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Abstract

In a recent paper, Newell and Pizer (2003) (N&P) build upon Weitzman (1998, 2001)
and show how uncertainty about future interest rates leads to ‘certainty equivalent’ for-
ward rates (CER) that decline with the time horizon. Such Declining Discount Rates
(DDR’s) have important implications for the economic appraisal of the long-term policy
arena (e.g. climate change) and inter-generational equity. This paper discusses the im-
plications of N&P’s transition from the theory to practice in the determination of the
schedule of discount rates for use in Cost Benefit Analysis (CBA). Using both UK &
US data we make the following points concerning this transition: i) to the extent that
different econometric models contain different assumptions concerning the distribution
of stochastic elements, model selection in terms of specification and ‘efficiency criteria’
has important implications for operationalising a theory of DDR’s that depends upon
uncertainty; ii) mispecification testing naturally leads to employing models that account
for changes in the interest rate generating mechanism. Lastly, we provide an analysis of
the policy implications of DDR’s in the context of climate change and nuclear build in
the UK and the US.
JEL classification: C13, C53, Q2, Q4
Keywords: Long-run discounting, Interest rate forecasting, State-space models, Regime-

switching models, Climate policy

∗Department of Economics, University College London, UK.
†Corresponding author: Department of Economics, University of Reading, UK and Depatment of

Economics, University College London, UK.
‡Department of Banking and Financial Management, University of Piraeus, Greece.
§Department of Banking and Financial Management, University of Piraeus, Greece.

1



1 Introduction

The deleterious effects of conventional exponential discounting on present values of costs

and benefits that accrue in the distant future, and the issues of intergenerational equity

that arise, are well documented (see e.g. Pearce et al 2003). The emergence of a long-term

policy arena containing issues as diverse as climate change, nuclear build and decommis-

sion, biodiversity conservation, groundwater pollution etc., and the use of social Cost

Benefit Analysis (CBA) to guide decision-makers in this arena has brought the discussion

of long-run discounting to the fore. Discount rates that decline with the time horizon (De-

clining Discount Rates or DDRs) have often been touted as an appropriate resolution to

what Pigou (1932) described as the ‘defective telescopic faculty’ of conventional discount-

ing, and there has been much discussion about the moral and theoretical justification for

such a strategy (see e.g. Sozou (1998), Dybvig et al (1996), Portney and Weyant (1999),

Weitzman (1998, 2001), Gollier (2002a)). Of particular interest are the declining yet so-

cially efficient discount rates resulting from the analysis of Weitzman (1998) and Gollier

(2002a, 2002b) both of which appear to offer a theoretical path through the ‘dark jungles

of the second best’ (Baumol 1968) and the intergenerational equity-efficiency trade-off

contained therein.

If these theoretical solutions offer even a partial resolution of the problems of con-

ventional discounting then it is clearly important that they can be operationalised and

a schedule of DDRs determined. In the case of Gollier (2002a) and Weitzman (1998)

it is uncertainty that drives DDRs, with regard to future growth and the discount rate

respectively, thus the question of implementation is one of characterizing the uncertainty

of these primals in some coherent way. However, of these two approaches it is Weitzman

(1998) that has proven to be more amenable to implementation mainly because the in-

formational requirements stop at the characterization of uncertainty, and do not extend
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to specific attributes of future generations’ risk preferences as would be unavoidable in

the case of Gollier (2002a, 2002b)1.

Weitzman’s Certainty Equivalent Discount Rate (CER) is derived from the expected

discount factor and is therefore a summary statistic of the distribution of the discount

rate. The level and behavior over time of this statistic is clearly dependent upon the man-

ner in which uncertainty is characterized and the two applications that exist have taken

different approaches stemming from different interpretations of uncertainty. Weitzman

(2001) defines uncertainty by the current lack of consensus on the appropriate discount

rate for the very long term. His survey of professional economists results in a gamma prob-

ability distribution for the discount rate which leads to the so-called ‘gamma discounting’

approach, a version of which can also be seen in Sozou (1998). More recently, in this jour-

nal, Newell and Pizer (2003) (N&P) suggest that while we are relatively certain about

the level of discount rates currently, there is considerable uncertainty in future. From this

standpoint they assume that the past is informative about the future and characterize

interest rate uncertainty econometrically by estimating a reduced form time series pro-

cess using historical US interest data. This yields a working definition of the CER based

upon an econometric model and allows estimation of the CER schedule from a forecasting

simulation.

These applications bring to light some interesting issues concerning the characteri-

zation of interest rate uncertainty. Firstly it is interesting to note that the decline in

discount rates in both of these approaches depends upon the persistence of interest rates

over time. The theoretical model of Weitzman (2001) has this persistence in-built, the

1Weitzman (1998) assumes risk neutral agents for exposition, but this represents a special case of

his general point. For realistic scenarios, determination of DDRs a la Gollier (2002a, 2002b) requires

knowledge of the 4th and 5th derivatives of utility functions, something that he admits is very far from

being accomplished.
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assumption being that each individual discounts the future at their preferred constant

rate. I.e. each of the responses that make up the probability distribution remain con-

stant over time. In N&P however, the existence of persistence is an empirical question,

and the existence or otherwise of a unit-root in the series determines the rate of decline

of the CER. Secondly, beyond choosing a different sample of humanity, it is not imme-

diately clear how one might improve upon the empirical approach taken by Weitzman

(2001). However, in the case of N&P there are several additional avenues available for

the characterization of interest rate uncertainty and the resulting definition of the CER.

It is these empirical issues that are the main concern of this paper and we build upon

the following two points. Firstly it is clear that, if we believe that the past is informative

about the future, it is important to characterize the past as accurately as possible. Indeed,

the selection of the econometric model is of considerable moment in operationalising a

theory of DDRs that depends upon uncertainty and defines the CER in statistical terms,

since each specification differs in the assumptions made concerning the time series pro-

cess. This will affect the attributes of the resulting schedule of CER. Secondly, selection

among these models is also an empirical question. Tests for stationarity, model misspeci-

fication and comparisons among models based upon efficiency criteria should guide model

selection for the practitioner. N&P, for example, specify a simple AR(p) model of interest

rate uncertainty, which limits the characterization of uncertainty to a process in which

the distribution of the permanent and temporary stochastic components is constant for

all time2. Such a process guarantees declining CERs whilst ignoring the possibility of

structural breaks.
2The AR(1) model that they describe provides the following expression for the certainty equivalent

discount rate:

er = η − tσ2η − σ2εΩ (ρ, t) .

Since Ωt (.) > 0, and the variance of the permanent component of the interest rate, σ2η , and the temporary

component, σ2ε, are constant over time, er is a declining function of t.
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We revisit these issues for US and UK interest rate data and show that in both

cases misspecification testing generates a natural progression away from the simple AR(p)

specification towards models which explicitly consider changes in the time series process

over time. We select among alternative econometric models by comparison of i) their

forecasting performance and the associated Mean Square Error (MSE) and ii) efficiency

criteria derived from the empirical distribution of the future path of the discount factor:

e.g. coefficient of variation, the proximity of upper and lower percentiles, preferring

narrower percentiles and lower coefficients of variation.

These points are illustrated using US and UK interest data and we show the policy

implications of interest rate uncertainty and model selection in two case studies. The first,

the value of carbon damages, allows a direct comparison to the work of N&P. We use

identical data and analyze the same policy issue. The second case study is the appraisal

of nuclear build in the UK and this brings to light the different econometric specifications

that are appropriate in the UK context and highlights the limitations of DDRs in resolving

the issues of inter-generational equity.

The paper is organized as follows. In Section 2, we introduce the theory of CER

offered by Weitzman (1998), our methodology for model selection and the econometric

models used to characterize the uncertainty of interest rates in both the US and UK

contexts. The results of the estimation and the simulations are presented in Sections 3

and 4, respectively. Section 5 draws policy implications for model selection in two case

studies and Section 6 concludes the paper.
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2 From Theory to Practice

2.1 The Certainty Equivalent Discount Factor and Rate

Discounting future consequences in period t back to the present is typically calculated

using the discount factor Pt, where Pt = exp(−
tP
i=1
ri).When r is stochastic, the expected

discounted value of a dollar delivered after t years is:

E(Pt) = E

Ã
exp(−

tX
i=1

ri)

!
(1)

Following Weitzman (1998) we define (1) as the certainty equivalent discount factor, and

the corresponding certainty-equivalent forward rate for discounting between adjacent pe-

riods at time t as equal to the rate of change of the expected discount factor:

−dE(Pt)/dt
E(Pt)

= ert ≤ E [rt] (2)

where ert is the instantaneous period-to-period rate at time t in the future. This definition
contains the assumption that individuals are risk neutral, i.e. they are only concerned

with the expected value of discounted values, rather than higher order moments. This

represents the economic theory of uncertainty causing a DDR, the result coming from

noting that (2) is effectively a restatement of Jensen’s Inequality. Operationalising this

theory requires the determination of the stochastic nature of ert.
2.2 Parametrization of real interest rates

N&P employed a simulation method to forecast discount rates in the distant future,

which was properly designed to account for uncertainty in the future path of interest

rates and was mainly based on the estimation results of two econometric models, namely

an autoregressive mean-reverting (MR) model and a random walk (RW) model. They
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estimated the following AR(p) model3:

rt = η + et (3)

et =

pX
i=1

aiet−i + ξt

where ξt ∼ N(0,σ2ξ), η ∼ N
¡
η,σ2η

¢
and

Pp
k=1 ρk < 1 for the mean-reverting model, whilePp

k=1 ρk = 1 for the random walk model4 . This model gives their definition of the CER

as follows5:

ert = η − tσ2η − σ2ξf (ρ, t) (4)

where η is the mean discount rate and (4) is a declining function of t (See N&P (2003)

for details).

Before introducing some alternative econometric models which seem to fit our data

better, we briefly discuss the importance of model selection in inference and forecasting.

The selected model should be able to capture the dynamics of the data generating process

in order to achieve an adequate description of the series under scrutiny. The complexity

of the model and the restrictions it imposes should correspond to the level of uncertainty

of the true data generating process. Otherwise, inference can be misleading and the

forecasting performance of the model may be very poor.

Model selection should be based on data observation, statistical and misspecification

testing. For example, the results of unit root tests are crucial in determining a class of

appropriate models. Furthermore, misspecification testing is always necessary to check

the adequacy of econometric models. The existence of autocorrelation, heteroscedasticity
3The data used was annual long-term government bonds for the period 1798 to 1999 converted to real

rate by subtracting a ten-year moving average of the expected inflation of the CPI.
4The estimation results are not reported to save space. More details can be found in N&P (2003).

5Where f (ρ, t) =
1−ρ2−2 log(ρ)ρt+1(1+ρ−ρt+1)

2(1−ρ)3(1+ρ) for MR and f (ρ, t) = 1
12
(1+ 6t+ 6t2) for RW.
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or parameter instability is useful information that the researcher should use to select a

model that better fits the data. Finally, an out-of-sample forecasting exercise is often

very useful to examine the forecasting performance of the model.

We now introduce alternative econometric models that can be used to parametrize the

real interest rates. As we will see in the following sections, the results of misspecification

tests will indicate how appropriate these models are in the US and UK cases. It turns out

that misspecification testing generates a natural progression away from the simple AR(p)

specification towards models which exhibit heterogeneity.

First of all, we introduce the AR(p) - GARCH(l,m) model which is often used in

empirical studies to describe processes that exhibit heteroscedasticity. Using such a model

to describe the real interest rates gives us:

rt = η + et

et =

pX
i=1

aiet−i + ξt

ξt = h
1/2
t zt (5)

ht = c+
mX
i=1

βiξ
2
t−i +

lX
i=1

γiht−i

where the variables are as before and zt is an i.i.d. zero-mean normally distributed random

variable with unit variance. l and m represent the lags on the terms which make up ht.

This is a more flexible representation of rt than the AR (p) model. Above all the AR(p)

- GARCH(l,m) model allows more efficient estimation in the presence of (conditionally)

heteroscedastic errors and is often thought to better reflect the processes of financial

variables (Harvey 1993).

Both the AR(p) and AR(p) - GARCH(l,m) models assume that the parameters

driving the stochastic process are constant over the sample period. This is likely to be an

unrealistic assumption for the period for which we have data and certainly for forecasting

the CER over the long-term policy horizon in hand which, following N&P, we assume

8



extends for 400 years. For example, the behavior of interest rates is strongly affected by

the economic cycles as well as shocks destabilizing them, i.e. periods of economic crisis.

In the US, for example, during the period 1979 through 1982, the Federal Reserve (FED)

stopped its usual practice of targeting interest rates and decided to use non-borrowed

reserves (NBRs) as a target instrument for monetary policy. As a result, the volatility

of interest rates increased dramatically during that period. Other factors inducing high

volatility to the U.S. interest rates were the OPEC oil crisis (1973-1975), the October

1987 stock market crisis and wars involving the U.S. For this reason a more appropriate

econometric model might be one that allows for changes in the behavior of interest rates.

Moreover, the strong persistence in the volatility of the estimated GARCH model6 is an

indication of a regime-switching mechanism, as it can be an artifact of changes in the rate

generating mechanism (see for example Gray (1996)).

Two possible models are used to account for the possibility of time varying parameters

and regime changes. Firstly, we employ a Regime-Switching (RS) model with two regimes.

This model provides a more flexible characterization of uncertainty than the simple, single

regime, AR (p)model. Each regime incorporates a different speed of mean-reversion, along

with a different permanent component, ηk, and error variance. Specifically, the model is

as follows:

rt = ηk + et (6)

et =

pX
i=1

aki et−i + ξt

where ξt is an i.i.d. zero-mean normally distributed random variable with variance σ2k,

k = 1, 2 for the first and second regime, respectively. At any particular point in time

6Estimation results are presented in the following sections.
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there is uncertainty as to which regime we are in. The probability of being in each regime

at time t is specified as a Markov 1 process, i.e. it depends only on the regime at time

t − 1. We define the probability that the process remains at the first regime as P, while

the probability that the process remains at the second regime is Q. The matrix with the

transition probabilities is assumed to be constant7.

Secondly, we model time varying parameters using a State Space (SS) (autoregressive

random coefficient) model. This is given by the following system of equations:

rt = η + αtrt−1 + et (7)

αt =

pX
i=1

ηiαt−i + ut

where et and ut are serially independent, zero-mean normal disturbances such that:

 et

ut

 ∼ N

 0

0

 ,
 σ2e 0

0 σ2u


 . (8)

In other words, the interest rate is modelled as an AR(1) model with an AR(p) coefficient.

This model represents a more flexible representation of the stochastic process than the

”constant parameter” models.

Finally, we allow the possibility of multivariate models in order to exploit covariation

between UK and US interest rates. We estimate a VAR model with endogenous variables

7The matrix of probabilities can be thought of as follows, where Rt refers to the regime at time t.

Pr ob(Rt = 1 | Rt−1 = 1) = P

Pr ob(Rt = 2 | Rt−1 = 2) = Q

Pr ob(Rt = 2 | Rt−1 = 1) = 1− P

Pr ob(Rt = 1 | Rt−1 = 2) = 1−Q
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the real UK and US interest rates. The specification of the model is typically the following:

 rukt

rust

 =

 n1

n2

+ pX
i=1

Ai ∗

 rukt−i

rust−i

+
 e1t

e2t

 (9)

where Et = (e1t, e2t)0 follows a bivariate normal distribution and Ai are (2x2) matrices

of coefficients. The VAR models incorporate the interactions between the endogenous

variables which is important from the perspective of forecasting.

3 Empirical Results for the US

3.1 Estimation Results

First of all, we test the stationarity of the US real interest rates. The Augmented Dickey-

Fuller (ADF) test failed to reject the null hypothesis of a unit-root. In addition, we

applied a variety of unit-root tests8 to examine the stationarity of the series, the details

of which can be found in Table A.1 of Appendix 1. The results generally favoured the

existence of a unit-root in the series (both levels and logs were examined). However, since

it is well-known that unit-root tests often lack the power to reject a false hypothesis of

a unit-root for alternatives that lie in the neighborhood of unity, we estimated both a

Random Walk (RW) and a mean-reverting (MR) models. Three lags were included in

both models (p = 3)9 . Although these models account well for the dependence in the

mean of the series (as indicated by the tests for serial correlation in the residuals of the

8We used the following unit root tests: the Augmented Dickey-Fuller (Dickey and Fuller (1979)),

the Dickey-Fuller test with GLS detrending (Elliott and al. (1996)), the Elliot-Rothenberg-Stock Point

Optimal test (Elliott and al. (1996)), the Phillips-Perron test (Phillips, P.C.B. and P. Perron (1988)),

the KPSS test (Kwiatkowski et al. (1992)) and the Ng-Perron test (Ng and Perron.(2001)).
9Throughout this paper, we use the Scwharz Information Criterion to select the lag-length of the

alternative models.
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regression), they ignore important properties of the data which determine the properties

of the CER..

First of all, the Lagrange Multiplier (LM) test for autoregressive conditional het-

eroscedasticity (ARCH) in the residuals fails to accept the null hypothesis of homoscedas-

ticity. In order to accommodate this aspect of interest rate uncertainty, we estimated an

AR(3) − IGARCH(1, 1) model10. The estimation results are reported in Table B.1 of

Appendix 1.

However, the strong persistence in the volatility of the estimated GARCH model is an

indication of a regime-switching mechanism, as we mentioned previously. Therefore, we

employed both the RS and SS models to allow for changes in the generating mechanism

of the US rates. In the case of RS, each regime was modelled as an AR(2) process. The

SS model was characterized as follows:

rt = η + at ∗ rt−1 + et (10)

at = η1 ∗ at−1 + ut

which allows the autoregressive coefficient of the process (at) to be an AR(1) process,

which turns out to be a random walk. The parameter estimates for each of these models

are presented in Tables C.1 and D.1 of Appendix, 1 respectively.

So far, we have estimated five alternative models for the US interest rates. It is

important to compare these models on the basis of the level of uncertainty they allow

in the generating mechanism of US rates. MR is the simpler model, since it assumes

second-order stationarity and constant parameters. RW increases the level of uncertainty

by relaxing the assumption of stationarity. However, it still assumes constant variance

10Initially, we estimated an AR(3)−GARCH(1, 1) model. However, statistical testing indicated that

β1 and γ1 sum up to unity.
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(homoscedasticity) and constant parameters. The AR-GARCH model allows for time-

varying conditional variance (heteroscedasticity). On the other hand, the RS model and

the SS model entail a higher degree of uncertainty, since they both allow for time-varying

coefficients. The RS model describes a non-stationary process with two different regimes.

However, the process is ”stationary in each regime”. In this regard the autoregressive

coefficient of SS changes in each period and as a result allows for the higher level of

uncertainty.

3.2 Certainty-equivalent discount rates and discount factors (US)

Having specified five alternative models for the US rates, we estimated the schedule of

CER associated with each one from simulations of the discount factor11 . The discount

factors and the certainty-equivalent discount rates of the models described so far are

presented in Tables 1 and 2 below12. We can see that the models produce certainty-

equivalent discount rates with substantial differences in their behavior. The RW model

and the AR-GARCH model produce lower rates than MR. For example, the certainty-

equivalent discount rates of the RW model and the AR-GARCH model fall from 4% to

1.1% and 1.6% after 200 years, respectively. As a result, the discount factors produced by

the RW model and the AR-GARCH model are substantially greater than those produced

by the mean-reverting model. For example, at the end of the 400-year forecast period,

the discount factor of RW is 169 times greater than that of MR. To a great extent this

reflects the importance of persistence as a determinant of declining discount rates.

{INSERT TABLE 1 AND 2 HERE: 1: Discount Factors , 2: CERs}

The discount factors and the certainty-equivalent discount rates of the RS model and

the SS model are presented in Tables 1 and 2. Initially, the certainty-equivalent discount

11The design of the simulation is similar to that of N&P and it is explained in detail in Appendix 4.
12An initial value of 4 percent is used in the simulation of the future path of the US interest rates.
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rate of RS is substantially greater than that of SS. However, the certainty-equivalent

discount rate of RS becomes smaller than that of SS during the last 90 years. Finally, at

the end of the forecast period, the discount factor of SS is about 38 times greater than

that of RS.

In summary, the forecasts of the alternative models differ substantially. However, the

specification tests show that a model with constant coefficients is not able to fully capture

the dynamics of the U.S. interest rates over the period examined. Given that we believe

that the past is informative about the future, it is important to characterize the past as

well as possible. The RS and SS model are properly designed to account for changes over

time in the generation mechanism of the interest rates and therefore these two models

seem eminently preferable.

3.3 Model Selection

In this subsection, we mainly focus on RS and SS, since we believe that these two models

are preferable to the other three models. In addition to calculating the expected discount

factor E (Pt) the simulations generated various measures of the empirical distribution of

Pt such as the standard deviation and the empirical percentiles of the simulated Pt13.

These properties of the empirical distributions serve as the basis for the evaluation of

and selection among our models, as it is desirable to have not only the “correct” discount

factor, but also the one with the minimum deviation. Models with lower coefficients of

variation and tighter 5th and 95th quantiles, represent more reliable forecasts. This is

especially important for the evaluation of the distant future. We compare all the models

on this basis and the results are summarized as follows:

(i) The SS model provides the highest CER for the extreme long-run, i.e. for periods

beyond 350 years. On the other hand, the RS model provides the highest CER over the

13We calculate the following percentiles: 1%, 2.5%, 5%, 10%, 50%, 90%, 95%, 97.5% and 99%.
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first 200 year horizon.

(ii) The RS model exhibits a tighter band between the 5th and 95th percentile than

the SS model. Figures B and C in Appendix 3 depict this behavior for the RS and the

SS model, respectively.

(iii) On the other hand, judging by the coefficient of variation, the SS model is the

one with the lower coefficient of variation suggesting the lower deviation from the mean

as a proportion of the mean. Figure A in Appendix 3 shows the relative performance of

the models employed.

Evaluating the forecasting performance of these two models for the long run is impos-

sible due to limitation of data, as forward rates exist for a maximum period of 30 years.

Next, we attempt to discriminate between these models (along with the remaining three

models) on the grounds of their forecasting performance over a 30-year horizon using

available real data. We specifically make use of annual nominal forward rates suggested

by the term structure of the US government bonds. As a measure of inflation expecta-

tions, we extract the implied inflation rate from inflation-indexed US government bonds

of similar maturity dates. Then, we calculate the commonly-used Mean Square Error

(MSE) and judge the models by this criterion. Alternatively, we calculate four modified

MSE criteria by incorporating four kernels14 which weigh observations by their relevant

proximity to the present. The results are presented in Table 3.

{INSERT TABLE 3: Average MSEs: US}

Interestingly, the various specifications of the MSE criterion unanimously rank the SS

model first followed by RS model in most of the cases. The AR-GARCH model ranks

third followed by MR and then RW. The ranking of the models according to the MSE

14The Bartlett, the Parzen, the quadratic-spectral (QS) and the Tukey-Hanning (TK) kernels are the

weighting functions used in our evaluation.
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criterion is inversely related with the uncertainty notion as incorporated in our models,

with the most ‘uncertain’ model being the best and the most ‘certain’ being the worst.

In sum, if we select the models on the basis of their ability to characterize the past

and their accuracy concerning forecasts of the future we are inclined to accept the SS

model for the US case. Our second best choice would be the RS model.

4 Empirical Results for the UK

4.1 Data

To estimate the model of interest rate behavior, we compiled a series of real market

interest rates over the two-century period 1800 to 2001. The nominal interest rate used

is the United Kingdom 2 1/2% Consol Yield, while inflation is calculated by the annual

change in the Consumer Price Index15. Our choice of interest rate is limited by the

availability of data as well as our desire for the longest time series available. Based on

these nominal rates, we calculate real rates by subtracting the 10-year moving average

inflation rate, so as to smooth short-term price fluctuations. However, even this technique

leads to negative real rates for specific years due to mainly extreme events, such as oil

crises or wars. In order to make our model invariant to these economic crises, which affect

interest rates temporarily, we estimated the crisis-induced level of inflation by including

a dummy in a small model for the inflation rate. The estimated extra-level of inflation

is then subtracted from the inflation in the periods of crises and our series of positive

real rates is obtained. We then convert these rates to their continuously compounded

equivalents. We estimate our models, employed in the simulation of the interest rate,

using a 3-year moving average of the real interest rate series to smooth very short-term

fluctuations. Moreover, due to the fact that our models employed in the simulation of

15Data provided by the Global Financial Data, Inc, available at http://www.globalfindata.com.

16



the interest rates do not rule out the possibility of persistent negative discount rates, we

use the natural logarithms of the series in the estimation procedure.

Regarding the estimation of multivariate model (9), the US real interest rate employed

was calculated in a similar mode. The nominal interest rate used is the United States

10-year Bond Constant Maturity Yield, while inflation is calculated by the annual change

in the Consumer Price Index16. Further calculations were exactly the same as in the UK

case, in order to ensure a comparable series used in the estimation of the VAR model.

4.2 Estimation Results

Similarly to the US case, we used a simple AR model as our starting point and undertook

specification testing. Once again, this process generated a natural progression away from

the simple AR(p)models towards models that incorporate time-varying coefficients. How-

ever, in contrast to the US context, the unit root tests revealed the absence of a unit root

in the UK interest rate series17. As a result, we only estimate a mean-reverting AR(4)

model, since the estimation of a Random Walk model is not justified. The parameter

estimates are reported in Table B.2 of Appendix 2. The sum of the autoregressive coef-

ficients is 0.85, substantially less than unity. As well as being in contrast to the findings

of N&P for the US, this effectively reduces the extent of uncertainty in interest rates and

will reduce the extent of the decline in CERs over time.

The Langrange Multiplier (LM) test for autoregressive conditional heteroscedasticity

suggests that heteroscedasticity is present in the residuals of the AR(4) model. This

suggests that more efficient estimates would be obtained by an AR(p) −GARCH(l,m)

model. We estimate an AR(4)−GARCH(1, 1) model. However, the sum of the GARCH

coefficients18 is substantially greater than unity (β1 + γ1
∼= 1.20), i.e. the conditional

16Data provided by the Global Financial Data, Inc, available at http://www.globalfindata.com.
17Table A.2 of Appendix 2 provides details on the unit root tests conducted.
18Estimation results are not reported because it seems that the AR-GARCH model is inappropriate to
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variance process is explosive. The estimation results lead us to the estimation of a regime-

switching model. We estimate the RS model given in (6), where p = 2, that is, each regime

is an AR(2) mean-reverting process.

The estimation results for the RS model are presented in Table C.2 of Appendix 2.

The probability of changing regime while being in the first regime is estimated at 23.3

%. The probability of changing regime falls to 6.8 % when the process is in the second

regime. Furthermore, the first regime is more volatile than the second as indicated by

the higher variance of the error term, while less persistent as indicated by the sum of

the autoregressive coefficients. In addition, the estimated values of the constant and

autoregressive terms indicate that the mean of the process in the two regimes varies.

Overall, the estimates of this model suggest that periods of low interest rates are quickly

mean-reverting, surrounded by greater uncertainty and transit more often to periods of

high interest rates which are more persistent and less uncertain.

As an alternative approach to modelling changes in the data generating mechanism,

we estimate a SS model identical to that used for the US data. Lastly we estimate a VAR

model to account for any interactions between the US and the UK rates. The estimation

results for these two models are presented in Table D.2 and E.2, respectively. Table

D.2 shows that the state process is highly persistent, almost a random-walk process,

as indicated by the estimate of the autoregressive coefficient. Having estimated four

alternative models, we simulate and compare the CER for the UK.

4.3 Certainty-equivalent discount rates and discount factors (UK)

We now simulate 100.000 possible future discount rate paths for each model starting in

2002 and extending 400 years into the future. For each model presented and estimated in

the previous section the simulations are based on the estimates presented in Tables B.2

describe the UK interest rates (as indicated by the estimates).
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to E.2. Initial values for any lags of the real interest rate necessary for the simulation

are set at 3.5 per cent, the rate used for CBA by the UK Treasury (HM Treasury 2003).

The simulation design varies considerably with the model used, and the process of picking

parameters and shocks is discussed separately for each model in Appendix 4. Moreover,

we calculate the certainty-equivalent discount rate employing a discrete approximation to

equation (2).

The simulated expected discount factors for the mean reverting AR(4) model are

presented in the first column of Table 4 for a time horizon of 400 years, together with a

column of discount factors based on a constant rate of 3.5 percent19. The discount factor

for the AR(4) model halves in first 20 years and falls to less than 10 % of the initial value

in the first 80 years. Compared to the constant discounting model, the AR(4) model

discount factor is three times higher in the first three quarters of our forecasting horizon,

and 22 times higher after 400 years. The certainty-equivalent discount rate is, with the

exception of the first 80 years, consistently lower than the constant rate of 3.5 per cent,

falling to 0.39% after 400 years. The simulated discount factors of the GARCH model

are not reported as the explosive conditional variance yields counter-intuitive results.

However, as described above both the mean-reverting model and the GARCH model

suffer from estimation problems.

The discount factors for the RS model, reported in Table 4, are comparable to those

of the AR(4) model especially during the first 200 years. However, during the second half,

the discount factors are lower, leading to a higher terminal value for the discount rate of

2.1 per cent compared with a value of 0.39 % for the AR(4) model.

The SS model is the only one for which the discount factors remain of significant

magnitude until the end of the 400-year period. Compared to the constant-discounting

model, this model yields increasingly higher valuations, which reach almost 1.500 times

193.5 percent is the the rate used for CBA by the UK Treasury.
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the constant valuation by the end of the period. The SS CER falls relatively slowly from

2.2 per cent in the first 20 years to 1.4 per cent at the period-end.

The expected discount factors of the VAR model are 390 times higher at the end of the

400-year period than those derived by the constant discount rate and the CER declines

faster than the other models from 3.5 per cent to 0.35 per cent at the end of the period.

The associated discount rates are shown in Table 5 for the UK case.

{INSERT TABLE 4 and 5 HERE: 4: Discount Factors and 5: CERs}

In summary, our main findings are as follows:

(i) Regarding the discount factors, the SS model gives the higher ones followed by the

RS, while the lower ones are given by the AR and the VAR model. In any case, these

differences are more pronounced during the first half of the forecast horizon. Only the

SS and the VAR model sustain some value in the distant future (400 years). Specifically,

the SS discount factor 400 years in the future is 0.0016 and 0.00041 for the VAR model.

(ii) Naturally, the certainty-equivalent discount rates implicit in the discount factors

simulated reveal the opposite picture. The model that yields the higher rates during the

first half of the sample is the AR(4), while during the second half the RS model yields

the higher rates. On the other hand, the SS fluctuates in the range of 2.2 to 1.4 per cent.

The terminal rates (i.e. after 400 years) range from 0.35 to 2.1 per cent for the VAR and

the SS model, respectively.

4.4 Model Selection

The estimation procedure revealed that among the models employed, the RS and SS

models are more appropriate characterisations of the data generating process and best fit

the data. The question again arises: how do we select among these models? As above, we

do this by reference to the empirical distribution generated by each of the models. For
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comparison purposes, we will comment on the outcomes of all models. Our main findings

are summarized as follows:

(i) A measure of the uncertainty of our projections is the standard deviation of the

empirical distribution of every simulated path, which is level dependent, though. In this

mode, we evaluate our models by the coefficient of variation (i.e. the ratio of the standard

deviation over the mean). Figure D of Appendix 3 displays this measure for all our models

and reveals that the model with the lowest coefficient is the SS followed by the VAR model

, whereas the AR(4) model yields the highest coefficient.

(ii) Alternatively, as a measure of uncertainty, we employ the 5% and 95% empirical

percentiles. Figures E and F of Appendix 3 show these percentiles for RS and SS, re-

spectively. This measure seems to favor the RS model, which has the tightest confidence

intervals, suggesting that uncertainty over the expected discount factor is considerably

reduced. On the other hand, the percentiles of the SS model are relatively wide.

Summing up, our results suggest that long-term forecasting and consequently distant

discounting should be carried out by employing a model that can accommodate changes

in its structure. Such properties are prevalent in our RS and SS model, which outperform

the simple AR(4) model, justifying our preference for them. Of the SS and the RS models,

the former has the lowest coefficient of variation and the latter the tightest confidence

intervals. Therefore, our preference for either of these models needs to be justified by

alternative means.

In this mode, we evaluate the UK models by the alternative MSE criteria described

analytically in Section 3.3. The average MSEs for the UK models are presented in Table

6.

{INSERT TABLE 6: Average MSEs: US}

Once again, the various specifications of the MSE criterion unanimously rank the SS
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model first followed by RS model. The MR model ranks third followed by the bivari-

ate one, justifying our choice for univariate models. The inverse relationship between

uncertainty and forecasting performance is valid, once more.

In sum if we select the models on the basis of their ability to characterize the past and

their accuracy concerning forecasts of the future we are inclined to accept the SS model

for the UK case. Our second best choice would be the RS model.

5 Policy Implications of Model Selection

The foregoing has established the importance of model selection in determining a sched-

ule of declining discount rates for use in CBA. The differences that arise from alternative

specifications of the time series process have been revealed and a method for selecting

one model above another has been proposed. In this section we highlight the policy im-

plications of declining discount rates and the impact of model misspecification by looking

at two case studies relevant to the long-term policy arena. Firstly we follow N&P and

consider climate change20. We establish the present values of the removal of 1 ton of

carbon from the atmosphere, and hence the present value of the benefits of the avoidance

of climate change damages for each of the specified models. Secondly, we look at nuclear

build in the UK from the perspective of DDRs. This is directly related to the measure-

ment of climate change mitigation above, since nuclear power can benefit from obtaining

carbon credits under a system of joint implementation and carbon trading (see Pearce et

al. (2003)). The analysis uses the US data in the first case study and the UK data and

models in the latter case.
20See N&P (2003) for the assumptions concerning the modelling of carbon emissions damages.
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5.1 The Value of Carbon Mitigation

Table 7 shows the present value per ton of carbon emissions with respect to the US models

described in Section 3.1.

{INSERT TABLE 7 HERE}

The only noticeable difference in values occurs in the case of SS. In this case, the

value of carbon emissions reduction is over 150 % larger than that under constant dis-

counting at 4 %. In addition, the RW model values carbon reduction 33.3 % higher than

under constant discounting21. Similarly, employing the mean reverting model, we find

an increase in value of only 12 % compared to the 14% difference noted by N&P under

their mean reverting equivalent. The preceding discussion has argued that the RS and SS

models are to be preferred over the others since they allow for changes in the interest rate

generating process and have desirable efficiency qualities. From the policy perspective we

have established that both of these models provide well specified representations of the

interest rate series. However, on the one hand the RS model provides roughly equivalent

values of carbon to the constant discounting rate values (there is a 9% difference), while

on the other the SS produces values up to 150% higher. Comparing the performance

of our models to the RW model used by N&P, we find that RW produces larger values

of carbon than all models other than the SS model, which exceeds the RW model by

about 88.8 %. In our case this represents a 88.8% increase compared to the methodology

employed by N&P.

The disparity between the RS and the SS models, and the proximity of the carbon

values generated by the former to those generated by conventional constant discounting

21The values for the RW model and MR model are nearly bu not exactly the same as those reported

by N&P. This is as a result of some of the additional data transformations that we have undertaken and

the choice of p for these models.
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represents a clear signal of the policy relevance of model selection in determining the

CER. It is crucial from a policy perspective to make a clear judgement as to which of the

two models is most appropriate to the case in hand. It also highlights the importance of

the presence of persistence in this estimation, recalling that the autoregressive process of

the SS model parameters was effectively a RW model. In this case we have found that

in addition to the lower coefficient of variation, the SS model is also preferable to RS

model due to its lower MSE for the 30-year horizon. Hence we suggest it is reasonable to

assume that the SS model is preferable in this case. This means that the carbon values

are increased by 150% compared to conventional discounting and 88% compared to N&Ps

approach.

Given that the value of carbon depends upon model selection for discount rates, it

is interesting to examine the implications of this for climate change prevention projects

and/or the appraisal of investments in carbon intensive sectors of the economy. For this

reason we look at the implications of using the regime switching and state space models

in the appraisal of nuclear power investments in the UK.

5.2 The Appraisal of Investments in Nuclear Power

New nuclear build in the UK is still being considered as an option to ensure security of

energy supply and adherence to Kyoto targets, and the Performance and Innovation Unit

(Performance and Innovation Unit, 2002) recommended that the nuclear option should

be kept open. Decommissioning represents a long-term implication of such investments,

however the present-value of decommissioning costs is insignificant using conventional

discounting. These costs are naturally sensitive to the use of declining discount rates.

Following the same cost and price assumptions, and time horizons for construction, oper-

ation and decommissioning as Pearce et al. (2003), we compare the NPV of investment

in a nuclear power station using the DDRs associated with the state space and regime
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switching models. Furthermore, following Pearce et al (2003), we investigate the im-

pact of carbon credits given to the nuclear industry based upon the social cost of carbon

reflecting the lower intensity of carbon production possible compared to conventional en-

ergy. As we have seen above, the use of declining discount rates can improve the relative

economics of nuclear generation by raising the social cost of carbon. The implications of

these two countervailing effects, and the comparison to conventional constant discounting

is presented in Table 8.

{INSERT TABLE 8 HERE}

The aforementioned appraisal shows that although the SS model has significant con-

sequences for the present value of revenues and carbon credits, the present value of de-

commissioning and operating costs is also increased considerably. Moreover, both the SS

and the RS models increase the NPV of the project by more than 8 %. To this extent the

present value of nuclear build is affected only marginally by the implementation of these

models of declining discount rates.

This case study highlights the limitations of DDRs in accounting for intergenerational

equity. There is a tension between benefits and costs that accrue in the far distant

future and the use of DDRs raises both of these simultaneously: both carbon credits and

decommissioning costs increase since to a large extent they accrue simultaneously. When

appraising projects, which have time profiles of costs and benefits of this nature emphasis

is perhaps better directed towards a more comprehensive understanding the trade-offs

faced intra-temporally, by particular future generations, rather than the inter-temporal

trade-off made by the current generation that DDRs address directly22.

22For more on this issue see Horowitz (2002)
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6 Conclusions

In response to the need to appraise projects over ever longer time horizons a number

of theoretical discussions have arisen concerning the appropriacy of discount rates that

fall with the time horizon considered. Such Declining Discount Rates (DDRs) would add

greater weight to the costs and benefits that accrue to future generations and thereby at

least partially address the issue of inter-generational equity that so often besets the long

term policy arena.

Weitzman’s (Weitzman 1998) theoretical justification for DDRs depends upon uncer-

tainty of the discount rate and therefore the operationalisation of this theory is highly

dependent upon the manner in which one interprets and characterizes uncertainty. Weitz-

man (2001) suggested that it was the lack of consensus current about the correct discount

rate to employ in the far distant future that was the source of uncertainty and his esti-

mated gamma distribution provided the means of operationalising this theory and deter-

mining the declining Certainty Equivalent Rate (CER). Newell and Pizer (2003) (N&P)

took an alternative view, suggesting that the future is the source of uncertainty and this

interpretation lead naturally to an econometric forecasting approach to the measurement

of uncertainty and the determination of the CER.

This paper builds on N&Ps approach in determining DDRs and it makes the following

points concerning the model selection and the use of DDRs in general. Firstly, N&Ps

approach is predicated upon the assumption that the past is informative about the future

and therefore characterizing uncertainty in the past can assist us in forecasting the future

and determining the path of CERs. We have argued that if one subscribes to this view it is

important to characterize the past as well as possible by correctly specifying the model of

the time series process. This is particularly so when dealing with lengthy time horizons

where the accuracy of forecasts is important. Indeed the selection of the econometric
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model is of considerable moment in operationalising a theory of DDRs that depends

upon uncertainty, because econometric models contain different assumptions concerning

the probability distribution of the object of interest. We have shown for US and UK

interest rate data that the econometric specification should allow the data generating

process to change over time, and that State Space and Regime Switching models are

likely to be appropriate. Secondly, selection between well specified models can and should

be undertaken by reference to measures of efficiency such as coefficients of variation,

confidence bounds and out-of-sample forecast MSEs.

Our estimations, simulations and case studies bear out this assertion. The path of the

CER differs considerably from one model to another and therefore each places a different

weight upon the future. The policy implications of these estimates is revealed in the

estimation of the value of carbon emissions reduction, with values which are up to 150%

higher than when using constant discount rates, and up to 88% higher than the Random

Walk model employed by N&P.

The assessment of UK nuclear power reveals the limitations of DDRs in accounting for

intergenerational equity. The fact that decommissioning costs and the benefits of carbon

emissions reductions (for which we assume nuclear power receives credits) both accrue in

the distant future means that the use of DDRs does not change the policy prescription:

both values are increased by DDRs and the net present value remains negative. This

example highlights the importance of the question of valuing static/intra generational as

well as intertemporal/intergenerational costs and benefits.
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Table 1. Certainty Equivalent Discount Factors for the US.

Year 4%
Constant

N&P
(MR)

Random
Walk

AR
IGARCH Regime State

space
1 0.96154 0.96154 0.96154 0.96154 0.96154 0.96154

20 0.45639 0.45906 0.45177 0.45876 0.45390 0.56424
40 0.20829 0.21661 0.20917 0.21250 0.19576 0.33136
60 0.09506 0.10471 0.10480 0.10062 0.08458 0.20296
80 0.04338 0.05150 0.05777 0.04894 0.03700 0.12889

100 0.01980 0.02567 0.03482 0.02455 0.01647 0.08408
150 0.00279 0.00476 0.01333 0.00529 0.00238 0.03132
200 0.00039 0.00095 0.00683 0.00178 0.00041 0.01255
250 0.00006 0.00022 0.00419 0.00104 0.00010 0.00526
300 0.00001 0.00006 0.00289 0.00086 0.00003 0.00227
350 0.00000 0.00002 0.00215 0.00080 0.00002 0.00100
400 0.00000 0.00001 0.00169 0.00078 0.00001 0.00044

Table 2. Certainty Equivalent Rates for the US.

Year N&P(MR) Random
Walk

AR
IGARCH Regime State

space
1 4.00 4.00 4.00 4.00 4.00

20 3.91 4.05 3.96 4.22 2.79
40 3.76 3.76 3.88 4.31 2.59
60 3.65 3.28 3.74 4.26 2.38
80 3.58 2.80 3.60 4.18 2.23

100 3.51 2.37 3.42 4.09 2.10
150 3.36 1.59 2.75 3.79 1.91
200 3.16 1.14 1.62 3.31 1.79
250 2.87 0.85 0.65 2.46 1.72
300 2.43 0.66 0.23 1.83 1.67
350 1.87 0.53 0.09 0.95 1.64
400 1.41 0.44 0.04 0.70 1.61

Table 3. Average MSEs for the US.

Criterion N&P(MR) Random
Walk

AR
IGARCH Regime State

space
AMSE 2.058 2.171 2.102 2.323 1.832

AMSE (B) 1.692 1.724 1.692 1.687 1.499
AMSE (P) 1.725 1.746 1.720 1.683 1.426

AMSE (QS) 0.842 0.870 0.848 0.879 0.760
AMSE (TH) 1.769 1.797 1.765 1.738 1.550
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Table 4. Certainty Equivalent Discount Factors for the UK

Year 3.5%
Constant AR(4) Regime State space VAR

1 0.96618 0.96618 0.96618 0.96618 0.96618
20 0.50257 0.48208 0.51472 0.61857 0.47492
40 0.25257 0.23676 0.26746 0.40678 0.22915
60 0.12693 0.11778 0.13981 0.27722 0.11376
80 0.06379 0.05912 0.07354 0.19368 0.05798

100 0.03206 0.02997 0.03890 0.13775 0.03035
150 0.00574 0.00569 0.00813 0.06172 0.00707
200 0.00103 0.00115 0.00177 0.02882 0.00227
250 0.00018 0.00027 0.00041 0.01379 0.00105
300 0.00003 0.00008 0.00010 0.00669 0.00066
350 0.00001 0.00003 0.00003 0.00328 0.00050
400 0.00000 0.00002 0.00001 0.00161 0.00041

Table 5.Certainty Equivalent Rates for the UK
Year AR(4) Regime State space VAR

1 3.50 3.50 3.50 3.48
20 3.68 3.35 2.22 3.80
40 3.58 3.31 2.02 3.63
60 3.52 3.28 1.87 3.50
80 3.48 3.25 1.76 3.36

100 3.43 3.22 1.68 3.20
150 3.33 3.14 1.57 2.65
200 3.13 3.05 1.51 1.96
250 2.77 2.93 1.47 1.24
300 2.17 2.75 1.45 0.72
350 1.12 2.45 1.43 0.45
400 0.39 2.14 1.44 0.36

Table 6. Average MSEs for the UK

Criterion AR(4) Regime State
space VAR

AMSE 2.330 1.486 0.195 2.620
AMSE (B) 0.875 0.527 0.135 0.973
AMSE (P) 0.562 0.332 0.132 0.609

AMSE (QS) 0.659 0.407 0.071 0.740
AMSE (TH) 0.818 0.480 0.137 0.905

Table 7. Value of Carbon Damages according to Model Selection (1989$/tonne, Base Year 1995)

Model Carbon Values
($/tc 400years)

Relative to
Constant Rate

Relative to Mean
Reverting

Relative to
Random Walk

Regime Switch 5.22 -9.0% -18.7% -31.7%
Conventional (4.0%) 5.74 -10.7% -25.0%
AR-IGARCH 6.37 +10.9% -1.0% -16.8%
MR 6.43 +12.0% -16.0%
RW 7.65 +33.3% +19.0%
State Space 14.44 +151.7% +124.7% +88.8%



Table 8: The Costs and Benefits of Nuclear Build in the UK

(UK pounds/KW) CAPEX OPEX DECOM Rev/es C C NPV Relative to Flat

3.5% Flat 2173 2336 427 4062 228 -646 –

AR(4) 2167 2245 396 3904 215 -689 -6.6%

Regime Switching 2178 2401 479 4176 249 -633 8.0%

State Space 2196 2973 1126 5170 547 -577 8.9%

VAR 2167 2211 387 3845 215 -705 -22.1%
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Appendix 1: US Estimates

Table A.1: Unit Root Tests for the US rates23

US Lags 24/ Stat. 5% Decision

TEST Bandwidth25 crit. value

ADF 13 -2.314 -2.877 non-stationary

Phillips-Perron 12 -3.251 -2.876 non-stationary

DF-GLS 13 -0.473 -1.942 stationary

ERS Point-Optimal 12 19.733 3.17 non-stationary

Ng-Perron 12 -0.824 -8.100 non-stationary

KPSS 15 1.158 0.463 non-stationary

Table B.1: Estimation results:AR(3)-IGARCH(1,1) model

Coefficient Estimate Std. Error t-Statistic p-value

n 1.330 0.104 12.811 0.0000

a1 1.951 0.085 23.033 0.0000

a2 -1.322 0.156 -8.472 0.0000

a3 0.355 0.080 4.441 0.0000

c 8.60E-05 2.66E-05 3.236 0.0012

β 0.442 0.092 4.805 0.0000

23The results reported are based on the natural logarithm of the series.
24We use SIC to determine the number of lags of the dependent variable in the test specification.
25The kernel sum-of covariances estimator with Parzen weights is used. The bandwidth is selected by

using the Newey-West bandwidth selection method.
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Table C.1 : Estimation results: Regime-switching model

Coefficient Estimate St.Error t-Statistic p-value

n1 1.189 0.128 9.327 0.00

a11 1.589 0.078 20.36 0.00

a12 -0.660 0.086 -7.630 0.00

n2 1.714 0.238 7.206 0.00

a21 1.787 0.050 35.55 0.00

a22 -0.800 0.049 -16.395 0.00

σ21 0.004 0.0007 5.651 0.00

σ22 0.0003 4.40E-05 6.070 0.00

P 0.867 0.058 14.934 0.00

Q 0.917 0.035 25.976 0.00

Table D.1: Estimation results: State space model

Coefficient Estimate St.Error t-Statistic p-value

n 0.510 0.082 6.185 0.00

n1 0.999 0.002 438.9 0.00

ln(σ2e) -9.158 1.324 -6.917 0.00

ln(σ2u) -6.730 0.144 -46.63 0.00

35



Appendix 2: UK Estimates

Table A.2: Unit Root Tests for the UK interest rates

UK Lags 26/ Stat. 5% Decision

TEST Bandwidth27 crit. value

ADF 3 -3.189 -2.876 stationary

Phillips-Perron 20 -4.070 -2.876 stationary

DF-GLS 3 -3.186 -1.942 stationary

ERS Point-Optimal 20 0.965 3.164 stationary

Ng-Perron 20 -27.945 -8.100 stationary

KPSS 13 0.0421 0.463 stationary

Table B.2: Estimation results: AR(4) model

Coefficient Estimate Std. Error t-Statistic Probability

n 1.201 0.177 6.777 0.00

α1 1.054 0.058 18.165 0.00

α2 -0.125 0.089 -1.392 0.16

α3 -0.443 0.070 6.308 0.00

α4 0.368 0.035 10.452 0.00

σ2ξ 0.064 0.005 13.733 0.00

26We use SIC to determine the number of lags of the dependent variable in the test specification.
27The kernel sum-of covariances estimator with Parzen weights is used. The bandwidth is selected by

using the Newey-West bandwidth selection method.
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Table C.2: Estimation results: Regime-switching

Coefficient Estimate Std. Error t-Statistic Prob

n1 0.760 0.244 3.117 0.002

α11 0.700 0.312 2.249 0.025

α12 -0.212 0.312 -0.679 0.497

n2 1.306 0.082 15.892 0.000

α21 1.397 0.079 20.573 0.000

a22 -0.530 0.058 -9.094 0.000

σ21 0.219 0.047 4.694 0.000

σ22 0.014 0.002 8.106 0.000

P 0.767 0.101 7.543 0.000

Q 0.933 0.033 28.617 0.000

Table D.2: Estimation results: State space

Coefficient Estimate Std. Error t-Statistic Prob

n 0.266 0.044 6.091 0.00

n1 0.999 0.002 438.82 0.00

ln(σ2e) -2.503 0.104 -24.049 0.00

ln(σ2u) -6.462 0.594 -10.884 0.00
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Table E.2: Estimation results: VAR model

Coefficient Estimate Std. Error t-Statistic

n1 0.235 0.069 3.387

n2 0.156 0.045 3.481

α111 1.006 0.076 13.204

α211 -0.236 0.077 -3.063

α112 0.152 0.104 1.462

α212 -0.120 0.104 -1.162

α121 0.115 0.049 2.335

α221 -0.125 0.050 -2.514

α122 1.353 0.067 20.096

α222 -0.475 0.067 -7.086
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Appendix 3: Figures A-F

Figure A: US Coefficients of variation
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Figure B: US Mean, 5%  and 95%  
percentiles (Regime model)
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Figure C: US Mean, 5%  and 95%  
percentiles  (State space model)
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Figure D: UK Coefficients of variation
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Figure E: UK Mean, 5%  and 95%  
percentiles (Regime model)
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Figure F: UK Mean, 5%  and 95%  
percentiles (state space model)
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Appendix 4. Simulation Methodology for each Specification

AR(p) Model: Regarding our first model (AR(p) model), we use the normal distri-

bution to draw random values for the coefficients of (3) taking into account the estimated

variance-covariance matrix of the coefficients. Another draw from a normal distribution

is employed for the estimated variance.

AR(p)- GARCH (l,m): The simulation methodology is similar to the AR(p) model,

except from the fact that the multivariate normal distribution is used to generate random

draws for the coefficient values of the GARCH model.

Regime Switching: The RS model offers the most computationally intensive simu-

lation and is conducted as follows. First, we generate random values for the probabilities

P and Q from a Beta(k, j) distribution. The values of the parameters k and j of the

Beta distribution are properly chosen in order to correspond to a Beta distribution with

mean and standard deviation equal to the ones estimated. Specifically, for the US case

the parameters k and j are equal to 28.8 and 4.42 for P , respectively. The corresponding

values for Q are 55.17 and 5, respectively. Using the values of P and Q, we calculate the

probability of being in each regime for each of the future 400 years, namely Pt and Qt.

A univariate normal distribution is used to get random draws for σ21 and σ22 separately

according to the estimates presented in Tables C.1 and C.2 for the US and UK case re-

spectively. Similarly to our previous simulations, the random values for the coefficient

estimates, n1, n2, a11, a
1
2, a

2
1 and a

2
2 are drawn from a multivariate normal distribution.

Then, we simulate the future interest rate path 100.000 times on the grounds of the

probabilities Pt and Qt and the random draws of the coefficients.

State Space: The simulation design for the SS model is straightforward as we ran-

domly draw the coefficient values from univariate normal distributions according to the

estimated values.

VAR: The difference between the VAR model and the univariate models is that it
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demands both UK and US real interest rates to be simulated in the future. The way the

simulation is designed follows the line of the previously mentioned experiments.
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