,
X
j 6=i

sij

!
, (1)

where ci : R2 → R is is a twice differentiable function that is increasing in
both arguments and convex. Note that the function ci can be different for
each contestant i.
The output produced by contestant i is given by3

qi = xi −
X
j 6=i

sji + εi. (2)

Here εi is an error term. The εi are identically and independently distributed
with PDF f. Let F denote the CDF corresponding to f . I assume that f has
full support and is strictly log-concave.4

The cost functions are known to all the contestants. This simplifying
assumption captures the idea that work colleagues often know each other
pretty well, while their superiors know considerably less about them.
The contestant with the highest output gets a winner prize w which rep-

resents the monetary equivalent of a promotion. All the other contestants
get a strictly lower loser prize which is normalized to zero. Let pi denote
contestant i’s probability of winning. Then his payoff is

ui = piw − ci

Ã
xi,
X
j 6=i

si,j

!
.

Contestant i maximizes ui subject to the non-negativity constraints xi ≥ 0
and sij ≥ 0 for all j 6= i.

3One could also model the heterogeneity of the contestants by using alternative pro-
duction functions. For example, one could assume qi = βixi − γi

P
j 6=i sji + εi, where

βi and γi are player i’s ability in working and sabotaging, respectively, or the additive
specification qi = βi + xi −

P
j 6=i sji + εi . This would not affect the main results of the

paper.
4The assumption of log-concavity is fulfilled by most commonly studied distribution

functions, see Bagnoli and Bergstrom 1989. Log-concavity of the PDF implies unimodality
of the PDF; in fact, log-concavity is equivalent to strong unimodality, see Ibragimov (1956)
and An (1998). It will become clear in the proofs of lemmas 1 and 2, that the assumption
that f is everywhere log-concave is sufficient, but strictly speaking not necessary, for the
results of the paper.
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Let us briefly review the case two contestants. Contestant 1 wins if

x1 + s12 − x2 − s21 > ε2 − ε1.

Let G denote the CDF of the difference ε2 − ε1. Then

p1 = G (x1 + s12 − x2 − s21)

and p2 = 1− p1. Hence the marginal benefit of working and sabotaging are
identically the same for the two contestants:

∂p1
∂x1

=
∂p1
∂s12

=
∂p2
∂x2

=
∂p2
∂s21

for all x1, x2, s12, s21.

In equilibrium, a contestant that has both lower marginal cost of working
and lower marginal cost of sabotaging will work harder and sabotage more.
Consequently, he will have better chances of winning the tournament. Of
course, this does not mean that someone who is better at working produc-
tively will win more often - his rival might be much better at sabotaging.
Still, if these abilities are positively correlated, the tournament can be used
to select better contestants.

This is not true if n ≥ 3. This case, on which I will focus for the rest
of the paper, is radically different, due to the fact that each contestant has
several rivals and can choose which one to sabotage most fiercely.
To analyze the case n ≥ 3, define

yij := xi −
X
k 6=i

ski −
Ã
xj −

X
k 6=j

skj

!
.

Note that yij = E (qi) − E (qj) . Hence yij can be interpreted as the deter-
ministic headstart of contestant i against contestant j. Using this notation,
we have

pi =

Z ∞

−∞
[Πj 6=iF (yij + εi)] f (εi) dεi. (3)

The following lemma makes precise the intuition that sabotaging a strong
rival improves one’s own chance of winning more than sabotaging a weaker
rival does.
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Lemma 1 For all values of the decision variables, the following inequalities
are equivalent:
a) xj −

P
l 6=j slj > xk −

P
l 6=k slk

b) pj > pk
c) ∂pi

∂sij
> ∂pi

∂sik

Proof. See appendix.
The main intuition behind lemma 1 is as follows. By sabotaging j, con-

testant i increases the probability that he will win against j. But winning
against j is beneficial for i only if contestant i simultaneously wins against
all other contestants, including k. But it is more likely that i wins against k
when xk −

P
l 6=k slk is small. The assumption that f (z) is everywhere log-

concave is sufficient, but not necessary, for this intuition to carry over to the
formal model.5

3 Sabotage equalizes promotion chances

Lemma 1 has interesting implications for the question of whether the more
able contestants have greater chances of winning in equilibrium. Define an
interior equilibrium as a pure strategy equilibrium6 in which every contestant
sabotages all his rivals. Now we can state the first main result of the paper.

Proposition 1 In every interior equilibrium, every contestant i = 1, ..., n
wins with the same probability pi = 1

n
.

Proof. Assume that in a pure strategy equilibrium i sabotages all his
rivals. If xj −

P
l 6=j slj > xk −

P
l 6=k slk, it follows from lemma 1 that ∂pi

∂sij
>

∂pi
∂sik

. Now i can decrease sik by a small amount and, at the same time, increase
sij by the same amount. His cost is unchanged, but his probability of winning
is higher than before, so the initial situation cannot have been an equilibrium.
Therefore, we must have xj −

P
l 6=j slj = xk −

P
l 6=k slk for all j, k 6= i in an

equilibrium where i sabotages all his rivals.
5In fact, the weaker assumption that F (z) is log concave would be sufficient. (If the

PDF f is log-concave, so is the CDF F, but not vice versa - see An (1998).) Furthermore,
F (z) doesn’t have to be log-concave everywhere.

6Henceforth, I sometimes write “equilibrium” for “pure strategy equilibrium”. I do
not consider mixed strategy equilibria in this paper.
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If all contestants sabotage all their rivals, then it follows that

xj −
X
l 6=j

slj = xk −
X
l 6=k

slk for all contestants j, k (4)

and hence p1 = ... = pn =
1
n
.

Proposition 1 says that, in an interior equilibrium, who will win the tour-
nament is a matter of pure chance. The intuition behind the proposition is
simple: If (say) contestant 1 had a higher probability of winning than con-
testant 2, than it would be better for contestant 3 to increase s31 by a small
amount and, at the same time, decrease s32 by the same amount. By lemma
1, this would increase his chance of getting the promotion without changing
his costs.
As the following proposition shows, “overachievers” - contestants that

choose higher productive effort - are sabotaged more heavily. As mentioned
in the introduction, this is in line with some recent results from psychology
on mobbing.

Proposition 2 In every interior equilibrium, contestants that choose a higher
productive effort are sabotaged more heavily.

Proof. From equation (4) it follows immediately that in every interior
equilibrium xj−xk =

P
l 6=j slj−

P
l 6=k slk holds for all contestants j, k. There-

fore, if xj > xk, we have
P

l 6=j slj >
P

l 6=k slk.

One can strengthen propositions 1 and 2, in that we do not have to restrict
attention to interior equilibria where literally all contestants sabotage all
their rivals. I show in the appendix that if at least one of the following
conditions holds in an equilibrium, then pi =

1
n
for all i = 1, ..., n in this

equilibrium:

1. There are at least two contestants who sabotage all their rivals.

2. Each contestant is sabotaged by at least two rivals.

3. The contestants can be renumbered so that si(i+1) > 0 for i = 1, .., n−1
and sn1 > 0.
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On the other hand, existence of equilibria with equal promotion chances
is not automatically ensured. There can be two types of corner solutions.
Firstly, there might be no sabotage at all in equilibrium. This is especially
likely when the marginal cost of the first unit of sabotage is high, and if
the number of contestants is high (see Konrad (2000)). The reason is that
sabotage involves a positive externality to all the contestants except the one
who is sabotaged. This externality is more important when there are many
contestants, and sabotage is therefore less attractive. Since the focus of this
paper is on tournaments where sabotage plays a role, I will assume that
∂ci(xi,0)
∂sij

= 0 holds for all xi ≥ 0 and all contestants i, j (i 6= j). This ensures
that there is some sabotage in equilibrium.
However, there can still be corner solutions of a second type. For example,

if there is one contestant (“she”) who is much better than all her rivals,
she will have a higher chance of winning in the equilibrium even though
only she is sabotaged by all the other contestants. In such a situation, it
doesn’t pay for the other contestants to sabotage anyone except her, so they
direct all sabotage against her. Intuitively, one would expect corner solutions
of this type if the contestants are very different. Given the complexity of
the problem, it is very difficult to derive general conditions for existence
of interior equilibria. However, some important lessons can be learned by
considering the following example.

Example 1 The cost functions are given by

ci

Ã
xi,
X
k 6=i

sik

!
=

γi
2

x2i +

ÃX
k 6=i

sik

!2 .

There are two types of contestants: l low cost contestants with γi = 1, and
h = n− l high cost contestants with γi = γ > 1.

In this example, the contestants differ only in one parameter. This pa-
rameter γ is a natural way to measure how different the contestants are,
something which is considerably more complicated to do in the model with
general cost functions. Higher values of γ imply greater differences between
contestants. Further, there will always be some sabotage in equilibrium, since
the first unit of sabotage has zero marginal cost.

Proposition 3 Consider example 1.
a) A necessary condition for the existence of a pure strategy equilibrium with
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pi =
1
n
is

γ ≤
(

1 + n
l(n−2) , if l ≥ 2,

1 + n(n−2)
n2−2n+2 , if l = 1.

(5)

b) If, in addition, the inequality

max
z

µ
∂2

∂z2

Z ∞

−∞
F (z + ε)n−1 f (ε) dε

¶
<

(n− 1)2
n2 − 2n+ 2

1

w
(6)

holds, then existence of interior equilibria is ensured.

Proof. See appendix.
Inequality (6) serves to rule out problems related to possible non - con-

cavities of the objective function.7 It ensures that the objective functions
are concave enough. To give an example, if the error terms follow a Gumbel
distribution F (ε) = exp

¡− exp ¡− ε
σ

¢¢
, it can be shown that inequality (6)

holds if the variance of the error terms is high enough.
While proposition 3 confirms the intuition that there will not be an in-

terior equilibrium if the contestants are very different, it also shows that
contestants can differ substantially and nevertheless have the same chance
of winning in equilibrium. For example, if there are two low cost and one
high cost contestant, then interior equilibria exist if γ ≤ 5

2
. The high cost

contestant can have a cost which is more than twice the cost of the low cost
contestants, and still have the same chance of winning in the equilibrium!
The point that interior equilibria exist even if the contestants are quite dif-
ferent in their abilities can be expected to carry over to more general cost
functions.
The equilibrium is not unique. In fact, there is a continuum of interior

equilibria, where only the total amount of sabotage that contestant i =
1, ..., n chooses (

P
j 6=i sij), and the total amount of sabotage that contestant

i suffers (
P

j 6=i sji) is determined. This can be illustrated as follows. Suppose
that every contestant i = 1, ..., n−1 sabotages contestant i+1 one unit more,
and contestant n sabotages 1 more. In addition, i = 2, ..., n sabotages i− 1
one unit less and contestant 1 sabotages contestant n less. Then the total

7This problem is common in tournament models. See, among others, Lazear and Rosen
(1981), p. 845 fn. 2; Nalebuff and Stiglitz (1983), p. 29; Lazear (1989), p. 565 fn. 3;
Kräkel (2000), p. 398 fn. 17; McLaughlin (1988), p. 236 and p. 241.
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amount of sabotage against any contestant is unchanged, and so are all the
marginal benefits of working and sabotaging. Further, the total amount of
sabotage chosen by a contestant is the same as before, and so are the marginal
costs. Therefore, if the situation before was an equilibrium, then the new
situation is an equilibrium, too. Basically, the game is a coordination game
where there are many ways to coordinate.
Proposition 3a implies that if the number of contestants is large, corner

solutions are more likely. This is as it should be expected. With many
contestants sabotage is less attractive, and therefore plays a less important
role. So the range of the parameter γ for which sabotage completely equalizes
promotion chances gets smaller.
Proposition 3a also shows that the case of a single low cost contestant

(l = 1) is different from the other cases (l ≥ 2). The reason for this is as
follows. If l ≥ 2, and the contestants are very different, then there will be a
corner solution where no one will sabotage a high cost contestant. On the
other hand, if l = 1, the low cost contestant will always sabotage high cost
contestants, because he has no other rivals. Here, in a corner solutions all
the high cost contestants sabotage only the single low cost contestant.

4 Participation

An individual will participate in the tournament only if his utility from par-
ticipating exceeds his reservation utility. Once we take this into account, it
turns out that only less productive individuals may want to participate in the
tournament. I illustrate this point with the quadratic cost function example.
Assume that the conditions given in proposition 3 are fulfilled. In an

interior equilibrium the following first order conditions have to hold for all
i = 1, ..., n:

w
∂pi
∂xi

= γixi, (7)

w
∂pi
∂sij

= γi
X
j 6=i

sij for all j 6= i. (8)

By proposition 1, we have pi = 1
n
for all contestants i = 1, ..., n. Therefore,

yij = 0 for all i, j = 1, ..., n, and equations (7) and (8) reduce to
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xi =
wg

γi
,X

k 6=i
sik =

wg

γi (n− 1)
, (9)

where

g :=
∂pi
∂xi

¯̄
yij=0∀j 6=i = (n− 1)

Z ∞

−∞
F (ε)n−2 f (ε)2 dε.

The more productive contestants will work harder (choose higher xi), and
sabotage more (choose higher

P
j 6=i sij), than the less productive ones. But

they are also the victims of more sabotage, and therefore do not have a higher
chance of winning. Utility in equilibrium is given by

w

n
− γi
2

Ãµ
wg

γi

¶2
+

µ
wg

γi (n− 1)
¶2!

=: u∗ (γi) .

Note that u∗ (γi) increases in γi. That is, the contestants with the higher
costs have a strictly higher utility than the more productive contestants.
Further, in an interior equilibrium the utility of i does not depend on the
type of his rivals.
Even if all potential contestants have the same reservation utility ū, it can

happen that only the less productive ones will participate. This will happen
whenever the outside utility is greater than the utility of a low cost type but
less than the utility of a high cost type. To be more precise, consider the
following two stage model. In the first stage potential contestants observe w
and n and then decide whether they want to participate. For those who do
not want to participate, the game ends and they get the outside utility ū. If
fewer than n contestants want to participate, the game is over and everyone
gets ū. If exactly n contestants want to participate, they play the tournament
in stage 2. Finally, if more than n want to participate, n of them are chosen
randomly and play the tournament, while the remaining get their outside
utility ū.

Proposition 4 If participation in a selection tournament is endogenous,
there is a non-empty set of parameters such that the individuals with the
highest abilities stay out, and the tournament selects one of the least able
individuals with certainty.
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Proof. Consider example 1 and assume that the conditions given in
proposition 2 hold. Then a non-empty interval (u∗ (1) , u∗ (γ)) exists such
that if ū ∈ (u∗ (1) , u∗ (γ)) , only contestants with high costs will participate
in the tournament.
It could be argued that it is more likely for the high productive contestants

to have better outside opportunities, so their reservation utility should be
higher.8 This would make the kind of adverse selection considered in propo-
sition 4 even more likely.
Note that proposition 4 does not rely on a positive correlation between

abilities in working productively and sabotaging. For example, if ci =
γix

2
i + cS

³P
j 6=i sij

´
for all i, where cS is an increasing convex function,

the contestants are equally able in sabotaging, but differ in their productive
ability. Here it can also happen that the most productive contestants stay
out.

5 Extensions

This section considers some extensions to the basic model presented above.

Risk aversion. Suppose that the contestants are risk averse. Following
Rosen (1986) this can be modelled as follows. Let u (w) be some increasing
concave function and suppose

ui = piu (w)− ci

Ã
xi,
X
j 6=i

si,j

!
.

With some minor modifications to the proofs one can show that the results
derived above hold also with risk averse agents. Of course, in proposition 3
we have to replace w by u (w) .

Production functions. The linear production functions considered so far
are a special case of the functions considered by Lazear (1989):

qi = q
¡
xi, s1i, ..., s(i−1)i, s(i+1)i, ..., sni

¢
+ εi

8This seems reasonable when the outside option is (e.g.) to become self employed,
while it is more questionable if the outside option is to participate in another tournament,
where sabotage might be important, too.
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where q : Rn → R is a differentiable function that is increasing in its first
argument and decreasing in the remaining arguments. Now the marginal
benefit of sabotaging j is the product of two factors:

∂pi
∂sij

=
∂q
¡
xj, s1j, ..., s(j−1)j, s(j+1)j, ..., snj

¢
∂sij| {z }
Aij

∗

Z ∞

−∞
f (yij + εi) [Πl 6=i,jF (yil + εi)] f (εi) dεi| {z }

Bij

The first factor (Aij) describes how much the expected output of contestant
j decreases, if i sabotages j more. The second factor (Bij) describes how
decreased expected output of j translates into a higher probability of winning
for contestant i. If the production function is linear in sabotage, the first
factor Aij is equal to a constant, and lemma 1 and the propositions derived
above hold.
On the other hand, lemma 1 does not hold if the production function is

nonlinear in sabotage. Of course, if pj > pk, contestant i still improves his
chance of winning more if he decreases the output of j than if he decreases
the output of j by the same amount (that is, Bij > Bik). But Aij can be
greater or smaller than Aik.
I find it hard to argue for specific assumptions on the production function.

For example, sabotage may have decreasing returns to scale. On the other
hand, there may be complementarities - it may more effective to sabotage
k if k is sabotaged by other players as well. Without more specific assump-
tions, little can be said about the properties of equilibria. Nevertheless it
is important to note that there is no guarantee that better contestants will
have a better chance of winning in equilibrium.9

Easy victims. Some contestants may be easier to sabotage than others.
This can be due to personal differences between the contestants. People
differ in their ability to cope with a hostile environment. Or it may be due
to different positions or experience within the firm. For example, workers
that are relatively new depend more strongly on the help of other workers, if

9Chen (2003) works out an example with a specific nonlinear production function
where the best contestant does not have the highest chance of winning.
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only to get information about the job and the firm. They are therefore more
vulnerable to sabotage.
To capture this is in the model, I assume that

qi = xi − ai
X
j 6=i

sji + εi (11)

where ai is a parameter. A high value of ai means that i is an easy victim.

Proposition 5 Suppose production functions are given by (11). In an inte-
rior equilibrium, contestant i has a higher chance of winning than contestant
j if and only if ai < aj.

Proof. In an interior equilibrium it must be true that

∂pk
∂ski

=
∂pk
∂skj

or

ai

Z ∞

−∞
f (yki + ε) [Πl 6=k,iF (ykl + ε)] f (ε) dε

= aj

Z ∞

−∞
f (ykj + ε) [Πl 6=k,jF (ykl + ε)] f (ε) dε.

If ai < aj this impliesZ ∞

−∞
f (yki + ε) [Πl 6=k,iF (ykl + ε)] f (ε) dε

>

Z ∞

−∞
f (ykj + ε) [Πl 6=k,jF (ykl + ε)] f (ε) dε

which, by the same reasoning as in the proof of lemma 1, implies

xi − ai
X
l 6=i

sli > xj − aj
X
l 6=j

slj

or pi > pj. Conversely, if ai ≥ aj, we get pi ≤ pj..
Proposition 5 says that people that are easy to sabotage will have lower

chances of winning in an interior equilibrium.10 The tournament will select
10Obviously, existence of interior equilibria will depend on the cost functions and on the

ai parameters.
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only on the basis of the ai parameters. If a1 < a2 < ... < an, then p1 > ... >
pn. This may or may not be in the interest of the firm. In particular, there
is no reason to assume that low vulnerability to sabotage on the one hand
and ability to work productively on the other always go together.
By proposition 5, if two contestants behave equally in an equilibrium, the

one who is an easier victim will be sabotaged more heavily. As mentioned
in the introduction, this fits to some results from the psychological literature
on mobbing or bullying. Basically, within the model there are two reason
why one might become a victim: by being an overachiever and therefore a
dangerous rival, and by being an easy victim. Both is in line with results
from psychology.

Cost functions. The cost function considered above depended only on the
sum of all sabotage activities. At a more general level, one could assume

ci
¡
xi, si1, ..., si(i−1), si(i+1), ..., sin

¢
(12)

where function ci is increasing in each argument and convex.
One natural assumption seems that the cost functions satisfy the following

symmetry property. A cost function ci is symmetric in the sabotage activities
if exchanging sij and sik while holding constant all other decision variables
of i does not change ci.11 For example, the cost function considered above,
ci
³
xi,
P

j 6=i sij
´
, is symmetric in the sabotage activities, as is the following

cost function, which is additively separable in the activities:

ci = cXi (xi) +
X
j 6=i

cSi (sij) , (13)

where cXi : R
+
0 → R+0 and cSi : R

+
0 → R+0 are differentiable, increasing, and

strictly convex functions.
In general, winning probabilities will not be completely equalized.12 How-

ever, some equalizing effect is still at work. Proposition 2 - “overachievers”
are sabotaged more heavily - generalizes as follows.
11More formally, let π be any permutation of the opponents of player i (a bijection

of {1, .., i− 1, i+ 1, ..., n} to {1, .., i− 1, i+ 1, ..., n}). A cost function is symmetric in the
sabotage activities if and only if ci

¡
xi, siπ(1), ..., siπ(i−1), siπ(i+1), ..., siπ(n)

¢
=

= ci
¡
xi, si1, ..., si(i−1), si(i+1), ..., sin

¢
for all

¡
xi, si1, ..., si(i−1), si(i+1), ..., sin

¢
.

12This can easily be seen in the case that the cost function is given by (13) .
Suppose that in an interior equilibrium all contestants have the same chance of winning.

Then sabotaging j has the same marginal benefit for i as sabotaging k. In an interior
equilibrium, this implies that the marginal costs have to be the same as well. Hence, if
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Proposition 6 Suppose that production functions are linear, and the cost
functions are as given in (12) and are symmetric in the sabotage activities.
a) In any pure strategy equilibrium, if xi − sji ≥ xj − sij, then

P
k 6=i,j ski ≥P

k 6=i,j skj.
b) If the equilibrium is an interior equilibrium and xi − sji > xj − sij, thenP

k 6=i,j ski >
P

k 6=i,j skj .

Proof. a) Suppose xi − sji ≥ xj − sij in a pure strategy equilibrium.
Towards a contradiction further suppose

P
k 6=i,j ski <

P
k 6=i,j skj. Then

E (qi) > E (qj) and by lemma 1 we have for all k 6= i, j

∂pk
∂skj

<
∂pk
∂ski

. (14)

In any pure strategy equilibrium, the following Kuhn Tucker conditions have
to hold for all k and all l 6= k :

∂pk
∂skl

w ≤ ∂ck
∂skl

, skl ≥ 0,

where one of the inequalities holds strictly.
Next I will show this implies ski ≥ skj. This is obvious if skj = 0. So

suppose skj > 0. From the Kuhn Tucker conditions and equation (14),

∂ck
∂skj

=
∂pk
∂skj

w <
∂pk
∂ski

w ≤ ∂ck
∂ski

. (15)

Cost functions that are convex and symmetric in the sabotage activities
have the property that ski < skj implies

∂ck
∂ski
≤ ∂ck

∂skj
.13 Hence from inequality

(15) we get ski ≥ skj .

the cost function is given by (13) and cSi is strictly convex, it follows that sij = sik for all
i and j, k 6= i. Then E (qj) − E (qk) = xj − skj − (xk − sjk) since all other contestants
treat j and k equally. But in general xj−skj will not equal xk−sjk. Suppose for example
that j and k have the same cost of sabotaging, that is, cSj (·) = cSk (·) . Then skj = sjk.
Since we assumed that all players have the same chance of winning, contestants j and k
have the same marginal benefit from working productively. But if j has a lower marginal
cost of productive effort , ∀x : ∂

∂xc
X
j (x) <

∂
∂xc

X
k (x) , it follows that xj > xk and hence

E (qj) > E (qk) , contradicting the assumption that all players have the same chance of
winning.
13This holds for all convex functions that are symmetric in the sense discussed here.

Let f (x, y) be any convex function. Since a convex function is underestimated by a linear
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Summing over all k 6= i, j, we get
P

k 6=i,j ski ≥
P

k 6=i,j skj, a contradiction.
The proof of b) follows the same lines and is omitted.
Proposition 6 says the following. Suppose that - looking only at the

decisions of contestants i and j - contestant i has a higher expected output
and a hence better chance of winning than contestant j (disregarding the
decisions of the other contestants). Then the other contestants will sabotage
i more heavily than j. In this sense, the effect that sabotage tends to equalize
promotion chances is robust.
Proposition 6 also generalizes proposition 2 by taking corner solutions

into account. This is important since interior equilibria fail to exist if players
are very different in their abilities. But as part a shows, the result that
overachievers are sabotaged more heavily is robust. Of course, it may happen
that both i and j are not sabotaged at all. Think of two players that have
much higher costs of working and sabotaging than all their rivals. They are
going to lose anyway - why should anyone bother sabotaging them?

Prize structure. In principle, in a rank order tournament there could
be n different prizes corresponding to the n possible ranks. Dealing with
a general prize structure is an important challenge for future research, but
some important lesson can be learned by considering the case where there
are n− 1 equal winner prizes w > 0 and only one strictly lower loser prize of
0. In such a situation the probability that contestant i gets one of the winner
prizes is equal to

p̂i = 1−
Z ∞

−∞

ÃY
j 6=i
(1− F (yij + ε))

!
f (ε) dε (16)

and his payoff is given by

ui = p̂iw − ci

Ã
xi,
X
j 6=i

sij

!
.

As the following lemma shows, in this situation the incentives to sabotage
are very different from the case of one winner prize.

approximation, f (y, x) ≥ f (x, y)+f1 (x, y) (y − x)+f2 (x, y) (x− y) , where fi denotes the
partial derivative with respect to the ith argument. If f satisfies the symmetry property
f (x, y) = f (y, x) ,we get 0 ≥ (f2 (x, y)− f1 (x, y)) (x− y) . It follows that y < x implies
f2 (x, y) ≤ f1 (x, y)
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Lemma 2 For all values of the decision variables,

∂p̂i
∂sij

>
∂p̂i
∂sik

⇔ xj −
X
l 6=j

slj < xk −
X
l 6=k

slk

Proof. See appendix.
It is instructive to compare lemma 2 with lemma 1. If there is a single

winner prize, then the biggest marginal benefit from sabotaging comes from
sabotaging the opponent with the highest expected output. Here, with only
one loser, the biggest marginal benefit of sabotaging comes from sabotaging
the opponent with the lowest expected output.
The intuition behind lemma 2 is as follows. Suppose there are three

contestants, and contestant 1 has the highest expected output, and contestant
3 the lowest. If contestant 2 sabotages 1, this increases his chance of winning
against 1. But winning against 1 is beneficial only if player 2 does not win
against player 3 and therefore gets a winner prize anyway. Since 2 is likely to
win against 3 anyway, sabotaging 1 does not increase the chances of 2 to get a
prize by a great amount. On the other hand, by sabotaging 3 contestant 2 can
raise his probability of getting a prize by a greater amount, since 2 is likely
to lose against 1, and if 2 loses against 1 winning against 3 is important. The
assumption that f is log-concave is sufficient to guarantee that this intuition
carries over to the formal model.
Sabotage in equilibrium will take a very different form with n− 1 winner

prizes, as the next lemma shows.

Lemma 3 Suppose there are n−1 identical winner prizes and only one loser
prize. In a pure strategy equilibrium, each contestant sabotages exactly one of
his rivals. In equilibrium, sik > 0 holds only if p̂k < p̂j and xk −

P
l 6=i,k slk ≤

xj −
P

l 6=i,j slj for all j 6= i, k.

Proof. See Appendix.
According to this lemma, the behavior of the contestants in a pure strat-

egy equilibrium can be described as follows: Every contestant i sabotages
only the opponent who has the lowest chance of winning given the behavior
of all the other contestants j 6= i. As the next proposition shows, n−1 of the
contestants will choose to sabotage the same person. Call this contestant,
who is sabotaged by all other contestants, “the victim”.
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Proposition 7 Suppose there are n−1 identical winner prizes and only one
loser prize. In every pure strategy equilibrium, there exist one contestant a
(the victim) such that ska > 0 and skl = 0 for all k, l 6= a. Further, there
exists one contestant b such that sab > 0 and sak = 0 for all k 6= b. Moreover,
p̂a < p̂b < p̂k for all k 6= a, b.

Proof. We know that every contestant sabotages exactly one opponent.
For example, contestant 1 sabotages a contestant, say i1, that is, s1(i1) > 0.
From lemma 3, it follows that p̂i1 < p̂j for all j 6= 1, i1. Then we can show
that either i1 is the victim (see case 1 below), or 1 is the victim (case 2).
Case 1: p̂i1 < p̂1. Then i1 has the lowest chance of getting a prize: p̂i1 < p̂j

for all j 6= i1. Every j 6= i1 sabotages i1 (if there were j, k 6= i1 such that
sjk > 0 then by lemma 3 p̂k < p̂i1 , a contradiction). In this case i1 is the
victim. Further, i1 sabotages someone, say contestant b. That is, si1b > 0.
Therefore, by lemma 3, p̂b < p̂k for all k 6= i1, b.
Case 2: p̂i1 > p̂1. By the same arguments as in case 1 above it follows

that in case 2, sk1 > 0 for all k 6= 1, and p̂1 < p̂i1 < pk for all k 6= 1, i1. In
case 2 contestant 1 is the victim.
Case 3: p̂i1 = p̂1. Then p̂k > p̂i1 = p̂1 for all k 6= 1, i1 by lemma 3 and

s1(i1) > 0. Hence all the other players sabotage 1 or i1 (if sjl > 0 for some
j and l 6= 1, i1 then p̂l < p̂i1, a contradiction). But then it by lemma 3 it
cannot be true that p̂i1 = p̂1. So case 3 leads to a contradiction.
It remains to consider which contestant will be the victim. Typically,

there will be an equilibrium where the least able contestant is the victim.
But there can be multiple equilibria. This is very clear in the case of identical
contestants. Obviously, if a pure strategy equilibrium exists at all, then there
are multiple pure strategy equilibria, since everyone might be the victim.
By continuity, in the case of heterogenous contestants equilibria where all
contestants sabotage the most able one may exist. In such an equilibrium, the
most able player has the lowest chance of winning the tournament. However,
existence of pure strategy equilibria is not trivially ensured here.

Handicaps. Suppose that there are player specific handicaps as considered
by Lazear and Rosen (1981). That is, player i wins the contest if qi − di >
maxj {qj − dj}j 6=i , where di is the handicap of player i. Returning to the
case of linear production functions, cost function (1), and a single winner
prize, the following generalization of lemma 1 can be shown by an argument
paralleling the proof of lemma 1:
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Lemma 4 Suppose that i wins if and only if qi − di > maxj {qj − dj}j 6=i .
Then for all values of the decision variables, the following inequalities are
equivalent:
a) xj −

P
l 6=j slj − dj > xk −

P
l 6=k slk − dk

b) pj > pk
c) ∂pi

∂sij
> ∂pi

∂sik

From lemma 4 it follows immediately that proposition 1 continues to
hold with handicaps as well. Of course, the existence of interior equilibria
now depends not only on the differences in ability, but on the handicaps as
well. Moreover, now those players whose expected output minus handicap
is highest are sabotaged most heavily. To sum up,

Proposition 8 With handicaps, in an interior equilibrium pi =
1
n
and xi −P

l 6=j sli − di = xk −
P

l 6=k slk − dk for all i, k.

6 Implications

If sabotage plays an important role, it is better to limit the tournament to
only two contestants, since the equalizing effect of sabotage depends on there
being at least three contestants.14 This is surprising because intuition would
suggest that more contestants should on average lead to higher quality of
winners. But here the strategic possibilities of the contestants change if there
more than two contestants, since then every contestant can direct sabotage
specifically against his most dangerous opponent.
One might think that a sequential elimination tournament as studied in

Rosen (1986) solves the problem that sabotage equalizes promotion chances.
In such a tournament, contestants are paired in each round. One winner
emerges from each pair and moves on to the next round. So in any given
round, each contestant has only one rival, and it might be thought that the
equalizing effect of sabotage is not at work in such a sequential elimination
tournament. But contestants do not only care about moving on into the
next round, they are also interested in meeting weak rivals in the coming
14Hvide and Kristiansen (2003) find a similar result in contests where the decision vari-

able of the contestants is risk taking.
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rounds. This gives them an incentive to interfere with the other paired
contests in any given round. Consider, for example, the incentives of the
semi-finalists. By helping the weaker contestant in the semi-final contest in
which one is not directly involved, and by sabotaging the stronger ones, one
increases the probability of meeting a weaker rival in the final round (if one
gets there). Therefore, there is some equalizing effect of sabotage at work
also in a sequential elimination tournament.
Lazear (1989) has argued that by the right design of promotion tracks

contestants can be separated and thereby sabotage can be made more dif-
ficult and hence less important (p. 557). Lazear’s point is that separating
contestants is good for the firm because sabotage decreases the valuable
output of the contestants. The results of this paper show that, in addition,
separating contestants also helps to make better promotion decisions. People
who do not work with each other closely and regularly are less likely to know
each other well, and so they cannot direct sabotage against their strongest
rivals. Therefore, the effect that sabotage equalizes promotion chances does
not apply.

7 Conclusion

This paper studied sabotage in selection tournaments with heterogeneous
contestants. Sabotage can lead to equalization of promotion chances, even if
the contestants differ a lot in their abilities. Furthermore it may happen that
only the least productive individuals participate. Therefore, using a tourna-
ment for selection can result in selecting (with probability one) someone who
is among the least productive.
The results are relevant for other types of contest as well. For example,

in rent seeking contests, yardstick competition between regulated firms, or
political election contests, sabotage can equalize the probabilities of winning
the contest. In rent-seeking contests, the heterogeneity between contestants
often takes the form of different valuations of winning the contest. Applied
to this setting, the results of the paper imply that there is no guarantee that
the contestants with the highest valuations will win most often.
A related problem of tournaments in the presence of sabotage is that

sabotage reduces the incentives for productivity enhancing investments in
human capital. Since the contestants know that the better they are, the more
they will be sabotaged, they have little incentive to invest in their human
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capital. This adds to the potential severity of the problems described.
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8 Appendix

8.1 Proof of lemma 1

The equivalence of a) and b) is obvious.
Differentiating equation (3), we get

∂pi
∂sij

=

Z ∞

−∞
f (yij + εi) [Πl 6=i,jF (yil + εi)] f (εi) dεi,

and
∂pi
∂sik

=

Z ∞

−∞
f (yik + εi) [Πl 6=i,kF (yil + εi)] f (εi) dεi.
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Therefore,

∂pi
∂sij
− ∂pi

∂sik
=

Z ∞

−∞
[f (yij + εi)F (yik + εi)− f (yik + εi)F (yij + εi)]

∗ [Πl 6=i,j,kF (yil + εi)] f (εi) dεi. (17)

Now suppose xj−
P

l 6=j slj > xk−
P

l 6=k slk. This is equivalent to yij < yik.
Since f (z) is strictly log-concave, f (z) /F (z) decreases strictly in z (see An
1998). It follows that

f (yij + εi)

F (yij + εi)
>

f (yik + εi)

F (yik + εi)

for all εi. Therefore the integrand in equation (17) is strictly positive, and
hence ∂pi

∂sij
> ∂pi

∂sik
. This proves that

xj −
X
l 6=j

slj > xk −
X
l 6=k

slk ⇒ ∂pi
∂sij

>
∂pi
∂sik

.

The converse statement is proved similarly. Therefore, a) and c) are equiva-
lent as well.

8.2 Proof of stronger version of propositions 1 and 2

As stated in the text following proposition 2, it is possible to strengthen
propositions 1 and 2. We do not have to restrict attention to equilibria
where literally all contestants sabotage all their rivals.
1) If there are two contestants i, j who sabotage all their rivals, then it

follows that for all k 6= i, j: pk = pi (since j sabotages both k and i) and
pk = pj (since i sabotages both k and j). Therefore we have pk = pi = pj =

1
n
.

2) Suppose in an equilibrium every contestant is sabotaged by two rivals.
That is, we have ∀i∃ji, ki : i 6= ji 6= ki 6= i, s(ji)i > 0 and s(ki)i > 0. Then
pi ≥ pl for all l 6= ji since i is sabotaged by ji. Also, since i is sabotaged by
ki, we have pi ≥ pl for all l 6= ki. Putting things together, pi ≥ pl for all l 6= i.
Since this holds for all i, we have pi = 1

n
for all i = 1, ..., n.

3) If, in an equilibrium, we have s(k−1)k > 0, then it follows that pk ≥ pk+1,
since k − 1 sabotages k. Therefore, if the contestants can be renumbered so
that si(i+1) > 0 for i = 1, .., n− 1 and sn1 > 0, we have p2 ≥ p3 ≥ ... ≥ pn ≥
p1 ≥ p2 or pi = 1

n
for all i = 1, ..., n.
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In all those three cases, equation (4) holds. Therefore, proposition 2 also
generalizes: Contestants that choose higher productive effort are sabotaged
more heavily.

8.3 Proof of proposition 3 part a)

The proof is by contradiction. Suppose there is a pure strategy equilibrium
with pi =

1
n
. Then yij = 0 for all i and j 6= i. Define

g :=
∂pi
∂xi

¯̄
yij=0∀j 6=i = (n− 1)

Z ∞

−∞
F (ε)n−2 f (ε)2 dε.

and denote the set of all low cost contestants by L, and the set of all high
cost contestants by H. The following first order conditions have to hold in
the supposed equilibrium:

xi = wg for all i ∈ L, (18)

xi =
wg

γ
for all i ∈ H, (19)X

k 6=i
sik =

wg

n− 1 for all i ∈ L, (20)

X
k 6=i

sik =
wg

(n− 1) γ for all i ∈ H. (21)

Further, from the assumption that pi = 1
n
we get

xi −
X
k 6=i

ski = xj −
X
k 6=j

skj for all i and j. (22)

Equations (18) and (22) imply that
P

k 6=i ski =
P

k 6=j skj for all i, j ∈ L. That
is, all low cost types endure the same amount of sabotage. Call this amount
Sl : X

k 6=i
ski =

X
k 6=j

skj =: Sl for all i, j ∈ L. (23)

In the same way it follows from equations (19) and (22) that all high cost
types endure the same amount of sabotage:X

k 6=i
ski =

X
k 6=j

skj =: Sh for i, j ∈ H. (24)
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Now let us calculate Sl and Sh. Summing over equations (20) and (21)
we find that the total amount of sabotage equals

nX
i=1

X
j 6=i

sji = l
wg

n− 1 + h
wg

γ (n− 1) = lSl + hSh, (25)

where the second equality follows from equations (23) and (24). From equa-
tions (18) to (24) we get

wg − Sl =
wg

γ
− Sh. (26)

Combining equations (25) and (26) we finally get

Sh = wg
n− (γ − 1) l (n− 2)

γn (n− 1) , (27)

Sl = wg
n+ (γ − 1) (l + h (n− 1))

γn (n− 1) . (28)

If γ > 1 + n
l(n−2) , equation (27) implies Sh < 0, a contradiction. This

completes the proof for the case l > 1.

Note that the low cost contestants will be sabotaged more heavily:

Sl − Sh = (γ − 1) wg
γ

> 0.

If there is only one low cost contestant, this contestant directs all his
sabotage against high cost contestant. We can calculate the total amount of
sabotage that high cost contestants inflict on high cost contestants as the dif-
ference of the total amount of sabotage suffered by high cost contestants, hSh,
and the amount of sabotage chosen by the low cost contestant, wg/ (n− 1) :

X
i∈H

X
j∈H,j 6=i

sij = hSh − wg

n− 1 = wg
n (n− 2)− (γ − 1) (n2 − 2n+ 2)

γn (n− 1) (29)

This is non-negative if and only if γ ≤ 1+ n(n−2)
n2−2n+2 . This completes the proof.
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8.4 Proof of proposition 3 part b)

This section develops the sufficient condition for the existence of interior pure
strategy equilibria in example 1. Existence is proved by direct construction
of such equilibria. I focus on symmetric equilibria, in which

sik =


sll
slh
shl
shh

 , if i ∈


L
L
H
H

 and j ∈


L
H
L
H

 .

Let us first derive candidates for symmetric interior equilibria, and check
afterwards that they are really equilibria. In an interior equilibrium, the effort
choices xi have to be given by equations (18) and (19). Further, a contestant
i ∈ H sabotages l low cost contestants and h− 1 high cost contestants. The
total amount of sabotage that a contestant i ∈ H chooses in a symmetric
equilibrium is thereforeX

j

sij = lshl + (h− 1) shh = wg

γ (n− 1) for all i ∈ H. (30)

The second equality follows from equation (21). SimilarlyX
j

sij = (l − 1) sll + hslh =
wg

(n− 1) for all i ∈ L.

The total amount of sabotage suffered by contestant i is

X
j

sji = lslh + (h− 1) shh = Sh if i ∈ H,X
j

sji = (l − 1) sll + hshl = Sl if i ∈ L, (31)

where Sh and Sl are given by equations (27) and (28). Assuming l ≥ 2 and
h ≥ 2 (the remaining cases will be considered later) and using slh as a free
variable, the system of equations (30) to (31) can be solved to get
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sll =
wg

(n− 1) (l − 1) −
n− l

(l − 1)slh, (32)

shh = wg
n− (γ − 1) l (n− 2)
γn (n− 1) (n− l − 1) −

lslh
(n− l − 1) , (33)

shl = wg
(2l + n (n− l − 2)) (γ − 1)

γn (n− 1) (n− l)
+ slh. (34)

If the condition for γ given in proposition 2a) is satisfied, and

slh ∈
·
0,min

½
wg

(n− 1) (n− l)
, wg

n− (γ − 1) (n− 2)
γn (n− 1)

¾¸
, (35)

then all the variables given in equations (32) to (35) are non-negative.

In what follows, I show that, if the conditions given in proposition 2 are
satisfied, then there exists a continuum of symmetric equilibria given by (18),
(19), and (32) to (35). In all these equilibria, pi = 1

n
for all contestants i.

Consider the maximization problem of contestant i, given that the other
contestants behave according to one of these candidate equilibria. Contestant
i chooses

¡
xi, si1, ..., si(i−1), si(i+1), ..., sin

¢
to maximize ui, subject to the non-

negativity constraints xi ≥ 0 and sij ≥ 0 for all j 6= i. As a first step, I will
ignore for the moment the constraints and solve the unconstrained problem.
We will check afterwards whether the constraints are satisfied.
The unconstrained problem certainly has a solution. This can be seen

as follows. It is never optimal to choose very high values of the decision
variables. Therefore we can consider the problem

maximize ui s.t. − k ≤ xi ≤ k and − k ≤ sij ≤ k for all j 6= i (36)

for some sufficiently high k ∈ R. By the Weierstrass theorem, a solution to
problem (36) exists. If k is high enough, the solution to problem (36) also
solves the unconstrained problem.
A difficulty in finding the solution is that the objective function might

be non-concave, and checking concavity for a n-dimensional optimization
problem is quite cumbersome. The following lemma allows the n-dimensional
optimization problem to be reduced to a one-dimensional one:
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Lemma 5 Let l ≥ 2 and h ≥ 2. Suppose all contestants except i behave
symmetrically according to equations (18), (19), and (32) to (35). In the
optimum of the unconstrained optimization problem of contestant i, the fol-
lowing conditions have to hold.
a) Contestant i sabotages all his low cost rivals equally:

sij = sik =: sil for all j, k ∈ L, j, k 6= i,

and i also sabotages all his high cost rivals equally:

sij = sik =: sih for all j, k ∈ H, j, k 6= i.

b) Contestant i sabotages his high cost and his low cost rivals so that they
have the same chance of winning:
wg− (l − 2) sll−hshl− sil =

wg
γ
− (l − 1) slh− (h− 1) shh− sih, if i ∈ L, and

wg − (l − 1) sll − (h− 1) shl − sil =
wg
γ
− lslh − (h− 2) shh − sih, if i ∈ H.

c) All rivals of i have the same chance of winning: yij = yik for all j, k.
d)

xi =

½
(n− 1) ((l − 1) sil + hsih) , if i ∈ L,
(n− 1) (lsil + (h− 1) sih) , if i ∈ H.

Proof. a) Suppose there are j, k ∈ L (j, k 6= i) such that sij > sik. Since
j and k are treated in the same way by all other contestants, and choose the
same xj = xk = wg, this implies yij > yik. Now contestant i could decrease
sij a little and increase sik by the same amount. By lemma 1, this increases
pi, while the costs of contestant i are unchanged. Therefore, it cannot be
optimal to choose sij > sik.
The case j, k ∈ H and part b) are proved in the same way as a). Part c)

is obvious from a) and b).
d) It follows from equation (3) that

P
j 6=i

∂pi
∂sij

= ∂pi
∂xi

. Using c) we have
∂pi
∂sij

= ∂pi
∂sik

for all j, k 6= i and hence

(n− 1) ∂pi
∂sij

=
∂pi
∂xi

.

In the optimum of the unconstrained problem, the first order conditions
w ∂pi

∂xi
= γixi and w ∂pi

∂sij
= γi

P
j 6=i sij have to hold with equality. Putting
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things together, xi = (n− 1)
P

j 6=i sij. Finally, using a) completes the proof.

This lemma establishes that, in the optimum of the unconstrained prob-
lem, certain relations between si1, ..., sin and xi must hold. It allows the
unconstrained problem to expressed as a one-dimensional problem, where
contestant i maximizes only over xi. Denote the objective function in this
reduced problem by ûi (xi) .
Take the case i ∈ L. Straightforward but tedious omitted calculations

show that

ûi (xi) =

Z ∞

−∞
F (b (xi − wg) + ε)n−1 f (ε) dεw − 1

2
bx2i , (37)

where b := 1 + 1
(n−1)2 .

Lemma 6 If inequality (6) holds, ûi (xi) is strictly concave.

Proof. The objective function ûi (xi) is strictly concave for all xi if

max
xi

Ã
∂2

∂x2i

Z ∞

−∞
F

µ
b

µ
xi − wg

γ

¶
+ ε

¶n−1
f (ε) dεw

!
< b. (38)

Note that

∂2

∂x2i

Z ∞

−∞
F

µ
b

µ
xi − wg

γ

¶
+ ε

¶n−1
f (ε) dε =

= b2
µ

∂2

∂z2

Z ∞

−∞
F (z + ε)n−1 f (ε) dε

¶¯̄̄̄
z=b(x−wg

γ )
.

Therefore, inequality (38) is equivalent to inequality (6).
By this lemma, the solution to maxxi ûi (xi) can be found simply as the

solution of the first order condition dûi(xi)
dxi

= 0, which is, of course, unique
and as given by equation (18): xi = wg.
By using lemma 5 we can verify that sij = sll for all j ∈ L (where sll is

given in (32)), and sij = slh for all j ∈ H, solve the unconstrained maximiza-
tion problem of contestant i. Again, these calculations are straightforward
but tedious and hence omitted.
Finally, we have to check whether all decision variables satisfy the non-

negativity constraints. This is guaranteed by the condition γ ≤ 1 + n
l(n−2) .
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Therefore, we have shown that no i ∈ L has an incentive to deviate from any
of the symmetric candidate equilibria.

In the same way it can be shown that no i ∈ H has an incentive to
deviate. For an i ∈ H, the objective function of the reduced problem turns
out to be

ûi (xi) =

Z ∞

−∞
F

µ
b

µ
xi − wg

γ

¶
+ ε

¶n−1
f (ε) dεw − 1

2
γbx2i .

The condition ensuring concavity is

max
z

µ
∂2

∂z2

Z ∞

−∞
F (z + ε)n−1 f (ε) dε

¶
<

γ

bw
. (39)

The only difference from inequality (6) is the γ on the right hand side. Since
γ > 1, if (6) holds, so does (39). This completes the proof of proposition 2
for the case that l ≥ 2 and h ≥ 2.
The two remaining cases where there is only one low cost contestant or

only one high cost contestant can be dealt with similarly. In these cases there
is a unique symmetric equilibrium. If l = 1,

slh =
wg

(n− 1)2 ,

shl = wg
(2 + n (n− 2)) (γ − 1) + n

γn (n− 1)2 ,

shh = wg
n (n− 2)− (γ − 1) (n2 − 2n+ 2)

γn (n− 1)
1

h (h− 1) .
Of course, shh is non-negative if, and only if, the inequality given in propo-
sition 2a for the case l = 1 holds. Also note that, as it must be the case,
h (h− 1) shh =

P
i∈H

P
j∈H,j 6=i sij where the right hand side is given in equa-

tion (29) above.
Finally, if h = 1,

shl =
wg

γ (n− 1)2 ,

sll = wg
(2γ − 1) (n− 1)2 − 1
γn (n− 1)2 (n− 2) ,

slh = wg
n− (γ − 1) (n− 1) (n− 2)

γn (n− 1) (n− 1) .
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8.5 Proof of lemma 2

Differentiating equation (16) we get

∂p̂i
∂sij

=

Z ∞

−∞
f (yij + ε)

ÃY
l 6=i,j

(1− F (yil + ε))

!
f (ε) dε

and
∂p̂i
∂sik

=

Z ∞

−∞
f (yik + ε)

ÃY
l 6=i,k

(1− F (yil + ε))

!
f (ε) dε.

Therefore,

∂p̂i
∂sij
− ∂p̂i

∂sik
=Z ∞

−∞
[f (yij + ε) (1− F (yik + ε))− f (yik + ε) (1− F (yij + ε))] ∗Ã Y

l 6=i,j,k
(1− F (yil + ε))

!
f (ε) dε

Now suppose xj −
P

l 6=j slj < xk−
P

l 6=k slk. This is equivalent to yij > yik. If
f is log-concave, the hazard rate function f (z) / (1− F (z)) is monotonically
increasing in z (see An 1998). Therefore

f (yij + ε) (1− F (yik + ε)) > f (yik + ε) (1− F (yij + ε))

for all ε, and and hence ∂p̂i
∂sij

> ∂p̂i
∂sik

. This proves that

xj −
X
l 6=j

slj < xk −
X
l 6=k

slk ⇒ ∂p̂i
∂sij

>
∂p̂i
∂sik

.

The converse statement can be shown by a similar argument.

8.6 Proof of lemma 3

Lemma 3. Suppose there are n− 1 identical winner prizes and only one loser
prize. In a pure strategy equilibrium, each contestant sabotages exactly one
of his rivals. In equilibrium, sik > 0 holds only if p̂k < p̂j and xk−

P
l 6=i,k slk ≤

xj −
P

l 6=i,j slj for all j 6= i, k.
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Proof. In a pure strategy equilibrium, the following Kuhn Tucker condi-
tion will have to hold for all i and all j 6= i:

∂p̂i
∂sij

w − ∂ci
∂sij
≤ 0, sij ≥ 0, sij

∂ui
∂sij

= 0

Since by assumption ∂ci(xi,0)
∂sij

= 0, every contestant will sabotage at least
one opponent. For if

P
j 6=i sij = 0, then the Kuhn Tucker conditions imply

∂p̂i
∂sij

w − ∂ci
∂sij
≤ 0. But the marginal cost of sabotage are zero if Pj 6=i sij = 0,

and ∂p̂i
∂sij

> 0. Therefore every contestant sabotages at least one opponent.
In what follows I show that no contestant sabotages more than one op-

ponent. Suppose to the contrary that there are j, k 6= i such that sij > 0
and sik > 0. Since ∂ci

∂sij
= ∂ci

∂sik
, it follows that ∂p̂i

∂sij
= ∂p̂i

∂sik
, and by lemma 2

xj −
P

l 6=j slj = xk −
P

l 6=k slk, hence yij = yik.
Now consider what happens if i decreases sik to zero and increases sij

by the same amount. This wouldn’t change i0s cost. But (I claim) it would
increase his probability of getting a prize. Let

p̂i (sij, sik) = 1−
Z
[1− F (yij + ε)]2 (Πl 6=i,j,k [1− F (yil + ε)]) f (ε) dε

denote i0s probability of getting a prize if i sabotages j by sij and k by sik
(remember yij = yik), and let

p̂i (sij + sik, 0) = 1−
Z
[1− F (yij + sik + ε)] [1− F (yij − sik + ε)] ∗

(Πl 6=i,j,k [1− F (yil + ε)]) f (ε) dε

denote i0s probability of getting a prize if he shifts all sabotage from k to j.
We have to show that p̂i (sij + sik, 0) > p̂i (sij, sik) . Define

h (s) =
©
[1− F (yij + ε)]2 − [1− F (yij + s+ ε)] [1− F (yij − s+ ε)]

ª
(40)

Note

h0 (s) = f (yij + s+ ε) [1− F (yij − s+ ε)]−[1− F (yij + s+ ε)] f (yij − s+ ε)

If f is log-concave, the hazard rate f(z)
1−F (z) is increasing in z15. Hence for all

s > 0,
f (yij + s+ ε)

[1− F (yij + s+ ε)]
>

f (yij − s+ ε)

[1− F (yij − s+ ε)]
15See An 1998
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and therefore h0 (s) > 0 for all s > 0. Since h (0) = 0 this implies that
h (s) > 0 holds for all s > 0.
Now we can write

p̂i (sij + sik, 0)− p̂i (sij, sik) =

Z
h (sik) (Πl 6=i,j,k [1− F (yil + ε)]) f (ε) dε

and since h (sik) > 0 it follows that p̂i (sij + sik, 0) > p̂i (sij, sik) . This com-
pletes the prove that every contestant sabotages at most one of his opponents.

Next I show that if sik > 0 in an equilibrium, then p̂k < p̂j for all j 6= i, k in
this equilibrium. Towards a contradiction suppose that sik > 0 and p̂k ≥ p̂j,
or yik ≤ yij. Consider what happens if i decreases sik to zero and increases sij
by the same amount. This wouldn’t change i0s cost. But (I claim) it would
increase his probability of getting a prize. To see this, let

p̂i (sij, sik) = 1−
Z
[1− F (yij + ε)] [1− F (yik + ε)] ∗

(Πl 6=i,j,k [1− F (yil + ε)]) f (ε) dε

denote i0s probability of getting a prize if i sabotages k by sik > 0 and j by
sik, and let

p̂i (sij + sik, 0) = 1−
Z
[1− F (yij + sik + ε)] [1− F (yik − sik + ε)] ∗

(Πl 6=i,j,k [1− F (yil + ε)]) f (ε) dε

denote i0s probability of getting a prize if he shifts all sabotage from k to j.
We want to show that p̂i (sij + sik, 0) > p̂i (sij, sik) . Define

h̃ (s) = {[1− F (yij + ε)] [1− F (yik + ε)]− [1− F (yij + s+ ε)] [1− F (yik − s+ ε)]}

By essentially the same argument as the one following equation (40) above
one can show that h̃ (s) > 0 for all s > 0.
Now we can write

p̂i (sij + sik, 0)− p̂i (sij, sik) =

Z
h̃ (sik) (Πl 6=i,j,k [1− F (yil + ε)]) f (ε) dε

and since h̃ (sik) > 0 it follows that p̂i (sij + sik, 0) > p̂i (sij, sik) . This shows
that if sik > 0 , then p̂k < p̂j for all j 6= i, k.
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Finally, I show that if sik > 0, then xk −
P

l 6=i,k slk ≤ xj −
P

l 6=i,j slj for
all j 6= i, k. To see this, suppose that in an equilibrium we have sik > 0 and
xk−

P
l 6=i,k slk > xj−

P
l 6=i,j slj. From the considerations above we know that

we must have sij = 0 and xk −
P

l 6=i,k slk − sik < xj −
P

l 6=i,j slj . I claim
that by decreasing sik to zero and increasing sij by the same amount, i can
increase the probability that he will get a prize.
Suppose that i decreases sik in two steps. In the first step, sik is decreased

to ŝik = xk −
P

l 6=i,k slk −
³
xj −

P
l 6=i,j slj

´
> 0 and sij is increased to

ŝij = sik − ŝik > 0. This does not change p̂i, since it only reverses the roles
of j and k.
After this change, we have xk −

P
l 6=i,k slk − ŝik ≥ xj −

P
l 6=i,j slj − ŝij or

pk ≥ pj. Now suppose i now decreases ŝik to zero and increases ŝij by the
same amount. By the considerations above, this raises p̂i.

9 Omitted calculations (not for publication)

9.1 With a Gumbel distribution, inequality (6) holds
if the variance of the error terms is high enough

In this section I study the case where the error terms follow a Gumbel (or
extreme value type I) distribution, F (ε) = exp

¡− exp ¡−x
σ

¢¢
, and show that

inequality (6) holds if, and only if, the variance of the error terms is high
enough.
Obviously F is log-concave. With this distribution16Z ∞

−∞
F (z + ε)n−1 f (ε) dε =

exp
¡
z
σ

¢
exp

¡
z
σ

¢
+ (n− 1) .

Therefore,

∂2

∂z2

Z ∞

−∞
F (z + ε)n−1 f (ε) dε = e

z
σ

n− 1− e
z
σ¡

e
z
σ + n− 1¢3 (n− 1)σ2

. (41)

To maximize this expression over z, first note that we can, without loss
of generality, restrict ourselves to values of z that satisfy

n− 1− e
z
σ > 0. (42)

16This and further results can be found in Anderson, dePalma and Thisse 1992.
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Therefore, we can take logs and solve (ignoring the multiplicative constant
(n−1)
σ2
)

φ (z) :=
z

σ
+ ln

¡
n− 1− e

z
σ

¢− 3 ln ¡e z
σ + n− 1¢→ max

z

The function φ (z) is strictly concave. It is maximized by z =
¡
ln
¡
2−√3¢ (n− 1)¢σ.

Plugging this back into (41) gives us

max
z

∂2

∂z2

Z
F (z + ε)n−1 f (ε) dε =

k

σ2
,

where k := (−1+
√
3)(−2+

√
3)

(−3+
√
3)
3 is a constant somewhat smaller than 0.1. It fol-

lows that inequality (6) holds if and only if

σ2 >
n2 − 2n+ 2
(n− 1)2 kw.

The variance of the Gumbel distribution is equal to var (ε) = σ2π2

6
. Therefore,

inequality (6) holds if and only if

var (ε) =
σ2π2

6
>

n2 − 2n+ 2
(n− 1)2 kw

π2

6
.

9.2 Derivation of equation (37)

Here I give a sketch of the derivation of the reduced problem of a low cost
player in the case l ≥ 2, h ≥ 2.
From part a) of lemma 2 we can immediately reduce the optimization

problem of i to three dimensions:

ui (xi, sil, sih) =

=

Z ∞

−∞
F (yil + ε)l−1 F (yih + ε)h f (ε) dεw − 1

2

¡
x2i + (hsih + (l − 1) sil)2

¢
→ max

xi,sil,sih

where
yil = xi − Sl − (wg − (l − 2) sll − sil − hshl) ,
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and

yih = xi − Sl −
µ
wg

γ
− (l − 1) slh − sil − (h− 1) shl

¶
.

Using lemma 4d) we get

1

2

¡
x2i + (hsih + (l − 1) sil)2

¢
=
1

2

Ã
x2i +

µ
1

n− 1xi
¶2!

=
1

2
bx2i .

By lemma 4c), in the optimum pi =
R∞
−∞ F (yil + ε)n−1 f (ε) dε. We want

to find an expression for yil that depends only on xi. Use lemma 4b) to express
sih as a function of sil. Then substitute this into lemma 4d) and solve for
sil to express sil as a function of xi. Finally, plug the result into yil to get
yil = b (xi − wg) .
This shows that the reduced problem of player i is indeed to maximize

the function ûi (xi) given in equation (37) above.

9.3 Proof of Proposition 6b

Suppose the costs functions are as given in (12) and symmetric in the sab-
otage activities. If the equilibrium is an interior equilibrium and xi − sji >
xj − sij, then

P
k 6=i,j ski >

P
k 6=i,j skj.

Proof. Suppose that xi−sji > xj−sij in an interior equilibrium. Towards
a contradiction further suppose

P
k 6=i,j ski ≤

P
k 6=i,j skj. Then E (qi) > E (qj)

and by lemma 1 we have for all k 6= i, j

∂pk
∂ski

>
∂pk
∂skj

.

In an interior equilibrium we have for all k and all l 6= k :

∂pk
∂skl

w =
∂ck
∂skl

and therefore
∂ck
∂ski

>
∂ck
∂skj

. (43)

The next step is to show that this implies ski > skj. To see this, write (as
an abbreviation)

ck (ski, skj) := ck (xk, sk1, ..., ski, skj, ...skn) .
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Since a convex function is underestimated by a linear approximation,

ck (skj, ski) ≥ ck (ski, skj) +
∂ck (ski, skj)

∂ski
(ski − skj) +

∂ck (ski, skj)

∂skj
(skj − ski)

By symmetry, ck (skj, ski) = ck (ski, skj) . Hence

0 ≥ (ski − skj)

µ
∂ck (ski, skj)

∂ski
− ∂ck (ski, skj)

∂skj

¶

Therefore skj > ski implies
∂ck(ski,skj)

∂ski
≤ ∂ck(ski,skj)

∂skj
.

Now suppose ski = skj. By symmetry,
∂ck(ski,skj)

∂ski
=

∂ck(skj ,ski)
∂skj

. Hence

ski = skj implies
∂ck(ski,skj)

∂ski
=

∂ck(skj ,ski)
∂skj

.

Putting things together, we have shown that ski ≤ skj implies
∂ck(ski,skj)

∂ski
≤

∂ck(ski,skj)
∂skj

. Of course this equivalent to

if
∂ck
∂ski

>
∂ck
∂ski

, then ski > skj. (44)

From equations (43) and (44), we have ski > skj. Summing over all k, we
find that

P
k 6=i,j ski >

P
k 6=i,j skj, a contradiction.
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