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Abstract

This paper introduces a new econometric model of the mispricing associated with (contem-
poraneous) differences between spot and futures prices. Like existing models, this model
assumes that the level of arbitrage activity is positively related to the magnitude of absolute
mispricing. However, unlike existing models, the new model assumes that a parameter gov-
erning a key feature of this relationship is exogenously determined and, as such, varies over
time. Specifically, a smooth transition model of mispricing, and a corresponding Lagrange
multiplier (LM) linearity test, is introduced that allows the degree of ‘smoothness’ in the
transition function to be determined by a set of explanatory variables. Using high frequency
data from the S&P 500 spot and futures market, the results show that the nature of the
non-linearity in mispricing corresponds to smoothness that varies (in a periodic fashion)
over the trading day. This is evinced by the LM test results and by the superior fit of the
new model of mispricing, in comparison to the results based on existing econometric mod-
els of mispricing. Finally, the observed periodicity in arbitrageur behavior indicates that
arbitrageurs prefer to trade at the beginning, rather than at the end, of the trading day —
a result that contradicts the findings obtained when using existing econometric models of
mispricing.
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1 Introduction

Issues concerning the relationship between stock index levels and stock index futures prices
have generated considerable debate within the finance literature. While an array of issues have
been debated over the years, it is those pertaining to the observed dynamics of mispricing that
have attracted most attention.! The most recent wave of interest has been on the importance
of certain features of the arbitrage process in determining mispricing dynamics. Specifically,
behavioral aspects of the arbitrage process have been shown to give rise to non-linear time-
dependence in mispricing. It is to this tranche of the literature that this paper contributes.
In particular, a new econometric model of mispricing is introduced that is compatible with

arbitrage being costly and risky (referred to as limited arbitrage).

However, unlike existing
models, this model allows these behavioral aspects of arbitrage to be exogenously determined
and, hence, to vary over time — a feature commonly observed in financial markets. In using this
model, new evidence of the nature of arbitrageur behavior is provided.

Various econometric models of mispricing have been employed in the literature. The exact
specification of mispricing used has largely been a function of the assumed extent, and nature,
of the arbitrageur behavior underlying the mispricing. Under the classic assumption of market
efficiency, early studies claim that unlimited (costless and riskless) arbitrage activity generates
a linear structure in mispricing dynamics; see MacKinlay and Ramaswamy (1988), Yadav and
Pope (1990), and Lim (1990), for empirical evidence from a variety of markets. However, Harris
(1989), Kleidon (1992), and Miller, Muthuswamy and Whaley (1994) question this evidence,
and argue instead that underlying market microstructure frictions, particularly non-trading in
the stocks within the underlying index, determine the linear evolution of mispricing over time.
More recently, Garrett and Taylor (2001) and Tse (2001) successfully incorporate behavioral
aspects of the arbitrage process into non-linear models of mispricing, and demonstrate that

market microstructure issues merely obfuscate the analysis. In particular, they show that, while

! Mispricing is defined as the difference between the theoretical, or fair, price of the futures contract, and the
market price of the same futures contract. By contrast, the basis is defined as the difference between the market
price of the futures contract and the price (level) of the underlying asset (index).

2See Barberis and Thaler (2003) for a survey of behavioral finance that includes a detailed discussion of limited
arbitrage.



market microstructure plays a minor role, it is limited arbitrage activity that determines the vast
majority of the observed mispricing dynamics. Given the success of models that more closely
match the behavior of arbitrageurs, this paper extends the realism of the behavioral assump-
tions underlying the arbitrage process to produce an econometric model that more accurately
represents mispricing dynamics.

There are two existing models of mispricing that place a strong emphasis on behavioral
aspects of the arbitrage process: those that assume time-invariant homogeneous arbitrageur be-
havior, and those that assume time-invariant heterogeneous arbitrageur behavior. Both classes
of model are based on the premise that arbitrage activity will only occur when the profit op-
portunity is sufficiently large. However, they differ in that the first class of model assumes that
all arbitrageurs agree on what constitutes a ‘sufficiently large’ profit opportunity; whereas the
second class assumes that arbitrageurs may differ in their assessment of the profit opportunity.
Crucially, both classes of model assume that this assessment process is not a function of exoge-
nous factors and, hence, does not vary over time. This would appear to be a rather restrictive
assumption given that the quality of the profit opportunity is highly dependent upon, inter alia,
implementation costs and/or the risk of the opportunity itself — both of which one would expect
to vary over time. Therefore, motivated by this reasoning, time-varying heterogeneous arbi-
trageur behavior is assumed, and a third class of model is introduced that allows the evaluation
of the quality of the profit opportunity to be exogenously determined and, hence, to vary over
time.

Under the assumption of time-invariant homogeneous arbitrageur behavior, a threshold
model can be used to capture the non-linear dynamics of mispricing (see, e.g., Yadav, Pope
and Paudyal, 1994, Dwyer, Locke and Yu, 1996, Martens, Kofman and Vorst, 1998, Forbes,
Kalb and Kofman, 1999, and Garrett and Taylor, 2001). In the simplest version of the thresh-
old model, mispricing can fall within two regimes: it can be within the non-profitable bound
associated with an arbitrage transaction, in which case no arbitrage trading occurs, or it can
be outside it, in which case arbitrage activity takes place. As predicted by theory, the general

conclusion of these studies is that no arbitrage trading in the spot or futures markets occurs



(mispricing follows a non-stationary process) when previous mispricing lies inside the bound,
but that offsetting arbitrage positions in the spot and futures are taken (mispricing follows a
stationary process) when previous mispricing lies outside the bound.

Similar conclusions are obtained when one makes the assumption of time-invariant hetero-
geneous arbitrageur behavior. In this case a smooth transition model can be applied to the
mispricing series (see, e.g., Taylor et al., 2000, and Tse, 2001). This model makes use of a
smooth transition function to measure the extent to which mispricing represents a profitable
opportunity, where the ‘smoothness’ of the function is assumed to be the result of the aggre-
gation of arbitrageurs who possess different opinions on whether mispricing can be traded with
profit. Though this model represents an improvement over the simple threshold model, it fails to
capture salient features of the index arbitrage market; specifically, the propensity-to-arbitrage
(for a given level of mispricing) in this model, as measured by the shape of the transition func-
tion (smoothness), is assumed to remain constant over time. However, it is well documented
that there are time-varying factors, such as implementation costs and/or risks pertaining to the
arbitrage process, that are likely to affect this propensity. Therefore, it seems reasonable to
expect the propensity-to-arbitrage to vary over time. It is for this reason that a new economet-
ric model is introduced that relaxes the strong assumption that the propensity-to-arbitrage is
time-invariant.

Using intraday data on the S&P 500 stock index and associated index futures contracts,
we examine the quality of the model of mispricing introduced in this paper, in comparison to
existing models of mispricing; namely, the threshold and smooth transition models. This quality
is assessed by conventional model fit metrics, and by carrying out a new Lagrange multiplier
(LM) test for linearity in mispricing (against the alternative of non-linearity as implied by the
new model). This paper also innovates by using data that more accurately matches the behavior
of arbitrageurs (and mitigates certain market microstructure effects). In particular, the prices
of the S&P 500 iShares exchange traded fund (ETF) are used to measure the levels of the index.
Also, we examine the robustness of the results by using two different types of S&P 500 futures

contracts: regular S&P 500 futures contracts and S&P 500 E-mini futures contracts. The use



of the latter series is motivated by the results obtained by Hasbrouck (2003), who shows that
most S&P 500 price discovery occurs in the E-mini futures market. To anticipate the results, we
find that an LM test for linearity, against an alternative that corresponds to a model that allows
the shape of the transition function (smoothness) to vary over the trading day, is categorically
rejected. Moreover, this model is significantly more accurate at representing the dynamics of
mispricing, in comparison to existing mispricing models. Finally, the intraday periodicity in the
smoothness parameter throws light on behavioral aspects of the arbitrage process in the S&P
500 index arbitrage market. Interesting, the observed periodicity shows that arbitrageurs prefer
to trade at the beginning, rather than at the end, of the trading day — a result that contradicts
the findings obtained when using existing econometric models of mispricing.

The rest of the paper is organized as follows. In the next section we outline the cost-of-carry
model of stock index futures pricing. Section 3 contains detailed descriptions of the threshold
model, the smooth transition model, and the new model of mispricing introduced in this paper.
In Section 4, a test for linearity (against non-linearity based on the new model of mispricing)
is derived and examined. The penultimate section contains a discussion of the data used, and
presents results pertaining to various tests and econometric models of mispricing dynamics.

Finally, Section 6 offers some concluding remarks.

2 An economic model of index arbitrage

The contemporaneous relationship between spot and forward prices can be described by the
cost-of-carry model. This model is also capable of describing the relationship between spot and
futures prices providing that the term structure of interest rates is flat and constant. Under this

assumption, and in the absence of arbitrage opportunities, we have
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where ﬁ’t,Tm is the theoretical (or fair) stock index futures price observed at time ¢ for delivery
at time T;,,, S; is the level of the index, r is the risk-free continuous interest rate applicable over
the contract life, (T}, —t) is the time-to-maturity of the futures contract, and Dy, is the expected
cash dividend paid at time 73, where t < 7, < T},,.

The economic model given by (1) can be used to construct an arbitrage decision rule. Specif-
ically, if the contract is held to maturity then, in the presence of proportional (and symmetric)
implementation costs, k > 0, arbitrage activity will take place when one of the following condi-

tions holds:

——" < 1-—k, (2a)

= > 14k, (2b)

where x equals the sum of commissions, bid-ask spreads, the price impact costs associated with
arbitrage trades, and the opportunity costs associated with constrained arbitrageurs not being
able to trade.®> The constitution of & is further complicated by the fact that arbitrageurs can,
and do, unwind their spot and futures positions before maturity (see, inter alia, Sofianos, 1993,
and Neal, 1996, for empirical evidence). Brennan and Schwartz (1990) argue that this ability of
arbitrageurs to close out their positions prior to maturity, leads to a narrowing of the arbitrage
bound. Indeed, they argue that arbitrage will only take place when absolute mispricing exceeds
implementation costs minus the value of the option to liquidate the position early.

Apart from narrowing the arbitrage bound, early liquidation also introduces the possibility
that k may also measure risk factors pertaining to the arbitrage process. Specifically, there
is a risk (referred to as noise trader risk) that the difference between Fi g, and ﬁt,Tm may
increase in the short-run.* Such risk is not important if the position can be held until maturity.

However, arbitrage is a highly specialized activity requiring vast amounts of external capital

3Equations (2a) and (2b) assume that the arbitrage bound is symmetric. However, it is often argued that
short-selling restrictions on the stocks within the index will result in an asymmetric arbitrage bound; see Fung
and Draper (1999) for a discussion of these issues in the context of index arbitrage, and D’Avolio (2002) for a
more general discussion of short-selling restrictions. Whether the symmetric arbitrage bound assumption is valid
is examined later in the paper.

4See De Long et al. (1990) for a discussion of the impact of noise trader risk on financial markets.



for successful execution. As such, Shleifer and Vishny (1997) argue that, as an arbitrageur is
essentially an agent managing the money of a less well informed principal, her positions may be
closed prematurely (by the principal) to avoid large short-run losses. As such, initial absolute
differences between F} 1, and ﬁt,Tm may need to be higher to avoid noise trader risk — implying
that x will be higher in the presence of such risk.

There is also a risk associated with the time taken for arbitrageurs to adopt appropriate
positions in the stocks within the index and the associated futures contracts. To incorporate
this feature of the arbitrage process, the arbitrage opportunity available at ¢ — d is used as the
expectation of mispricing at ¢ (conditional on information available at ¢ — d, which is denoted

Q;_4). Therefore, providing & is small, (2a) and (2b) can be expressed as

|yt—d| > K, (3)

where ys =In Fy 7, —In ﬁt,Tm is the definition of mispricing used in this paper, y;—q = E[y:|Q¢—4],
E[] is an expectation operator, and d is the delay inherent in the arbitrage process. Under
the assumption of time-invariant homogeneous arbitrageur behavior, all arbitrageurs face the
same arbitrage condition as given by (3) — an assumption that provides the foundation for the
threshold econometric model used to describe arbitrage behavior.

The validity of the threshold model relies heavily on the assumption of homogeneous arbi-
trageur behavior. However, this assumption is unrealistic with respect to the above arbitrage
condition as it is highly likely that each arbitrageur will face different implementation costs (net
of the early liquidation option value) and noise trader risk. For instance, member firm arbi-
trageurs pay no commission on arbitrage trades, while all other arbitrageurs pay pre-arranged
(non-zero) fees. Similarly, arbitrageurs will face different levels of noise trader risk. An obvious
case will be the difference in noise trader risk faced by successful (low risk) and unsuccessful (high

risk) arbitrageurs. To accommodate such time-invariant heterogeneous arbitrageur behavior, we



assume that each arbitrageur faces an arbitrage condition of the form,

|yt—d| > Ki, (4)

where k; is the sum of the implementation costs (net of the early liquidation option value)
and noise trader risk faced by the ith arbitrageur. As will be described in the following sec-
tion, aggregation of this condition over all arbitrageurs motivates use of the smooth transition
econometric model.

While the arbitrage condition has been adapted for heterogeneity in arbitrage behavior, no
attempt has been made to introduce heterogeneity over time. This is a serious omission given
that it is highly likely that the size of the arbitrage bound (inclusive of risks, etc.) is likely to vary
over time. More specifically, factors affecting this bound, such as bid-ask spreads and price risk,
exhibit a strong intraday periodicity; see, inter alia, Wood, McInish and Ord (1985), Baillie and
Bollerslev (1991), Harvey and Haung (1991), McInish and Wood (1992), Werner and Kleidon
(1996), and Tse (1999). Given the likely time variation in the size of the arbitrage bound, we
assume that the ith arbitrageur forms an expectation of the size of this bound (conditional
upon information available at a point in time that is consistent with any delays inherent in the
arbitrage process), and trades accordingly. Such reasoning implies that the arbitrage condition
in (3), augmented by the assumption of time-varying heterogeneous arbitrageur behaviour, is
given by

lye—da| > E[kie|Q—a], (5)

where £; 4 is the sum of the implementation costs (net of the early liquidation option value) and
noise trader risk faced by the ith arbitrageur and time ¢. As will be described in the following
section, the econometric model introduced in this paper becomes an appropriate mispricing

model under an aggregated version of this arbitrage condition.



3 Econometric models of index arbitrage

In this section, we outline the general motivation lying behind econometric models of mis-
pricing, and provide specific details of the econometric models of mispricing associated with the
arbitrage conditions given by (3), (4), and (5); namely, the threshold, the smooth transition,
and an augmented smooth transition autoregressive models. In addition, an LM test for lin-
earity, against the alternative of non-linearity as implied by the augmented smooth transition

autoregressive model, is derived.

3.1 Motivation

The econometric models used in this paper are motivated by examining the possible short-
comings of competing models of arbitrageur behavior. The main competition comes from studies
that adopt a non-econometric approach to this behavior (see, e.g., Bailey, 1989, Yadav and Pope,
1990, and Sofianos, 1993). In these studies, arbitrage activity is examined by focusing on the
relationship between mispricing and an assumed arbitrage bound, without using an econometric
model of mispricing. As with studies based on econometric models, non-econometric studies
assume that arbitrageur activity occurs when absolute mispricing exceeds the arbitrage bound.
However, the latter studies differ in that they rely on a single (or small number of different)
constructed arbitrage bound(s) — a difficult task given the various components of this bound.

The above issue provides the motivation for use of econometric models when analyzing
arbitrageur behavior. Specifically, by using econometric models one can avoid the need to
construct the arbitrage bound. This is achieved by assuming that the parameters of the model
measure the magnitude of the arbitrage bound. Moreover, the analysis can be further extended
by letting the magnitude of the arbitrage bound vary over arbitrageurs and time — features that

are almost impossible to capture using non-econometric approaches.



3.2 The threshold autoregressive model

The key feature key of this econometric model is the differential treatment of mispricing inside
and outside of the arbitrage bound. If mispricing is expected to remain within the arbitrage
bound then it will follow a unit root process. This is because there will be no arbitrage activity
driving prices back into equilibrium. However, if expected mispricing goes above or below
the arbitrage bound then mispricing will follow a stationary autoregressive (AR) process, as
arbitrage activity forces prices back into equilibrium. For instance, if expected mispricing goes
above the upper limit of the bound then arbitrageurs will sell the futures contract and buy
stocks within the index, hence forcing futures prices down and spot prices up until mispricing
no longer violates the arbitrage bound.

The simplest way to model this dynamic price behavior is by means of the threshold au-
toregressive (TAR) model (see Tong, 1983, 1990, Tong and Lim, 1980, Tsay, 1989, and Hansen,
1996, 1997, 1999, 2000, for theoretical treatments of this model, and Yadav, Pope and Paudyal,
1994, Forbes, Kalb and Kofman, 1999, and Garrett and Taylor, 2001, for applications to stock

5 Formally, y; 4 is continuously valued so that partitioning the real

index futures mispricing).
line defines the number of distinct regimes into which y; 4 can fall. In the current application,
the arbitrage condition given by (3) implies that y;—4 (the measure of expected mispricing used
in this paper) can enter one of two regimes: the non-profit opportunity regime or the profit

opportunity regime. The process is in the former regime when —k < y;_4 < K, is in the latter

regime when this condition does not hold, and is assumed to evolve as follows:

ye = 1%t (1 — G(ys—a; k) + 5% G (y1—da; k) + €, (6)

where (p] = [(PO,j;(Pl,jy-- .,(pp,]']l, j € {1,2}, Xt = [1,%2]’, )~Ct = [yt—l;-- . ,yt_p]l, € ~ IId(0,0’?),

te{1,...,T}, and G(y;—q; k) is a discrete transition function (often referred to as the threshold

5The analysis in this paper is based on mispricing following an AR process within a number of the pre-selected
regimes. It is, however, possible to model mispricing in the context of an error-correction framework (see, e.g.,
Dwyer, Locke and Yu, 1996, Martens, Kofman and Vorst, 1998, Taylor et al., 2000, and Tse, 2001). Though
not explicitly derived, it is possible to augment the model introduced in this paper within the error-correction
framework.



function) that equals unity if the arbitrage condition given by (3) holds, and zero otherwise.
This model (henceforth denoted M1) provides values of G(y;—q4; k) that can be interpreted as a

measure of the level of arbitrage activity.

3.3 The smooth transition autoregressive model

Use of the smooth transition autoregressive (STAR) model in this paper relies on an explicit
assumption concerning the aggregation of the arbitrage condition, given by (4), over all arbi-
trageurs. Following Taylor et al. (2000) and Tse (2001), it is assumed that this aggregation
process gives rise to an exponential smooth transition function (see Granger and Terésvirta,
1993, and Terdsvirta, 1994, for detailed descriptions of this particular version of the STAR

model).® Use of this transition function implies that mispricing evolves as follows:

yr = P1%¢(1 = G(Yi—a57, ©)) + Pox:G(ye—a; 7, ¢) + €, (7)

where G(y;—q4;7, ¢) is a continuous transition function that is bounded between zero and unity,

and is assumed to be given by

G(yi—a;7,¢) = 1 — exp(—v(y1—q — ¢)?), v >0, (8)

where v and ¢ are the slope (or smoothness) and location parameters associated with the tran-
sition variable, y;_4, respectively.”

As with the threshold function used in M1, the above smooth transition function is bounded
between zero and unity, and is positively related to absolute mispricing. Furthermore, these
extreme values take on a similar interpretation to that taken in M1: a function value of zero
implies that no arbitrageurs will trade, while a value of unity implies that all arbitrageurs

will trade. As such, this model (henceforth denoted M2) also provides values of the transition

6Tn should noted that, although this paper uses the exponential transition function, it is a trivial matter to
alter the subsequent analysis to take account of alternative transition functions such as the logistic function.

"The inclusion of exogenous variables in (7) is permitted without complicating the estimation process; see
Terdsvirta (1998) for more details of STAR models with exogenous variables included. However, for simplicity,
such variables are not included in the present study.
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function that can be interpreted as a measure of the level of arbitrage activity. However, unlike
the threshold function, this level changes from zero to unity in a smooth fashion, with the rate
of transition from zero to unity measured by the smoothness parameter, . As higher (lower)
values of 7y indicate a greater (lesser) desire to arbitrage, ceteris paribus, this parameter provides

a measure of the propensity-to-arbitrage.

3.4 An augmented smooth transition autoregressive model

The above specification assumes that the smoothness parameter, vy, is time-invariant. How-
ever, in the presence of the arbitrage condition given by (5), this assumption is unlikely to
hold. The reasoning behind the relaxation of this restriction proceeds as follows: First, the
expectation operator on the RHS of (5) implies a functional dependence between k;; and ;4.
Second, aggregation of this condition over all arbitrageurs, in turn, implies that the smoothness
parameter, ¢, will also be functionally dependent on €;_4 and will, thus, vary over time. Con-
sequently, using reasoning analogous to that used for the STAR model, mispricing is assumed

to evolve as follows:

Ye = @1%¢(1 = G(ye—a; 71, €)) + %G (Ye—a; Ve, €) + €, 9)

where G(yt—d; V¢, ¢) is a continuous transition function that is bounded between zero and unity,

and is assumed to be given by

G(yi—a;e,¢) = 1 — exp(—(ye—da — ©)?), Y > 0, (10)

where v; = f(Q—q), with f(.) denoting an unspecified functional dependence. As with previous
models, this transition function, and its associated smoothness parameter, can be interpreted
as measures of the level of arbitrage activity and the propensity-to-arbitrage, respectively.

To make this model operational we need to specify the nature of the functional dependence

between ; and Q;_4, and require knowledge on the contents of ;4. As there is no theoretically

11



motivated specification for the nature of the functional dependence, we assume (for simplicity)
that 7, is linearly dependent on Q;_4, and that Q;_4 consists of r independent variables, denoted
Z,_g4, hence

Y =00+ 0'Zy_q, (11)

where 0 = [61,...,6,)", and Zy q = [Z14-ay---, Zri—a)'

The selection of the variables in Z; 4 is, at first blush, a difficult task given the vast number
of factors affecting arbitrage bounds. However, this problem can be considerably simplified
by noting that these factors are likely to process a strong intraday periodic component. For
instance, it is well established (both empirically and theoretically) that bid-ask spreads in spot
and futures markets follow an intraday U-shaped pattern; see McInish and Wood (1992) and
Tse (1999) for empirical evidence from these two markets, respectively. As such, the approach
taken in this paper is to allow ~; to be determined by a set of intraday periodic components.

One possible model allows 7; to take a different value during each ¢ (intraday) time period
within the periodic cycle (the trading day) of length T, where t; € {1,2,...,Ts; — 1,75}, and ¢,

and t are related by the function f,(¢).° Under this assumption,

0’2[02,...,0,55,...,07’5], (123,)

;5:[DZ,t)---;Dts,t;---,DTs,t], (12b)

and the dummy variable, Dy, +, takes a value of unity if the current observation is in the ¢,th

stage of the periodic cycle, and a value of zero otherwise.!® A problem with this model is that

8There is a related class of econometric model already existing in the literature. In particular, Lundbergh,
Terssvirta and van Dijk (2003) introduce a time-varying STAR (TV-STAR) model that allows an addition time-
dependent transition function in the STAR model that, in turn, permits a smooth change in the parameters
of the STAR model. While this model is successfully applied to several macroeconomic (and other miscella-
neous) time series, application to mispricing is inappropriate on two counts: First, economic theory predicts that
time-variation will only affect the smoothness parameter. This prediction is driven by the action of individual
arbitrageurs who continuously change their expectation of the future magnitude of the arbitrage bound. Sec-
ond, time-variation is likely to be far from smooth, with arbitrageurs changing these expectations at very high
frequencies. For these reasons, this model is not considered in this paper.

9The function fs(t) is defined such that

(tsrt) = (1,1),(2,2), .-, (Ts — 1,Ts — 1), (Ts, Ts), (1, Ts + 1), (2, Ts + 2), ..., (Ts, T).

10Such dummy variables have already been proposed in the context of a periodic STAR model. In particular,

12



a large number of coefficients are required if there are many time periods within each periodic
cycle (i.e., T is large). It is possible to overcome this problem by selecting dummy variables
that span more than one time period. However, this assumes that ~; is constant within the time
period covered by the dummy variable and then changes abruptly whenever a new time period
is entered.

To overcome the above problems, 7, is assumed to be a function of the flexible Fourier form

(FFF), and is given by (11) with

0 =[01,...,0,,,...,0,], (13a)
0, = [01,m,02,m), (13b)
2, =(Z .. T s Ty ), (13c)
m.t = [sin(mA), cos(mA)], (13d)
Ao = 2ty )T, (13¢)

and m € {1,...,M}. This model (henceforth denoted M3a) can also include power terms
involving t5; to avoid the assumption that v; takes the same value at the opening and close of
the trading day. Indeed, such an FFF model (including ¢s and ¢2) has been proposed by Andersen
and Bollerslev (1997, 1998) when modeling intraday return volatility dynamics. Following their
lead, M3a also includes t5 and #2 in its specification.

Though the FFF-version of the model is parsimonious and allows for smooth -; dynamics, it is
somewhat rigid in functional form and, therefore, may not be able to capture complex dynamics.
To overcome this potential shortcoming, a spline-version of the model is also considered that
allows different cubic spline functions to be estimated between selected points (referred to as
knots) within the periodic cycle. In particular, letting k,, denote the (equally spaced) nth knot,

with k, = {k, € ZT:1 <k, <Ts},n € {1,...,N}, and k; = 0, the spline-version of the model

Franses, de Bruin and van Dijk (2000) allow the linear parameters of the STAR model to vary over the periodic
cycle via the use of such dummies. However, economic theory predicts that it is the smoothness parameter, and
not the linear parameters, that will vary over time. As such, this model is not considered in this paper.

13



(henceforth denoted M3b) is given by (11) with

0'=1[0,...,0,,...,0%], (14a)
6,, = [01,n,02,n,03,n], (14b)
Zh=(Z gy s 2 i, (14c)
Zy, 1 = Dn[(ts — kn), (ts — kn)?, (ts — ka)°), (14d)

and D,, equals unity if t; > k,,, and zero otherwise. Though no studies have used this functional
form in the context of the STAR model, it has been used extensively in trade duration models.
Most notably, cubic splines have been successfully incorporated into a variety of autoregressive
duration (ACD) models (see, e.g., Engle and Russell, 1995, 1998, Zhang, Russell and Tsay, 2001,

and Taylor, 2003).

4 A new linearity test

This section contains the derivation of an LM test for linearity, against the alternative of
non-linearity based on the augmented STAR model introduced in this paper. In addition, a
series of Monte Carlo experiments are described that demonstrate that this test is correctly

sized.

4.1 Derivation

Testing the null hypothesis of linearity, against the alternative of STAR non-linearity, suffers
from the problem of unidentified nuisance parameters. This means that certain parameters are
not restricted to equal zero under the null, even though they appear in the non-linear part of
the model. In the current study, if the null of linearity holds with ¢, = ¢,, then v, does not
necessarily have to equal zero. To overcome this problem, we use a methodology similar to
that used by Luukkonen, Saikkonen and Terasvirta (1988). In particular, we derive a LM test

statistic (with an asymptotic x? distribution), designed to test the null hypothesis of linearity,

14



against the alternative of the augmented STAR non-linearity introduced in this paper.

The derivation of the LM test statistic proceeds in three stages, culminating in an auxiliary
regression equation that can be restricted under the null without incurring the problem of
unidentified nuisance parameters. The derivation begins by noting that the augmented STAR

model given by (9) can be rewritten as follows:

Yt = P1%¢ + 05 %G (Ys—a; 7, €) + €. (15)

where ‘P; = P2 — P1, ‘PJ = [900,]'7901,]'7 - '7(pp,j]l7 .7 € {172}7 Xt = [17i715]l7 it = [ytfla R 7yt7p]l7
and ¢ ~ iid(0,02%), t € {1,...,T}, and G(y;_a;V:,c¢) is given by (10). The next stage involves
approximating the transition function, G(y:—g4;7,c¢), by a first-order Taylor expansion around

v = 0, that is,

O0G (Yt—a; Ve, €)

+ R(Yi—a; V¢, ©)s
a’Yt Y:=0

GWi-a;71,¢) = T(Ye—a; Ve, ¢) = G(ys—da;0,¢) + v

=% Wi—a—¢)® + R(ys—a; 1, ©), (16)

where R(y:—g4;7v,c¢) is a remainder term, which equals zero under the null hypothesis that
v¢ = 0.1 The final stage is achieved by substituting (16) into (15), and using the expression for

~¢ given by (11), to give the auxiliary regression equation,

Y = QX + ahXyYia + ohxeyi_ g+ PB1(Zi—q ® xy)

+ By(Zs—q @ X4yi—a) + By (Zy—a @ X4y7_4) + €4, (17)

where e; = e+ (=) X R(Wi— ;> €)s @k = (Q0r - > pk)'s B = 0By, B = Bosks- -+ Bok)'s

' The transition function could be approximated by a higher order Taylor expansion to produce a more accurate
representation of this function. Indeed, Escribano and Jorda (1999) use a second-order Taylor expansion in the
context of a conventional STAR model. However, the first-order expansion is deemed appropriate given the
results presented in the following section. Most notably, the test is correctly sized and has power to reject a false
null.
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ked{l,...,3},

a1 = i1 + 00 (P12 — i1, (18a)
a2 = —26pc(vr2 — @i1), (18b)
a3 = 0o(pr,2 —wi,1), (18¢)
51,1 = 02(901,2 —@11)s (18d)
Bz = —2c(pr2 — ¢1,1), (18e)
51,3 = (p1,2 — ¢1,1), (18f)

and ! € {0,...,p}.

Tests of the null hypothesis of linearity, against the alternative of augmented STAR non-
linearity, can be performed by testing restrictions on the above auxiliary regression equation.
To achieve a better understanding of the required restrictions, it is worth noting that the null
hypothesis, Ho : 7: = 0, is equivalent to the null, Hj : 6o = 0,6 = 0. In turn, one can see from
(18a) to (18f), that testing this hypothesis is equivalent to testing the null, Hy : a;2 = oy 3 =
0, ﬁk = 0. (From this version of the null, one can see that the unidentified nuisance parameter
problem is overcome as the restriction under the null can also be achieved by imposing the
restriction that ¢; = ¢,). Given the nature of the testing procedure it follows that a standard
LM test statistic (with x? distribution) can be used to test this null hypothesis.

One can also use the above regression equation to test the null hypothesis of linearity, against
the alternative of (non-augmented) STAR non-linearity, as this is equivalent to testing the
restriction that 8p = 0, conditional on smoothness not being functionally dependent on any of
the explanatory variables, that is, Ho : 8o = 0|6 = 0. Inspection of (18a) to (18f) implies that
this null hypothesis is equivalent to the null, Hg : a2 = oy 3 = O|ﬁ r = 0. As with the previous

test, a standard LM test statistic (with x2 distribution) can be used to test this null hypothesis.
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4.2 Test properties

A crucial feature of any statistical test is that it rejects the true null hypothesis the correct
number of times, i.e., with probability given by the nominal size of the test. To examine
this feature, the empirical sizes of the above tests are calculated via the use of two sets of
Monte Carlo experiments (each consisting of 10,000 replications of the data). In the first set
of experiments, IN(0,1) errors are used to generate data via (15) under the assumption that
p, = @, = 0, with T' € {125, 250,500, 1000,10000}, and with FFF and cubic spline periodic
components generated using M =3, N = 3, and T; = T'/5. The second experiment repeats the
first experiment, but uses randomized (bootstrapped) residuals from the FFF-version of (15)
obtained in the subsequent empirical section. In both cases, the tests for linearity are based on
auxiliary regression equations with p = 2 and d = 1.12

The empirical sizes (at 1%, 5%, and 10% nominal size) of various LM tests for linearity are
calculated in the above experiments. First, the empirical sizes of the tests for linearity, against
the FFF-version, and the spline-version of the augmented STAR model (henceforth denoted LM3,
and LMgsy, as they are based on the M3a STAR model and M3b STAR model, respectively),
are calculated. Second, the latter of the tests proposed in the previous subsection is assessed
by considering the empirical size of the test of the null that 6y = 0, with the assumption 8 = 0
imposed (without testing) on the regression equation. (As this test is equivalent to testing the
null of linearity against the M2 STAR model, it is henceforth denoted LM,). In addition, the
empirical sizes of the tests of the null that § = 0, using the FFF-version (henceforth denoted
LMs,.1), and the spline-version (henceforth denoted LMsp, 1) of the augmented STAR model, are
calculated.

The results given in Table 1 indicate that, in general, all the tests appear to be reasonably
well sized. However, there is some evidence of size distortion when small sample sizes are used.
As sample sizes in finance typically exceed those used in these experiments, such size distortion

should be of minor concern from a practitioner point of view. When large sample sizes are

12The parameter values used in these experiments are based on those used in the subsequent empirical section
of this paper.
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not available, a small-sample correction for the distortion is required. One possible method of

*

correction is achieved by performing F-distribution versions of the tests (denoted by LM%, LM3,,

LM3,, LM3, ;, and LM3, ;). The results show that these corrections are broadly successful.

5 Empirical results

This section contains results pertaining to the application of the models and tests described in
the previous two sections. After the data used have been described, details of the specifications
of the models estimated, tests for linearity (against various non-linear alternatives), and tests

of model adequacy, are provided.

5.1 Data

We make use of various pieces of information concerning all trades in various securities
relating to the S&P 500 index, covering the period, January 2, 2001 to December 31, 2002. In
particular, returns, defined as the log change in transaction prices; and trading volume, defined
as the number of contracts traded within an interval, were obtained for regular S&P 500 futures
contracts (with ticker symbol SP), and S&P 500 E-mini futures contracts (with ticker symbol
ES), both of which trade on the Chicago Mercantile Exchange. Both of these S&P 500 futures
contracts specify cash settlement of the contract at 8:30 a.m. on the 3rd Friday of March, June,
September, and December. To obtain a single continuous series for each type of futures contract,
we assume that futures contracts with the nearest maturity are replaced (through trading), by
contracts with the next nearest maturity — a practice referred to as rolling over — when the next
contract’s daily tick count exceeds the current contract tick count. These data were obtained
from Tick Data Incorporated.

In addition to the above futures contract data, data were also obtained for the S&P 500
iShares ETF (with ticker symbol IVV), which (mainly) trades on the American Stock Exchange.
Use of these data represents an innovation in the study of mispricing dynamics, as previous

studies construct mispricing using the level of the S&P 500 index. In using ETF data, we are
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also explicitly assuming that arbitrageurs monitor and use the price of this fund to correct
any potential mispricing. This seems reasonable given the obvious cost advantages of trading
this fund, in comparison to trading each of the stocks making up the fund.'® Also, choice of
this particular fund over competing funds (e.g., the Spider ETF) is based on the fact that the
iShares ETF allows the timely re-investment of dividend income — an important feature given
that the definition of the fair value of the futures contract given by (1) assumes that such timely
re-investment occurs.!* These data were also obtained from Tick Data Incorporated.

The above transaction data are converted to five-minute frequency data.!® This frequency
is deemed to be sufficiently low enough to avoid stale data, and high enough to avoid loss of
information. As the trading hours of each security differ, these data are necessarily truncated to
produce a fully synchronized intraday dataset. In particular, the trading hours for regular S&P
500 futures contracts, E-mini S&P 500 futures contracts, and S&P 500 iShares ETF shares are
8:30 a.m. to 3:15 p.m., 12:00 (midnight) to 3:15 p.m., and 9:30 a.m. to 4:15 p.m., respectively.
Therefore, to generate an overlapping dataset, these futures and spot series are truncated to
contain data over the intraday period, 9:35 a.m. to 3:15 p.m. The available data is further
truncated by the application of the procedure proposed by Miller, Muthuswamy and Whaley
(1994) to remove the bid-ask bounce in the asset prices. Specifically, they suggest fitting an
MA (1) model to asset returns and then using the residuals from this model as the asset returns
net of bid-ask bounce. Upon completion of this procedure, spot and futures data are available
over the intraday period, 9:40 a.m. to 3:15 p.m.'6

The (two) futures series and the (one) spot series are then used to construct two mispricing
series via (1). One possible method of constructing the theoretical futures price is to use a

government-issued interest rate with a maturity closest to that of the futures contract, and

13Use of ETF share prices also mitigates a major market microstructure effect highlighted by Miller,
Muthuswamy and Whaley (1994). Specifically, the problem of infrequent trading in stocks within the index
is removed.

14The Spider ETF only allows dividend re-investment at the end of each quarter.

15The subsequent analysis is virtually unchanged when fifteen-minute frequency data are used. These results
are available upon request.

16 This procedure is applied to the spot and futures return series considered in this paper. To avoid picking up
dependence spanning the overnight period, the dependent variable in this (first-order) model is restricted to be
that observed from 9:40 a.m. (each day) onwards. After fitting the model, the new spot and futures price series
are obtained by means of daily numerical integration of the model residuals covering the intraday period, 9:40
a.m. to 3:15 p.m.
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expected (or realized) dividend payments for each stock in the index over the life of the futures
contract (see, e.g., Tse, 2001, and Taylor, 2003). However, as these variables can only change on
a daily basis, we use the daily demeaned difference between the (log) spot and futures prices as
the measure of mispricing. The resulting mispricing series are henceforth referred to as regular

futures mispricing and E-mini futures mispricing.'”

5.2 Evidence of intraday periodicity

To give an indication of the likely intraday periodicities within the data, Figure 1 shows the
intraday periodicity of the absolute mispricing and the trading volume associated with regular
futures mispricing (Panel A and Panel C, respectively) and E-mini futures mispricing (Panel
B and Panel D, respectively).!® These periodicities are based on the intraday means of these
series for each five-minute period within the trading day. The graphs show a clear pattern:
absolute mispricing and trading volume follows a U-shaped pattern — a commonly observed
pattern in financial markets.'® However, the extent to which one can infer patterns in the level
of arbitrage activity is limited. The (time-invariant) STAR model implies that this level will
also follow a U-shaped pattern. This is because this model assumes that arbitrage activity is
a positive (time-invariant) function of absolute mispricing. By contrast, the augmented STAR
model (introduced in this paper) allows time-variation in the functional dependence between
arbitrage activity and mispricing. As such, the level of arbitrage activity does not necessarily
have to follow a U-shaped pattern. Indeed, the results in the subsequent analysis demonstrate

that this potential for alternative patterns in the level of arbitrage activity is achieved.

5.3 Linearity testing

To give some indication of the likely suitability of the various econometric models of mis-
pricing, tests for linearity, against the non-linearity implied by these models, are conducted. In

addition to the tests described in the previous section (LMy, LM3,, LM3y, LM3, 1, and LMs, 1),

17 All subsequent analysis is based on these mispricing being multiplied by 100.
18Trading volume is defined as sum of the number of futures contracts and iShares ETF shares traded.
9Trading volume drops dramatically at 3:00 p.m. when the underlying S&P 500 market closes.

20



we also test the null hypothesis of linearity against the alternative of M1-type non-linearity using
the likelihood ratio test (henceforth denoted LR;) proposed by Hansen (1996, 1997, 1999). In
each case, the tests are applied to both mispricing series with p € {1,2,3},d < p, M = 3, and
N = 3, where use of d < p implies that trade delays are not expected to exceed the degree of
time-dependence in mispricing.2°

The results in Table 2 indicate that, in general, the null hypothesis of linearity can be
rejected. However, the degree of rejection is very much a function of the type of test performed.
In particular, the LR; and LM, tests indicate that the null can only be rejected (at the 1% level)
when p = 3 and d > 2. However, when the new linearity tests are performed they indicate
rejection of the null (even at the 0.01% level) for all values of p and d. This result suggests that
allowing the propensity-to-arbitrage, as measured by 7, to time-vary over the trading day is an

accurate representation of the arbitrage process.

5.4 Model estimates

Five models are estimated in this paper. In addition to the non-linear models M1, M2,
M3a, and M3b, described previously, we also estimate a linear AR model (henceforth denoted
MO). These models are estimated using a variety of methods: the AR model (MO) is estimated
by ordinary least squares (OLS), the TAR model (M1) is estimated using the methodologies
proposed by Hansen (1996, 1997, 1999, 2000), and the STAR model (M2) is estimated by non-
linear least squares (NLS).?! The augmented STAR models (M3a and M3b) are also estimated
by NLS, in a manner similar to that used to estimate M2. In particular, the parameter set,

m = (¢, 05, ¢,00,8'), is estimated follows:

T
# = argmin Qz(m) = argmin Y (g — H(x;;m))%, (19)
t=1

20To avoid picking up dependence spanning the overnight period, the dependent variable (y¢) in these tests is
restricted to be observed from 9:55 a.m. (each day) onwards. Use of this daily starting point ensures that an
equal number of observations are included in each test, regardless of the value of p.

21See Franses and van Dijk (2000) for an comprehensive description of the estimation of STAR models.
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where

H(xy;7) = 01 %¢(1 — G(yi—a; 71, ¢)) + 5% G(Yi—a; 1, €).- (20)

As with the estimation of time-invariant STAR models, the estimation process can be greatly
simplified by concentrating the sum of squares function, Q7 (), with respect to ¢, and ¢,.
Specifically, for given values of ¢, 8y, and 6, the parameters ¢, and ¢, can be estimated by
OLS. Consequently, the minimization process can focus exclusively on the non-linear parameters
of the model as the linear parameters can be iteratively estimated by OLS.?? Finally, statistical
inference relating to 7 can be carried out by noting that under certain regularity conditions (see
White and Domowitz, 1984),

\/T(% - 770) ~ N(Oa 2)5 (21)

where 7 is the true value of the parameter set, and ¥ is the asymptotic covariance-matrix
of &. The inference used in this paper is based on the heteroscedasticity-consistent (HCC)

covariance-matrix ¥ = A"!BA~!, where

T

~ 1 =R =R

A= > VH(xy; ®)VH (x5 7)), (22)
t=1

. 1<

B = T Z%?VH(Xt;%)VH(Xt;ﬁ')'; (23)

o~
Il
-

and VH (x¢;7) = 0H (x4; ) /0m.23

The models are estimated using the two mispricing series for (p,d, M, N) € {1,2,3}.2* It
is found that the optimal fit (according the Akaike information criterion, henceforth denoted
AIC) for all models is obtained when p=2,d =1, M = 3, and N = 3.2° Results pertaining to

these models are presented in Table 3, and contain the estimated linear parameter values (and

22The estimation of the STAR-based models (M2, M3a, and M3b) is further simplified by imposing the re-
striction that ¢ = 0. This restriction is motivated by the observation that zero mispricing should not, according
to the economic arguments provided in Section 2, trigger any arbitrage activity.

23Details of the specifications for the gradients, VH (x¢; %), are available upon request.

24As in the case of the linearity tests, to avoid picking up dependence spanning the overnight period, the
dependent variable in the models is restricted to be that observed from 9:55 a.m. (each day) onwards. Similarly,
use of this daily starting point ensures that an equal number of observations are included in each model, regardless
of the value of p.

25Results pertaining to the other values of p, d, M, and N, are available upon request.
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associated HCC standard errors), summary details of the non-linear parameter values (and as-
sociated HCC standard errors where applicable), and various metrics pertaining to model fit.2°
The estimated AR model (MO0) indicates that mispricing is highly time-dependent. However,
the degree of time-dependence is such that it does not appear to follow a unit-root process,
thus indicating the possible presence of arbitrageurs. This presence is confirmed by the esti-
mated TAR model (M1), which shows that mispricing appears to follow two different processes
depending on whether a profit opportunity exists, with a lower degree of time-dependence in
mispricing when such an opportunity exists.?” Rather surprisingly, allowing the arbitrage bound
to vary over arbitrageurs, hence use of the STAR model (M2), does not lead to an improvement
in the degree of model fit (as measured by the AIC). By contrast, allowing time-variation in the
propensity-to-arbitrage, as implied by the FFF-version and the spline-version of the augmented
STAR model (M3a and M3b, respectively), leads to a large improvement in model fit. It is also
noticeable that, in comparison to M2, the degree of time-dependence appears more polarized
between the two regimes, with mispricing following a near unit root process when no profit
opportunity exists for any arbitrageurs (G(y:—q4;7:,¢) = 0), and a less time-dependence process
when profit opportunities exist for all arbitrageurs (G (y¢—q; V¢, ¢) = 1).

The above results are broadly consistent over the two measures of mispricing, except that
there is some evidence of a greater level of arbitrage activity when E-mini futures mispricing is
used. This is evinced by the smaller value of the estimated arbitrage bound, &, and the larger
values of average smoothness, 7, and the average value of the transition function, @—(.), when
this mispricing measure is used. This result is consistent with the findings of Hasbrouck (2003),
who finds that the E-mini market more rapidly reflects information pertaining to stocks in the

S&P 500 index.

26Space limitations prohibit presentation of the estimated values of 8 and @ for the FFF-version and the
spline-version of the augmented STAR model. However, these estimates (and their associated HCC standard
errors) are available upon request.

27Short-selling restrictions on stocks within the underlying index imply use of a TAR model with an asymmetric
arbitrage bound. The appropriateness of such a model is examined by estimating a three-regime TAR model,
where the regimes are not restricted to have equal (absolute) values. The results indicate that such a model
provides an inferior fit (as given by the AIC), in comparison to the symmetric TAR model (M1) considered in this
paper. (These results are available upon request). These findings are compatible with those obtained by Neal
(1996), who takes a direct investigative approach to arbitrageur behavior. Using data that actually identifies
arbitrage trades, Neal finds that, inter alia, short selling restrictions ‘... are unlikely to affect the cash-futures
mispricing’.
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To give some idea of the nature of the intraday periodicity in arbitrageur behavior, Figure
2 plots the estimated smoothness (propensity-to-arbitrage) and the associated mean transition
function values (the level of arbitrage activity) over the trading day, obtained using regular
futures mispricing (Panel A and Panel C, respectively), and E-mini futures mispricing (Panel
B and Panel D, respectively). When using M2, the propensity-to-arbitrage is, by definition,
constant over the trading day. However, when M3a and M3b are used, this propensity takes on
a clear intraday periodic pattern: high at the opening of trading, and low at the close of trading,
with a local minimum in this propensity occurring during the lunch-time period. Despite this
clear evidence, it cannot tell us anything about the level of arbitrage unless we combine this
propensity with the trigger for arbitrage (the absolute level of mispricing). This is achieved
by considering the mean values of the transition functions over the trading day. When using
M2, the level of arbitrage activity follows a U-shaped pattern. This is the result of a constant
propensity-to-arbitrage and the U-shaped pattern of absolute mispricing observed in Figure 1.
By contrast, the level of arbitrage is not necessarily U-shaped when using M3a and M3b. In
this case, the time-variation in the propensity-to-arbitrage and absolute mispricing combine to
form a pattern similar to that observed for the propensity-to-arbitrage pattern. In particular,
arbitrage activity is high around the opening of trading, and low during the lunch-time period
and around the close of trading — a result that may indicate an aversion to holding overnight
arbitrage positions. The figure also shows that there are differences in the pattern over the
measures of mispricing. In particular, the propensity-to-arbitrage and the level of arbitrage
in the E-mini futures market appears greater than in the regular futures market. Again, this
result may reflect a preference for index arbitrage trading in the former market due its greater

informational efficiency.

5.5 The impact of shocks

The impact of shocks on the S&P 500 index arbitrage market is assessed by considering

the values of the model-based generalized impulse response function (GIRF). This function is
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defined as follows:

GIRFy(h,d,wi—1) = E[ysynler = 0, we—1] — E[yern|wi—1], (24)

where w;_; measures the history of all previous shocks, § is the initial magnitude of the shock,
and h € {0,1,2,...,H}.?® This function gives the impact of shocks to mispricing using a subset
of the history of past shocks. In the current application, the impact of the shocks is measured at
1,000 randomly assigned points in the history, with the whole process repeated 1,000 times. To
obtain the GIRF, the means of these impacts, net of the mean mispricing over the corresponding
points, are calculated using the estimated coefficients from each model. The resulting function
shows the impact of a shock to mispricing, irrespective of the point in time at which the shock
occurs.?? The asymmetry of the shocks can also be assessed by calculating the values of the

following function:

ASY,(h,8,w,_1) = GIRF,(h, §,w;_1) + GIRF, (h, —8,w;_1)- (25)

Diagrammatic representations of the functions, given by (24) and (25), are presented in
Figure 3 (regular futures mispricing) and Figure 4 (E-mini futures mispricing), as implied by
MO, M2, M3a, and M3b.?® These figures show the impact of a unit shock (where oz ~ 0.43)
conditional on all shock histories (Panel A), conditional on shocks occurring during the first
fifteen minutes of the trading day (Panel B), and conditional on shocks occurring during the
last fifteen minutes of the trading day (Panel C). The results indicate that all models imply
that a unit shock disappears after 3 hours (when h = 36). However, the impacts of the shock,
as implied by the models, differ over the course of the trading day. Most notably, M3a and

M3b imply that shocks disappear more rapidly if they occur during the opening period. This

283ee Koop, Pesaran and Potter (1996) and Franses and van Dijk (2000) for details of impulse response analysis
using non-linear models.

29Note that non-linear models do not have a Wold representation. As such, shocks in different periods do
interact with each other — hence the need for a simulation approach.

30M1 gives virtually identical results to M2 and is omitted on the grounds that it makes the diagrams easier
to interpret. Results pertaining to this model are available upon request.
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is because there is a greater desire to trade the shock at this time. The reverse holds at the
end of the trading day, where shocks are less rapidly incorporated into the market. By contrast,
the time-invariant models (MO and M2) cannot pick up such variation in the impact of shocks
over the trading day. The figures also show that there is a degree of asymmetry in the S&P 500
index arbitrage market (Panel D). Specifically, the results indicate that, when M3a and M3b
are used, positive shocks are more rapidly incorporated into the market than negative shocks,

though the difference is very small.3!

5.6 Forecasting ability

Given the importance of accurate forecasts of mispricing to arbitrageurs and hedgers, it
seems reasonable to assess model performance via a comparison of forecasting ability.>? To this
end, the five models (M0, M1, M2, M3a, and M3b) are re-estimated using the first half of the
dataset, both measures of mispricing, and (p,d, M, N) € {1,2,3}.3® The estimated coefficients
of the optimal-fit models (based on the Schwarz information criterion) and the second half of the
dataset are then used to generate time-consistent 1-step ahead forecasts of mispricing. These
forecasts are then compared to realized mispricing observed in the second half of the sample.

To formally test the comparative accuracy of the model-based forecasts, we make use of the
extant tests of Granger and Newbold (1977), henceforth denoted the MGN test, and Meese and
Rogoff (1988), henceforth denoted the MR test, and the asymptotic test introduced by Diebold
and Mariano (1995), henceforth denoted the DM test. The latter test is preferable to the extant
tests as it is, inter alia, robust to non-zero mean forecast errors, non-normally distributed forecast
errors, and serially correlated forecast errors. In the current application, it is the robustness of

the DM test statistic to the non-normality assumption that is most attractive. Indeed, when

31This result may be due to it being more expensive to short-sell stocks in the S&P 500 index than it is to sell
futures contracts. However, as described in footnote #27, no evidence of this was obtained when a TAR model
with asymmetric arbitrage bounds was estimated.

32In conducting such a comparison, we are explicitly conceding the fact that the ‘best’ model may still be
‘inadequate’ in terms of model misspecification. However, as a wide range of currently available non-linear
models are used, the approach will give some indication as to which model most accurately represents the data.

33Details of the estimated models are available upon request. Other proportions of the dataset are also
considered. For instance, we use the first quarter and the first three quarters of the dataset in the estimation
section of the exercise. The results obtained using such sample periods produce similar results to those presented
in this paper. These results are also available upon request.
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the forecast errors are tested for normality, the null is rejected at the 1% significance level on
every occasion.?4

A summary of the results obtained when the MGN, MR, and DM tests are performed on all
available forecasts is given in Table 4. We report the test statistics and the associated p-values,
where each model-based set of forecasts are compared with each other. The results indicate
that M3a and M3b each successfully beat the other models, for all types of test and for both
measures of mispricing, though the tests cannot distinguish between the dominance of the M3a
and M3b models. Given this evidence, it would appear that the models introduced in this paper
produce significantly more accurate forecasts than existing models. As such, they should be

used by those seeking to generate accurate forecasts of mispricing, and would appear to be of

most value to users of financial markets.

6 Concluding remarks

This paper provides an accurate econometric model of (contemporaneous) mispricing in
spot and futures markets. This model differentiates itself from previous models in its treatment
of time in the arbitrage process. Existing models of mispricing assume that the propensity-
to-arbitrage (for a given level of mispricing) is constant. However, the economic model that
motivates arbitrage activity suggests that this propensity is determined by exogenous factors.
As these factors are likely to exhibit strong intraday periodicities, it is likely that the propensity-
to-arbitrage will also vary over the trading day. This is indeed the case when a model that allows
such behavior is fitted to mispricing in the S&P 500 spot and futures market. However, the
nature of the periodicity does not follow the usual U-shaped pattern. Rather, it tends to be
the case that the propensity-to-arbitrage is high at the opening of trading and low at the close
of trading, even though the degree of mispricing is high during both of these periods. Thus it
would appear that arbitrageurs are willing to trade at the beginning, and not at the end, of the

trading day — implying that impediments to arbitrage are insufficiently large at the beginning

34These results are available upon request.
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of the trading day to prevent arbitrage activity occurring, but are prohibitively large at the end
of the trading day. There is also the possibility that arbitrageurs take positions early in the
trading day in the hope that these are profitably unwound during the same trading day. This
would be the case if it could be shown that arbitrageurs are unwilling to trade at the end of the
trading day, even though the impediments to trade are not prohibitively large. This issue is left

for future research.
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Table 2: Testing for linearity

This table gives the results for the LR and LM tests for linearity against the TAR model (LR;), against the STAR model
(LMy), against the FFF-version of the augmented STAR model (LM3,), and against the spline-version of the augmented
STAR model (LM3p). In addition, the results of the test that smoothness () is not dependent on FFF periodic components
(LM3a,1), and spline periodic components (LM3p 1), are given. These results are based on tests applied to regular futures
mispricing (Panel A) and E-mini futures mispricing (Panel B), conducted over the parameter space, p € {1,2,3}, d < p,
M = 3, and N = 3. The numbers in parentheses are the p-values associated with the tests.

p=1 p=2 p=3

Test d=1 d=1 d=2 d=1 d=2 d=3

Panel A: Regular futures mispricing

LR; 13.0617 15.1010 21.5932 14.9258 22.3336 36.9137
(0.0380) (0.0820) (0.0020) (0.0810) (0.0010) (0.0000)
LM, 4.4400 8.8010 10.2353 9.9110 20.4549 23.9467
(0.1086) (0.0663) (0.0366) (0.1284) (0.0023) (0.0005)
LMs, 420.8863 484.0239 445.2396 651.4237 617.5900 501.1392
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
LMz, 1 416.5031 475.3535 435.1432 641.7143 597.5225 477.5549
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
LMz, 488.9000 581.1424 526.4173 731.7419 683.5831 565.6493
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
LMz 1 484.5261 572.4986 516.3468 722.0577 663.5584 541.1140
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Panel B: E-mini futures mispricing
LRy 10.8613 11.4293 17.8160 15.7573 22.6789 30.3648
(0.1100) (0.1640) (0.0090) (0.0420) (0.0190) (0.0010)
LM, 3.6605 8.8363 9.7020 14.3794 26.4122 24.5857
(0.1604) (0.0630) (0.0458) (0.0257) (0.0002) (0.0004)
LMs, 421.3527 511.0843 460.1240 681.0049 623.6115 505.8192
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
LM3a,1 417.7392 502.2980 450.5584 666.9294 597.6997 481.6087
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
LMap 487.5700 619.5107 545.5842 776.9611 694.7807 575.9093
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
LM3p 1 483.9639 610.7546 536.0445 762.9294 668.9285 551.7535
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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Figure 1: Intraday mispricing and trading volume

This figure shows the intraday mean absolute mispricing associated with regular fu-
tures mispricing (Panel A), and E-mini futures mispricing (Panel B), and the respective
intraday mean trading volumes (Panel C and Panel D).

Panel A: Regular futures mispricing Panel B: E—mini futures mispricing

absolute mispricing
24 28 32 36 40 44 48 52

absolute mispricing
24 28 32 36 40 44 48 52

g 10 1 12 13 14 15 16 9 10 1M 12 13 14 15 16
time of day time of day

Panel C: Regular futures mispricing Panel D: E—mini futures mispricing

48

44
700 800

40
600

36

trading volume
500

trading volume

32
400

28
300

9 10 i 12 13 14 15 18 9 10 11 12 13 14 15 16
time of day time of day

37



Figure 2: Intraday smoothness and arbitrage activity

This figure shows the intraday propensity-to-arbitrage (smoothness), and the intraday
mean level of arbitrage activity (the intraday mean value of the transition function),
associated with regular futures mispricing (Panel A and Panel C, respectively), and E-
mini futures mispricing (Panel B and Panel D, respectively). These values are calculated
using the STAR model (M2), the FFF-version of the augmented STAR model (M3a),
and the spline-version of the augmented STAR model (M3b).
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Figure 3: The impact of shocks (regular futures mispricing)

This figure shows the impact of a unit shock to regular futures mispricing. These
impacts are measured by the generalized impulse response function, GIRFy(h,1,w;_1),
based on the AR model (M0), the STAR model (M2), the FFF-version of the augmented
STAR model (M3a), and the spline-version of the augmented STAR model (M3b), for
up to 3 hours after the shock occurs (h € {0,1,2,...,36}). Panel A shows the impact
when the shock occurs at any time, Panel B shows the impact when the shock occurs
during the first fifteen minutes of trading, and Panel C shows the impact when the
shock occurs during the last fifteen minutes of trading. The asymmetry of the shocks,
as measured by ASY,(h,1,w;_1), is given in Panel D.
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Figure 4: The impact of shocks (E-mini futures mispricing)

This figure shows the impact of a unit shock to E-mini futures mispricing. These impacts
are measured by the generalized impulse response function, GIRFy (h,1,w;—1), based on
the AR model (M0), the STAR model (M2), the FFF-version of the augmented STAR
model (M3a), and the spline-version of the augmented STAR model (M3b), for up to 3
hours after the shock occurs (h € {0,1,2,...,36}). Panel A shows the impact when the
shock occurs at any time, Panel B shows the impact when the shock occurs during the
first fifteen minutes of trading, and Panel C shows the impact when the shock occurs
during the last fifteen minutes of trading. The asymmetry of the shocks, as measured

by ASYy(h,1,w¢_1), is given in Panel D.
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