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Abstract: We investigate the problem of constructing a Pareto-efficient

social welfare function that respects individual rights when preferences are

defined over the location of a public facility. Restricting individual pref-

erences to be either single-peaked or single-dipped, we find necessary and

sufficient conditions for the existence of a Pareto-efficient social welfare func-

tion that respects individual rights.
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1 Introduction

Imagine that each individual in society lives at some location along a single

street. In addition, imagine that a social planner is deciding where to locate a

particular facility along this street. This facility may be something desirable

like a library or a public swimming pool. However, it could be something

undesirable like a nuclear waste plant. To complicate matters, it could

be something that some in society view as desirable but others view as

undesirable, examples include airports and shopping malls. Where should

the planner locate the facility?

In deciding where to put it, the planner might want to take into account

the preferences of people on the street. Although individual preferences are

not known to the planner, he might be able to infer something about their

general properties given the spatial character of the problem. For exam-

ple, if the facility is desirable then it is reasonable to assume that individual

preferences are single-peaked in the sense of Black (1958). Loosely speaking,

this means that each individual has a most preferred location for the facility

(possibly next to his house) and views locations that are further away in

a particular direction from this point as less desirable than locations that

are closer. Alternatively, preferences may be single-dipped in the sense of

Vickrey (1960) and Inada (1964). This is a reasonable assumption if the

facility is undesirable. In this case each individual has a least preferred lo-

cation for the facility (again, possibly next to his house) and views locations

that are further away in a particular direction from this point as more desir-

able than locations that are closer. Finally, the planner may conclude that

the residents of the street contain a combination of both types - some with

single-peaked preferences and others with single-dipped preferences.

Imagine that the question of the appropriate preference domain is settled.

How would the planner then proceed? One natural approach would be to use

a social welfare function - a mapping from an n-tuple of strict orderings into

a strict ordering. Ideally the planner would want the social welfare function
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to satisfy the Pareto condition; if everyone prefers location a to b then so

should society. But what other condition might be desirable in addition

to Pareto? One possibility is that the planner would want the function

to respect individual rights. For example, each resident may have rights

over whether the facility is located to his immediate left or immediate right.

We can think of these rights as “spatial” rights.1 In such cases it seems

desirable that the resident’s ranking of this pair of locations determines the

social ranking. This is what Sen (1970a) had in mind when he introduced

rights into social choice theory. Spatial rights are the natural extension of

Sen’s concept of a “personal sphere” to geography.

If a social welfare function exists that satisfies the Pareto condition and

respects individual rights (what Sen called “minimal liberalism”) then the

planner can aggregate individual preferences into a social ranking of alterna-

tive locations and choose the location for the facility that is top in this rank-

ing (our ordering assumption guarantees that it is unique). Unfortunately

when the domain of preferences is unrestricted, the number of individuals is

at least two and the number of alternatives is at least three, if we give just

two people rights in Sen’s sense then no social welfare function exists.

Sen’s theorem depends crucially on an unrestricted preference domain.

In social choice theory it is often possible to obtain possibility results if

we restrict the domain of preferences (Gaertner (2001)). In the economic

environment described above this approach is natural.2

In this paper we prove three characterization theorems. Firstly we con-

sider the case where everyone in society has single-peaked preferences. We

characterize the only rights assignments that avoid Sen’s “Paretian Liberal”

paradox in this context. If the social planner knows the assignment of rights

in society, and if (and only if) this assignment satisfies our characterizing

1The acronym NIMBY (“Not in my back yard”) is often used to describe people who

appeal to these kinds of rights.
2An early paper by Blau (1975) deals with domain restriction in the context of rights.

Unlike the present paper Blau has a possibility result for only two individuals.
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condition, then a social welfare function exists that can be used to determine

the location of the facility. This function satisfies both the Pareto condition

and respects individual rights for any possible configuration of single-peaked

preferences. If the rights assignment does not satisfy this condition then no

such function exists and the planner will have to use some other criterion in

order to locate the facility. For social aggregation to be possible two differ-

ent individuals cannot have rights over two different pairs of locations if the

set of locations contained in between one individual’s pair partially overlaps

with the set of locations contained in between the other individual’s pair.

We then show that the same characterizing condition holds in the case

of single-dipped preferences. We conclude with a characterization for the

“mixed” domain case. In this domain an individual can either have single-

peaked preferences or single-dipped preferences. Social aggregation is pos-

sible in this domain only if individual rights are “nested”. This means that

for any two individuals with rights over two different pairs of locations, the

set of locations contained in between one individual’s pair and the pair it-

self must be a subset of the set of locations contained in between the other

individual’s pair. All assignments of spatial rights that satisfy this condi-

tion also satisfy our initial condition (but not vice versa). Loosely speaking,

this means that as we expand the preference domain the possibility of social

aggregation falls.

An important result for our theorems is Lemma 1. This result holds in

the unrestricted domain. It provides a unified mathematical explanation as

to why several proposed resolutions of Sen’s paradox work (Wriglesworth

(1985) surveys these attempts). This theme has recently been explored by

Saari (1998, 2001). Compared to Arrovian social choice, there has been very

little work on rights in economic environments. Exceptions are Campbell

(1989) and Campbell and Kelly (1997).
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2 Model

Let N = {1, ..., n} be a finite set of individuals (n ≥ 2). Let A be a finite

set of alternatives or “locations” (#A = r ≥ 3). Alternatives in A will be

denoted as a, b, c... ∈ A. A strict ordering is a complete, asymmetric and

transitive binary relation.3 Let < denote the set of all strict orderings of

A. Throughout this paper >∈ < represents the fixed, underlying ordering
of locations (from left to right).

Each individual i ∈ N has strict preferences Pi ∈ <. We write aPib to
denote that individual i prefers alternative a to b. A preference profile P is

an n-tuple (P1, ..., Pn) ∈ <n where <n =
Qn

i=1<. The following definition
is from Austen-Smith and Banks (1999, p. 94).

Definition 1 Label A so that at+1 > at for all t = 1, 2, ..., r − 1. An indi-
vidual’s preferences Pi ∈ < are single-peaked on A with respect to > if and

only if there exists t ∈ {1, ..., r} such that

atPiat+1Piat+2Pi...Piar & atPiat−1Piat−2Pi...Pia1.

In the above definition at denotes individual i’s most preferred location,

i.e. at = {a ∈ A | aPib ∀b ∈ A}. Let <SP
> denote the set of all single-peaked

preferences on A with respect to >. A single-peaked profile with respect to

> is an element of SP =
Qn

i=1<SP
> ⊂ <n.4

In this context, a single-peaked profile is one in which (i) the set of

locations is ordered along a left-right scale and (ii) each individual has a

unique most preferred location (or ideal point) on this scale and his ranking

of other locations falls as we move away from this point.

In the statement of our theorems the following concept is important.

For all a, b ∈ A, let B(a, b) = {c ∈ A | a > c > b} ∪ {c ∈ A | b > c > a}.
3The definitions of completeness, asymmetry and transitivity used in this paper come

from Sen (1970b, p. 8). What we call a strict ordering, Sen calls a “strong” ordering.
4Since we are dealing with a one-dimensional location space and a fixed ordering of

locations, this “rectangular” profile property is legitimate. See Austen-Smith and Banks

(1999, p. 103).
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Intuitively, B(a, b) is the set of alternatives that lie in between a and b ac-

cording to the ordering >. By construction B(a, b) = B(b, a). Furthermore,

B(a, b) = ∅ if a and b are next to each other in the ordering >.

We now introduce the concept of a rights assignment.

Definition 2 A rights assignment D = (D1,D2, ...,Dn) is an n-tuple of

subsets of A×A. D satisfies the following properties, (i) ∀i ∈ N & ∀a ∈ A,

(a, a) /∈ Di, (ii) ∀i ∈ N & ∀a, b ∈ A, (a, b) ∈ Di → (b, a) ∈ Di, and (iii)

∀i, j ∈ N, i 6= j, Di ∩Dj = ∅.

Whenever (a, b) ∈ Di we say that individual i has been assigned rights

over the pair (a, b). The above conditions are weak. Condition (i) says

that no-one has rights over an alternative and itself, condition (ii) says that

rights are “two-sided” and condition (iii) says that no two individuals are

assigned rights over the same ordered pair. In the literature an additional

condition called “coherence” is often assumed (Suzumura (1978)). A rights

assignment that is coherent avoids “Gibbard’s paradox” (Gibbard (1974),

Farrell (1978)). Gibbard’s paradox refers to the possibility that a rights

assignment can generate a social preference cycle at some profile even with-

out the Pareto principle. Although we have chosen to work with a weaker

notion of rights assignment for reasons of generality, it is important to note

that a rights assignment that satisfies any of our characterizing conditions

is coherent.

For our definition of coherence and also in a subsequent lemma, the

following concept is important (Suzumura (1983)). Let R1 and R2 be two

binary relations. We say that R2 is an extension of R1 if and only if (i)

R1 ⊂ R2 and (ii) P (R1) ⊂ P (R2).5 If R2 is an extension of R1 and R2 is a

strict ordering, we say that R2 is a strict ordering extension of R1.

5 If R is a binary relation then P (R) = {(x, y) | (x, y) ∈ R & (y, x) /∈ R}. We have
chosen to define the concept of extension in general terms. Our ordering assumption

implies that P (R) = R.
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Definition 3 A rights assignment D is coherent if and only if for every

(P1, ..., Pn) ∈ ℘ ⊆ <n there exists a strict ordering extension T of
S
i∈N
{Di ∩

Pi}.

The following concept was introduced by Sen (1970a).

Definition 4 A rights assignment D is minimally liberal if ∃i, j ∈ N, i 6= j,

such that Di 6= ∅ and Dj 6= ∅.

A rights assignment is minimally liberal when there exists at least two

individuals that have been assigned some rights.

We now define a social aggregation rule.

Definition 5 For a given domain of preferences ℘ ⊆ <n, a Social Aggrega-

tion Rule (SAR) is a function G : ℘→ Υ where Υ is the set of all complete
and asymmetric binary relations on A. A Social Welfare Function (SWF )

is a SAR the range of which is restricted to < ⊂ Υ.

Writing aG(P)b means that a is socially preferred to b at profile P.

Definition 6 A SAR G is Pareto-efficient if ∀P ∈ ℘, ∀a, b ∈ A, aPib ∀i ∈
N → aG(P)b.

Definition 7 Given any P = (P1, ..., Pn) ∈ ℘, the set of Pareto pairs at P

(PP (P)) is defined as
©
(a, b) ∈ A2 | aPib ∀i ∈ N

ª
.

Definition 8 A SAR G respects a rights assignment D if ∀i ∈ N, ∀(a, b) ∈
Di, ∀P ∈ ℘, aPib→ aG(P)b.

A SAR respects a given rights assignment whenever the preferences of

individuals who have been allocated rights over particular pairs of locations

determine the social ranking of those locations. In the literature there is

controversy over the appropriate way to formulate individual rights. We

adopt the original Sen approach in this paper. Gaertner, Pattanaik and

Suzumura (1992) discuss the “game form” approach. Sen (1992) contains a

response.
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Definition 9 A rights assignment D is admissible given a domain ℘ if and

only if there exists a Pareto-efficient SWF defined on ℘ that respects D.

Sen (1970a) proved the following.

Sen’s Theorem: The only admissible rights assignments when ℘ = <n are

not minimally liberal.

In fact the only admissible rights assignments in Sen’s framework give

either just one person rights, or no-one rights.

3 Single-peaked preferences

This is our first characterization theorem.

Theorem 1: D is admissible given ℘ = SP if and only if ∀i, j ∈ N, i 6=
j, ∀ (a, b) ∈ Di, ∀ (c, d) ∈ Dj ,

c ∈ B(a, b)←→ d ∈ B(a, b). (*)

Throughout this paper we use simple diagrams to illustrate our character-

izing conditions. Any assignment of spatial rights can be represented in a

diagram. Figure 1 is an example of an extremely simple rights assignment.

We represent the fact that an individual has rights over a particular pair

of locations by drawing an arc connecting those locations. In this example

individual j has rights over the pair (a, c), individual i has rights over the

pair (c, e) and individual v has rights over the pair (e, g).

>
a c db

D iD j D v

fe g

Figure 1: An assignment of spatial rights.
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As we explain shortly, this assignment of rights satisfies condition (*).

Therefore, in this example, a social welfare function exists that respects

the Pareto principle and individual rights for any logically possible profile

of single-peaked preferences. Another example of an assignment satisfying

condition (*) is Figure 2.

>
a c db

D i D j D v

fe g

D j

Figure 2: Another assignment satisfying (*).

We want to understand why these two examples satisfy our characteriz-

ing condition. In order to do so, we only need to understand what must be

true about an assignment of spatial rights in order for condition (*) to be

violated. Fortunately, there are only two possible circumstances in which

condition (*) is violated. We call them “Property A” and “Property B”

respectively, and illustrate them in the following diagrams.

>
α γ δβ

D i D j

Figure 3: Property A.

>
β γ

D i D j

α

Figure 4: Property B.

In Figure 3, individual i has rights over the pair (α, γ) and individual j has

rights over the pair (β, δ). Condition (*) is violated in this example since

β ∈ B(α, γ) and δ /∈ B(α, γ). In Figure 4, individual i has rights over the
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pair (α, β) and individual j has rights over the pair (α, γ). Condition (*) is

violated in this example since β ∈ B(α, γ) and α /∈ B(α, γ).6

A social welfare function exists that respects both the Pareto principle

and individual rights for any logically possible profile of single-peaked pref-

erences if and only if (i) the rights assignment does not exhibit Property A

and (ii) the rights assignment does not exhibit Property B. This explains

why social aggregation is possible in the examples represented by Figures 1

and 2. In these examples, Property A and Property B do not occur at any

point in the assignment of spatial rights. If Property A or Property B do

occur in some assignment of spatial rights, then no social welfare function

exists that respects both the Pareto principle and individual rights. For

any such assignment, a social preference cycle must be generated at some

single-peaked profile.

We now prove Theorem 1. We first prove necessity. Without loss of

generality, assume that ∃i, j ∈ N, i 6= j, ∃ (a, b) ∈ Di, ∃ (c, d) ∈ Dj such

that

c ∈ B(a, b) & d /∈ B(a, b). (**)

Given (∗∗), there are four possibilities.

Case 1: a > c > b > d (and the symmetric case d > b > c > a).

Consider the preference profile P ∈ SP defined as follows. Preferences for

individual i are: cP iaP ibP id. Preferences for individual j are: bP jdP jcP ja.

Preferences over the remaining alternatives (if any) are constrained only

by the requirement that P i, P j ∈ <SP
> . The preferences of the remaining

individuals (again, if any) are assumed to be identical to either P i or P j .

Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ = SP . Because (a, b) ∈ Di and aP ib, we have aF (P)b (i). Since

F is Pareto-efficient and bP kd ∀k ∈ N , we have bF (P)d (ii). Given that

(c, d) ∈ Dj and dP jc, we have dF (P)c (iii). Since cP ka ∀k ∈ N we have

6Property B is also satisfied if individual i has rights over the pair (γ, β) and individual

j has rights over the pair (α, γ).
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cF (P)a (iv). However, (i) to (iv) imply that F (P) /∈ <; a contradiction.
Case 2: d > a > c > b (and the symmetric case b > c > a > d).

Consider the preference profile bP ∈ SP defined as follows. Preferences for

individual i are: c bPib bPia bPid. Preferences for individual j are: a bPjd bPjc bPjb.
Preferences over the remaining alternatives (if any) are constrained only

by the requirement that bPi, bPj ∈ <SP
> . The preferences of the remaining

individuals (again, if any) are assumed to be identical to either bPi or bPj .
Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ = SP . Because (a, b) ∈ Di and b bPia, we have bF (bP)a (i). Since
F is Pareto-efficient and a bPkd ∀k ∈ N , we have aF (bP)d (ii). Given that
(c, d) ∈ Dj and d bPjc, we have dF (bP)c (iii). Since c bPkb ∀k ∈ N we have

cF (bP)b (iv). However, (i) to (iv) imply that F (bP) /∈ <; a contradiction.
Case 3: d = a > c > b (and the symmetric case b > c > d = a).

Consider the preference profile eP ∈ SP defined as follows. Preferences for

individual i are: c ePib ePid = a. Preferences for individual j are: d = a ePjc ePjb.
Preferences over the remaining alternatives (if any) are constrained only

by the requirement that ePi, ePj ∈ <SP
> . The preferences of the remaining

individuals (again, if any) are assumed to be identical to either ePi or ePj .
Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ = SP . Because (d = a, b) ∈ Di and b ePid = a, we have bF (eP)d = a

(i). Since F is Pareto-efficient and c ePkb ∀k ∈ N , we have cF (eP)b (ii). Given
that (c, d = a) ∈ Dj and d = a ePjc, we have d = aF (eP)c (iii). However, (i)
to (iii) imply that F (eP) /∈ <; a contradiction.

Case 4: a > c > b = d (and the symmetric case b = d > c > a).

Consider the preference profile P0 ∈ SP defined as follows. Preferences for

individual i are: cP 0iaP
0
i b = d. Preferences for individual j are: b = dP 0jcP

0
ja.

Preferences over the remaining alternatives (if any) are constrained only

by the requirement that P 0i , P
0
j ∈ <SP

> . The preferences of the remaining

individuals (again, if any) are assumed to be identical to either P 0i or P 0j .
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Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ = SP . Because (a, b = d) ∈ Di and aP 0i b = d, we have aF (P0)b =

d (i). Since F is Pareto-efficient and cP 0ka ∀k ∈ N , we have cF (P0)a (ii).

Given that (c, b = d) ∈ Dj and b = dP 0jc, we have b = dF (P0)c (iii).

However, (i) to (iii) imply that F (P0) /∈ <; a contradiction. This concludes
the proof of necessity.

In order to prove sufficiency we make use of the following concept.

Definition 10 A chain S ⊆ A×A is a set of ordered pairs©
(x1, y1), ..., (xµ, yµ), ..., (xs, ys)

ª
(s ≥ 2) such that x1 = ys and xµ = yµ−1 for all µ = 2, ..., s.

Let O denote the set of all such chains. The following lemma holds in

the unrestricted domain <n.

Lemma 1: If D is not admissible given ℘ = <n then a chain S ∈ O exists

at some P∗ ∈ <n such that (i) ∀(z, w) ∈ S, (z, w) ∈ Si∈N Di ∪ PP (P∗),

and (ii) ∀i ∈ N & ∀(z,w) ∈ S ∩Di, P∗ is such that zP ∗i w.

Proof : Assume that ∀P ∈ <n there does not exist a chain with the desired

properties. We prove that D is admissible.

To do this we construct a Pareto-efficient social welfare function F that

respects D. Take any P ∈ <n and define the following binary relation:

∀(a, b) ∈ A2,

"
(a, b) ∈

[
i∈N

Di & aP ib

#
←→ (a, b) ∈ H1(P).

(1) Take a pair (a, b) ∈ H1(P) ∪ PP (P). If any pair in H1(P) ∪ PP (P)

has b as its first element, say (b, c), then let (a, c) ∈ H2(P) unless (a, c)

is already in H1(P) ∪ PP (P). Repeat this process for every other ordered
pair in H1(P) ∪ PP (P). If H2 = ∅ then the procedure stops, if not then
proceed to (2). (2) Take a pair (c, d) ∈ H1(P) ∪ PP (P) ∪ H2(P). If any
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pair in H1(P)∪PP (P)∪H2(P) has d as its first element, say (d, e), then let

(c, e) ∈ H3(P) unless (c, e) is already in H1(P) ∪ PP (P) ∪H2(P). Repeat

this process for every other ordered pair in H1(P) ∪ PP (P) ∪ H2(P). If

H3 = ∅ then the procedure stops, if not then continue “expanding” the set
H1(P) ∪ PP (P) in this manner until we reach some z ∈ Z+ ≥ 2 at which
Hz(P) = ∅.7 We must reach such a point given the finiteness of A.

We prove that H(P) ≡ Sz−1
h=1Hh(P)∪PP (P) is a strict partial ordering.

First of all, we prove that H(P) is transitive. If not then ∃a, b, c ∈ A such

that aH(P)bH(P)cH(P)a. Consider (a, b) ∈ H(P). If (a, b) ∈ H1(P) ∪
PP (P) there is a sequence of elements {(xµ, yµ)}s∗µ=1 (s∗ ≥ 1) of H1(P) ∪
PP (P) with the property that x1 = a, ys

∗
= b and if s∗ > 1 then xµ = yµ−1

for all µ = 2, ..., s∗. If (a, b) /∈ H1(P)∪PP (P) there is a sequence of elements
{(xµ, yµ)}s∗∗µ=1 (s

∗∗ ≥ 2) of H1(P) ∪ PP (P) with the property that x1 = a,

ys
∗∗
= b and xµ = yµ−1 for all µ = 2, ..., s∗∗. Identical reasoning holds for

(b, c) and (c, a). If we connect these three sequences together we form a chain

S with the following properties: ∀(z,w) ∈ S, (z, w) ∈ Si∈N Di∪PP (P) and
∀i ∈ N & ∀(z, w) ∈ S∩Di, the profile P is such that zP iw. This contradicts

our assumption that no such chain exists. Therefore H(P) is transitive. Our

assumptions about Pi and Di guarantee that H(P) is asymmetric.

We have proved that H(P) is a strict partial ordering. Since P is arbi-

trary then ∀P ∈ <n, H(P) ≡ Sz−1
h=1Hh(P)∪PP (P) is a strict partial order-

ing. From Szpilrajn (1930) there is a strict ordering extension J(P) ∈ < of
H(P). Consider the SWF F defined as: ∀P ∈ <n, F (P) = J(P). F exists

so D is admissible.

This result (which can be strengthened to an “if and only if” statement)

provides a unified mathematical explanation as to why several proposed

resolutions of Sen’s paradox work. They work by removing from any profile

the possibility of a chain satisfying conditions (i) and (ii).8

7Z+ is the set of positive integers.
8An example is the “conditional Pareto principle” proposed by Sen (1976) and devel-

oped by Suzumura (1978).
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We now perform the following operation on S atP∗. For all (a, b), (b, c) ∈
S such that (a, b), (b, c) ∈ PP (P∗) there exists a chain S0 at P∗ with fewer

elements defined by S0 = (a, c) ∪ S\ {(a, b), (b, c)}. Let S (#S ≥ 3) denote
the chain at P∗ with the smallest number of elements (or one of the chains at

P∗ with the smallest number of elements). This “minimal” chain possesses

the following useful property:

∀(a, b) ∈ S ∩ PP (P∗), (b, c) ∈ S → (b, c) ∈
[
i∈N

Di.

To prove sufficiency we show that if condition (*) holds then no such

chain can be constructed at any profile in the domain SP . Lemma 1 then

implies that D is admissible. To do this we establish two intermediate

results.

To motivate these results we give an example of a chain (Figure 5). In

this example alternatives in the chain are linked together by arcs and the

arrows indicate the direction of preference at the particular profile. The

underlying ordering of alternatives is a > b > c. Individual i has rights over

the pair (a, b) and aPib. Individual j has rights over the pair (b, c) and bPjc.

Everyone in society prefers c to a and so (c, a) is a Pareto pair (denoted

PP).

>
a b c

D i D j

PP

Figure 5: A chain.

However, a chain like this cannot exist. Since individual i prefers a to b

it cannot be the case that he also prefers c to a. If so then his preferences

are not single-peaked on A with respect to >.

15



The following lemma generalizes this example.

Lemma 2 (Non-contraction property): Let P∗ ∈ SP and assume that

(i) a chain S exists at P∗ and (ii) condition (*) holds. Take any two con-

tiguous elements of S, (a, b) & (b, c). Then c /∈ B(a, b).

Proof : We prove by contradiction. Take (a, b) ∈ S and without loss of

generality assume that a > c > b. There are four possibilities.

Case 1: (a, b) ∈ S ∩ PP (P∗) & (b, c) ∈ S ∩ Di for some i ∈ N . Since

(a, b) ∈ S ∩ PP (P∗), it must be that aP ∗j b ∀j ∈ N . Since (b, c) ∈ S ∩Di for

some i ∈ N , bP ∗i c. Therefore, aP
∗
i bP

∗
i c but then P

∗
i /∈ <SP

> ; a contradiction.

Case 2: (a, b) ∈ S ∩ Di for some i ∈ N & (b, c) ∈ S ∩ PP (P∗). Since

(a, b) ∈ S ∩Di, it must be that aP ∗i b. Since (b, c) ∈ S ∩ PP (P∗), it must
be that bP ∗j c for all j ∈ N . Therefore, aP ∗i bP

∗
i c but then P ∗i /∈ <SP

> ; a

contradiction. Case 3: (a, b) ∈ S ∩Di for some i ∈ N & (b, c) ∈ S ∩Dj for

some other j ∈ N . However, this rights assignment violates condition (*).

Case 4: (a, b), (b, c) ∈ S ∩Di for some i ∈ N . This means that aP ∗i bP
∗
i c but

then P ∗i /∈ <SP
> ; a contradiction.

The example in Figure 5 violates the non-contraction property. The

chain S contracts “inwards” when we move from c to a to b.

Lemma 3 (Non-intersection property): Let P∗ ∈ SP and assume that

(i) a chain S exists at P∗ and (ii) condition (*) holds. Take any two elements

of S, (a, b) & (c, d), where all four alternatives are distinct. Then none of

the following conditions can hold : (I) a > d > b > c (and the symmetric case

c > b > d > a), (II) b > c > a > d (and the symmetric case d > a > c > b).

Proof : We prove by contradiction. Without loss of generality assume that

a > d > b > c. Note that it cannot be that (a, b) ∈ S ∩ Di for some

i ∈ N and (d, c) ∈ S ∩ Dj for some j ∈ N with i 6= j, since (*) would

be violated. In the other four cases: (1) (a, b), (c, d) ∈ S ∩ Di for some

i ∈ N , (2) (a, b), (c, d) ∈ S ∩PP (P∗), (3) (a, b) ∈ S ∩Di for some i ∈ N and

16



(c, d) ∈ S∩PP (P∗), and (4) (a, b) ∈ S∩PP (P∗) and (c, d) ∈ S∩Di for some

i ∈ N , it holds for individual i ∈ N that aP ∗i b & cP ∗i d. However, this cannot

be true if a > d > b > c because the fact that P ∗i is single-peaked implies

that aP ∗i b → aP ∗i c and cP ∗i d → cP ∗i a. This contradicts the asymmetry of

P ∗i .

Figure 6 illustrates the non-intersection property.

>
a b cd

Figure 6: Non-intersection property.

No chain S can exhibit the “pattern” illustrated in Figure 6.

To complete the sufficiency part of the proof assume that (i) a chain S

exists at P∗ ∈ SP , and (ii) condition (*) holds. First of all, we identify the

location a∗ ∈ A in S that is “farthest to the left” in terms of the ordering

>. Define the set K(S) as follows,

K(S) =
©
c ∈ A | ∃x ∈ A such that either (c, x) ∈ S or (x, c) ∈ S

ª
.

K(S) denotes the set of locations that form the chain S. Let a∗ ∈ K(S)

denote the location with the following property: a∗ > b ∀b ∈ K(S)\{a∗}.
This location exists by construction. Since #K(S) ≥ 3 then ∃b, c ∈ K(S)

such that (c, a∗), (a∗, b) ∈ S. By the non-contraction property, it must be

the case that a∗ > c > b. In addition, it cannot be the case that (b, c) ∈ S

or the non-contraction property is violated. Intuitively, this means that the

chain S cannot be “closed” by moving back to location c once we reach

location b. Hence ∃d ∈ A such that (b, d) ∈ S. Note that by the non-

contraction property d /∈ B(a∗, b). Therefore b > d. However, in order for
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S to exist ∃(t1, t2) ∈ S such that b > t1 and t2 ∈ B(a∗, b). This violates

the non-intersection property. Therefore S cannot exist and the proof is

complete.

4 Single-dipped preferences

We now consider single-dipped preferences.

Definition 11 Label A so that at+1 > at for all t = 1, 2, ..., r − 1. An

individual’s preferences Pi ∈ < are single-dipped on A with respect to > if

and only if there exists t ∈ {1, ..., r} such that

a1Pia2Pia3Pi...Piat & arPiar−1Piar−2Pi...Piat.

In the above definition at denotes individual i’s least preferred location,

i.e. at = {a ∈ A | bPia ∀b ∈ A}. Let <SD
> denote the set of all single-dipped

preferences on A with respect to >. A single-dipped profile with respect to

> is an element of SD =
Qn

i=1<SD
> ⊂ <n.

In this context, a single-dipped profile is one in which (i) the set of

locations is ordered along a left-right scale and (ii) each individual has a

unique least preferred location on this scale and his ranking of other locations

rises as we move away from this point. These preferences are natural in an

environment where the facility to be located is undesirable.

The only admissible rights assignments within this domain are again

those characterized by condition (*).

Theorem 2: D is admissible given ℘ = SD if and only if ∀i, j ∈ N, i 6=
j, ∀ (a, b) ∈ Di, ∀ (c, d) ∈ Dj ,

c ∈ B(a, b)←→ d ∈ B(a, b). (*)

The necessity part of Theorem 2 mirrors that of Theorem 1. Without loss
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of generality, assume that ∃i, j ∈ N, i 6= j, ∃ (a, b) ∈ Di, ∃ (c, d) ∈ Dj such

that

c ∈ B(a, b) & d /∈ B(a, b). (**)

Given (∗∗), there are four possibilities.

Case 1: a > c > b > d (and the symmetric case d > b > c > a).

Consider the preference profile P ∈ SD defined as follows. Preferences for

individual i are: dP ibP iaP ic. Preferences for individual j are: aP jcP jdP jb.

Preferences over the remaining alternatives (if any) are constrained only

by the requirement that P i, P j ∈ <SD
> . The preferences of the remaining

individuals (again, if any) are assumed to be identical to either P i or P j .

Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ = SD. Because (a, b) ∈ Di and bP ia, we have bF (P)a (i). Since

F is Pareto-efficient and aP kc ∀k ∈ N , we have aF (P)c (ii). Given that

(c, d) ∈ Dj and cP jd, we have cF (P)d (iii). Since dP kb ∀k ∈ N we have

dF (P)b (iv). However, (i) to (iv) imply that F (P) /∈ <; a contradiction.
Case 2: d > a > c > b (and the symmetric case b > c > a > d).

Consider the preference profile bP ∈ SD defined as follows. Preferences for

individual i are: d bPia bPib bPic. Preferences for individual j are: b bPjc bPjd bPja.
Preferences over the remaining alternatives (if any) are constrained only

by the requirement that bPi, bPj ∈ <SD
> . The preferences of the remaining

individuals (again, if any) are assumed to be identical to either bPi or bPj .
Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ = SD. Because (a, b) ∈ Di and a bPib, we have aF (bP)b (i). Since
F is Pareto-efficient and b bPkc ∀k ∈ N , we have bF (bP)c (ii). Given that
(c, d) ∈ Dj and c bPjd, we have cF (bP)d (iii). Since d bPka ∀k ∈ N we have

dF (bP)a (iv). However, (i) to (iv) imply that F (bP) /∈ <; a contradiction.
Case 3: d = a > c > b (and the symmetric case b > c > d = a).

Consider the preference profile eP ∈ SD defined as follows. Preferences for

individual i are: d = a ePib ePic. Preferences for individual j are: b ePjc ePjd = a.

Preferences over the remaining alternatives (if any) are constrained only
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by the requirement that ePi, ePj ∈ <SD
> . The preferences of the remaining

individuals (again, if any) are assumed to be identical to either ePi or ePj .
Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ = SD. Because (d = a, b) ∈ Di and d = a ePib, we have d =

aF (eP)b (i). Since F is Pareto-efficient and b ePkc ∀k ∈ N , we have bF (eP)c
(ii). Given that (c, d = a) ∈ Dj and c ePjd = a, we have cF (eP)d = a (iii).

However, (i) to (iii) imply that F (eP) /∈ <; a contradiction.
Case 4: a > c > b = d (and the symmetric case b = d > c > a).

Consider the preference profile P0 ∈ SD defined as follows. Preferences for

individual i are: b = dP 0iaP
0
ic. Preferences for individual j are: aP

0
jcP

0
jb = d.

Preferences over the remaining alternatives (if any) are constrained only

by the requirement that P 0i , P
0
j ∈ <SD

> . The preferences of the remaining

individuals (again, if any) are assumed to be identical to either P 0i or P 0j .

Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ = SD. Because (a, b = d) ∈ Di and b = dP 0ia, we have b =

dF (P0)a (i). Since F is Pareto-efficient and aP 0kc ∀k ∈ N , we have aF (P0)c

(ii). Given that (c, b = d) ∈ Dj and cP 0jb = d, we have cF (P0)b = d (iii).

However, (i) to (iii) imply that F (P0) /∈ <; a contradiction. This concludes
the proof of necessity.

Given any P ∈ <, let us define the set I(P ) as follows,

∀(a, b) ∈ A2, (a, b) ∈ P → (b, a) ∈ I(P ).

I(P ) is a complete, asymmetric and transitive binary relation. Define

the function I : <n → <n as follows,

∀P ∈ <n, I(P) = (I(P1), I(P2), ..., I(Pn)) .

We now prove sufficiency. From Theorem 1, we know that when condi-

tion (*) holds, D is admissible given ℘ = SP (i.e. a SWF F : SP → < exists
that it is both Pareto-efficient and respects D). Consider the following SWF

G : SP → < ,
∀P ∈ SP, G(P) = I(F (P)).
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Since F exists, G must exist too. Now define the SWF H : SD → < as

follows,

∀P ∈ SD, H(P) = G(I(P)) = I(F (I(P))).

The function H exists. We prove that H is Pareto-efficient. Consider any

P
0 ∈ SD such that aP

0
i b ∀i ∈ N . Since F is Pareto-efficient it must be

the case that bF (I(P
0
))a. By definition aG(I(P

0
))b and so aH(P

0
)b. H

is Pareto-efficient. It only remains to prove that H respects the rights as-

signment D. Take any P
00 ∈ SD, any individual i ∈ N and any pair of

alternatives (a, b) ∈ Di. Suppose that aP
00
i b. Note that individual i prefers

b to a in the profile I(P
00
). Moreover, we know that the SWF F exists and

respects D. Therefore it must be that bF (I(P
00
))a. By definition of H,

H(P
00
) = I(F (I(P

00
))) and so it must be the case that aH(P

00
)b. Individual

i’s rights over the pair (a, b) are respected. The proof is complete.

5 Mixed domain

We now consider the larger domain MD =
Qn

i=1{<SP
> ∪ <SD

> }. This is an
interesting domain to study and is appropriate when considering location

problems within “divided societies” like Northern Ireland. An example is

the Ormeau Road in Belfast where conflict occurs periodically. The residents

of the Lower Ormeau Road are mainly Catholics while the residents of the

Upper Ormeau Road are mainly Protestants. The two communities are

separated by the Ormeau Bridge which runs across the River Lagan. Imagine

that a social planner wants to locate a police station somewhere along this

street. Where should he put it? Northern Irish Catholics tend to view

the police as an instrument of the British state, an entity whose presence

in Ireland they regard as undesirable. On the other hand, Northern Irish

Protestants consider themselves to be British and believe that historically

the police have protected them from terrorism. In such an example, it is

reasonable to assume that the Catholics of the Ormeau Road have single-
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dipped preferences (the further away the better) whilst the Protestants have

single-peaked preferences (the closer the better).

In such a domain when does a rights-respecting, Pareto-efficient social

welfare function exist? The answer is provided in Theorem 3 and illustrated

in Figure 7. Social aggregation is possible in this domain only if individual

rights are “nested”. This means that for any two individuals with rights over

two different pairs of locations, the set of locations contained in between one

individual’s pair and the pair itself must be a subset of the set of locations

contained in between the other individual’s pair.

>
a c db

D  i D  j

fe g

D  v

Figure 7: Nested rights.

Note that the rights assignments that satisfy this new characterizing

condition are a strict subset of those satisfying condition (*). As we enlarge

the domain of preferences the set of admissible rights assignments shrinks.

Of course, when the domain is unrestricted (Sen’s case) this set contains

only non-minimally liberal assignments. Surprisingly, “local” assignments

of spatial rights (such as the assignment represented in Figure 1) do not

survive this expansion in the domain.

Theorem 3: D is admissible given ℘ = MD if and only if ∀i, j ∈ N, i 6=
j, ∀ (a, b) ∈ Di, ∀ (c, d) ∈ Dj ,

B(a, b) ∪ {a, b} ⊆ B(c, d) or B(c, d) ∪ {c, d} ⊆ B(a, b). (***)

We first prove necessity. Note that any rights assignment that fails to sat-

isfy condition (*) also fails to satisfy condition (***). Therefore, we can
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appeal to the necessity part of Theorem 1 to prove that in these cases no

Pareto-efficient social welfare function exists that respectsD given ℘ =MD.

Therefore, we only need to consider those assignments that satisfy condition

(*) but do not satisfy condition (***). There are two cases to consider.

Case 1: a > b > c (and the symmetric case c > b > a) with (a, b) ∈ Di

and (b, c) ∈ Dj . Consider the preference profile P ∈MD defined as follows.

Preferences for individual i are: cP iaP ib. Preferences for individual j are:

bP jcP ja. In this example, individual i’s preferences are single-dipped on

A with respect to > and individual j’s preferences are single-peaked on A

with respect to >. Preferences over the remaining alternatives (if any) are

constrained only by the requirement that P i ∈ <SD
> and P j ∈ <SP

> . The

preferences of the remaining individuals (again, if any) are assumed to be

identical to either P i or P j .

Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ =MD. Because (a, b) ∈ Di and aP ib, we have aF (P)b (i). Since

F is Pareto-efficient and cP ka ∀k ∈ N , we have cF (P)a (ii). Given that

(b, c) ∈ Dj and bP jc, we have bF (P)c (iii). However, (i) to (iii) imply that

F (P) /∈ <; a contradiction.
Case 2: a > b > c > d (and the symmetric case d > c > b > a) with

(a, b) ∈ Di and (c, d) ∈ Dj . Consider the preference profile bP ∈MD defined

as follows. Preferences for individual i are: d bPia bPib bPic. Preferences for
individual j are: b bPjc bPjd bPja. In this example, individual i’s preferences
are single-dipped on A with respect to > and individual j’s preferences

are single-peaked on A with respect to >. Preferences over the remaining

alternatives (if any) are constrained only by the requirement that P i ∈ <SD
>

and P j ∈ <SP
> . The preferences of the remaining individuals (again, if any)

are assumed to be identical to either P i or P j .

Since D is admissible there exists a Pareto-efficient SWF F that respects

D given ℘ =MD. Because (a, b) ∈ Di and a bPib, we have aF (bP)b (i). Since
F is Pareto-efficient and b bPkc ∀k ∈ N , we have bF (bP)c (ii). Given that
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(c, d) ∈ Dj and c bPjd, we have cF (bP)d (iii). Since d bPka ∀k ∈ N we have

dF (bP)a (iv). However, (i) to (iv) imply that F (bP) /∈ <; a contradiction.
This concludes the proof of necessity.

To prove sufficiency we show that if condition (***) holds then no chain

S can be constructed at any profile in the domain MD. Lemma 1 then

implies that D is admissible.

First of all, we prove that any S is such that #S ≥ 4. Assume not. The
only alternative is that #S = 3. Since individual preferences are transitive

it must be the case that ∃i, j ∈ N with i 6= j and ∃(a, b), (b, c) ∈ S such that

(a, b) ∈ Di and (b, c) ∈ Dj . However, any such chain on A violates condition

(***) given > and so #S ≥ 4. Identical reasoning suggests that if a minimal
chain S exists and condition (***) is satisfied then (a, b) ∈ Di implies that

(b, c) /∈ Dj , where i 6= j and where (a, b) and (b, c) denote two contiguous

elements of S. Therefore, if any element of S belongs to an individual’s

Di set then the next element of S must either be a Pareto pair or another

element of Di.

Figure 8 is an example of a chain that satisfies condition (***). The

underlying ordering of alternatives is a > b > c > d. Individual i has rights

over the pair (b, c) and cPib. Individual j has rights over the pair (a, d) and

aPjd. Everyone in society prefers b to a and d to c.

>
a c db

D i

PP

D j

PP

Figure 8: A chain satisfying (***).

However, a chain like this cannot exist. At the above profile we have

bPjaPjdPjc. This is inconsistent with person j having either single-peaked

or single-dipped preferences on A with respect to >.
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The following lemma generalizes this example.

Lemma 4 (Non-containment property): Let P̌ ∈MD and assume that

(i) a chain S exists at P̌ and (ii) condition (***) holds. Take any three

contiguous elements of S, (a, b), (b, c) & (c, d). Then none of the following

conditions can hold : (I) b > a > d > c (and the symmetric case c > d >

a > b), (II) b > d > a > c (and the symmetric case c > a > d > b).

Proof : We prove by contradiction. Without loss of generality assume that

b > a > d > c. There are five possible cases that do not violate condition

(***): (1) (a, b) ∈ S ∩ PP (P̌) and (b, c), (c, d) ∈ S ∩ Di for some i ∈ N ,

(2) (a, b), (c, d) ∈ S ∩ PP (P̌) and (b, c) ∈ S ∩ Di for some i ∈ N , (3)

(a, b), (b, c), (c, d) ∈ S∩Di for some i ∈ N , (4) (a, b), (c, d) ∈ S∩Di for some

i ∈ N and (b, c) ∈ S ∩ PP (P̌), and (5) (a, b), (b, c) ∈ S ∩Di for some i ∈ N

and (c, d) ∈ S ∩ PP (P̌). In each case, P̌i /∈ <SP
> ∪<SD

> .

The example in Figure 8 violates the non-containment property. In this

example location b and location c are “contained” in between location a and

location d.

To complete the sufficiency part of the proof assume that (i) a chain S

exists at P̌ ∈MD, and (ii) condition (***) holds. As before, we identify the

location a∗ ∈ A in S that is “farthest to the left” in terms of the ordering >.

Let a∗ ∈ K(S) denote the location with the following property: a∗ > b ∀b ∈
K(S)\{a∗}. This location exists by construction. Since #K(S) ≥ 4 then
∃c, b, d ∈ K(S) such that (c, a∗), (a∗, b), (b, d) ∈ S. There are six possible

cases and we deal with each in turn.

Case 1: a∗ > c > b > d. We prove that (d, c) /∈ S. Intuitively, this

means that the chain S cannot be “closed” by moving back to location c

once we reach location d. Given that any chain S must involve at least

two individuals exercising their rights, if (d, c) ∈ S then condition (***) is

violated. Note that the definition of S and condition (***) imply that ∃i ∈ N

such that cP̌ia∗P̌ib and so P̌i ∈ <SP
> . Individual i’s most preferred location is
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an element of B(a∗, b). Furthermore, the definition of S and condition (***)

imply that either (c, a∗) ∈ S ∩Di or (a∗, b) ∈ S ∩Di. In order for S to exist

∃(t1, t2) ∈ S such that b > t1 and t2 ∈ B(a∗, b). Since (***) is satisfied it

must be the case that either (t1, t2) ∈ S∩Di or (t1, t2) ∈ S∩PP (P̌). In both
cases we have t1P̌it2. However, this contradicts the fact that P̌i ∈ <SP

> .9

Therefore S cannot exist in this case.

Case 2: a∗ > c > d > b. By the non-containment property S cannot

exist.

Case 3: a∗ > b > c > d. In this case, the definition of S and condition

(***) imply that ∃i such that cP̌ia∗P̌ibP̌id. However, this means that P̌i /∈
<SP
> ∪ <SD

> and so S cannot exist.

Case 4: a∗ > b > d > c. By the non-containment property (d, c) /∈ S.

This property also implies that ∃e ∈ A such that (e, c) ∈ S and c > e.

Note that the definition of S and condition (***) imply that ∃i such that
cP̌ia

∗P̌ib and so P̌i ∈ <SD
> . Individual i’s least preferred location is an

element of B(a∗, c). Furthermore, the definition of S and condition (***)

imply that either (c, a∗) ∈ S ∩Di or (a∗, b) ∈ S ∩Di. In order for S to exist

∃(t1, t2) ∈ S such that t1 ∈ B(a∗, c) and c > t2. Since (***) is satisfied it

must be the case that either (t1, t2) ∈ S ∩ Di or (t1, t2) ∈ S ∩ PP (P̌). In
both cases we have t1P̌it2. However, this contradicts the fact that P̌i ∈ <SD

> .

Therefore S cannot exist in this case.

Case 5: a∗ > d > b > c. By the non-containment property (d, c) /∈ S.

This property also implies that ∃e ∈ A such that (e, c) ∈ S and c > e.

Note that the definition of S and condition (***) imply that ∃i such that
cP̌ia

∗P̌ib and so P̌i ∈ <SD
> . Individual i’s least preferred location is an

element of B(a∗, c). Furthermore, the definition of S and condition (***)

imply that either (c, a∗) ∈ S ∩Di or (a∗, b) ∈ S ∩Di. In order for S to exist

∃(t1, t2) ∈ S such that t1 ∈ B(a∗, c) and c > t2. Since (***) is satisfied it

must be the case that either (t1, t2) ∈ S ∩ Di or (t1, t2) ∈ S ∩ PP (P̌). In
9 It is false that individual i prefers t1 to t2 since this is false at every logically possible

peak.
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both cases we have t1P̌it2. However, this contradicts the fact that P̌i ∈ <SD
> .

Therefore S cannot exist in this case.

Case 6: a∗ > d > c > b. By the non-containment property S cannot

exist.

This completes the proof of Theorem 3. One consequence of this theorem

is that no admissible, minimally liberal assignment of spatial rights exists if

#A = 3.

6 Extensions

We have given necessary and sufficient conditions for the existence of a

Pareto-efficient social welfare function that respects individual rights under

three different assumptions about the preference domain. Although we have

restricted the preference domain, our restrictions are quite natural in the

economic environment under consideration. Furthermore, these domains

are the most widely used restrictions in social choice theory.

Although single-peaked and single-dipped domains have been studied

extensively in the literature, they have never been considered in the context

of individual rights. This is surprising since the idea that people have spatial

rights is a philosophically attractive one. When a social planner has to decide

where to locate a public facility on a street, spatial rights are the natural

extension of Sen’s concept of a “personal sphere”.

One conclusion of this paper is that in the single-peaked and single-

dipped domains the set of rights assignments that satisfy our characterizing

condition is surprisingly rich. There are many possible assignments of spatial

rights under which social aggregation is possible. However, in the mixed

domain only nested assignments permit aggregation. This is a much more

restrictive class of assignments.

It is possible to extend this paper in a number of ways. We have assumed

throughout that both individual and social preferences are strict, and this is

probably too strong. Another possibility is to consider other profile restric-
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tions.10 It would also be interesting to consider a continuum of alternatives

and a location space of higher dimension.

Another possibility is to prove a general characterization theorem.11 Our

theorems work because our characterizing conditions describe when there

can be, or cannot be, cycles in pairwise comparisons. However, it should

be possible to identify directly the conditions on profiles that produce such

cycles and the conditions that do not. This would enable us to characterize

all domains admitting Pareto-efficient social welfare functions that respect

individual rights.12 Help in this direction comes from the work of Saari

(1995, 2000, 2001). For example, Saari (2000) shows that cycles in pairwise

comparisons are caused by profile components coming from what he terms

“Condorcet n-tuples”. By removing this portion of a profile, cycles cannot

occur. We leave these issues for future work.
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