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Abstract

This paper reports the results of a series of Monte Carlo exercises to
contrast the forecasting performance of several panel data estimators. The
comparison is done using di¤erent levels of heterogeneity, alternative panel
structure in terms of T and N and using various error dynamics speci…cation.
We implement 28 estimators divided into three main groups: homogeneous,
heterogeneous and shrinkage estimators. To assess the predictive perfor-
mance, we use traditional measures of forecast accuracy (such as Theil’s U
statistics, RMSE and MAE) and we apply the Diebold and Mariano’s (1995)
test to check whether performances are signi…cantly di¤erent. We also base
our analysis on the capability of forecasting turning points, comparing the
results from Pesaran and Timmerman’s (1992) statistics. We …nd that ho-
mogeneous estimators perform well when heterogeneity is limited, while the
shrinkage and Bayesian procedures have very good predictive power indepen-
dently of the model’s features.

J.E.L. Classi…cation Numbers: C23.
Keywords: Panel data; Forecasting performance; Pooled estimators; Ho-
mogeneous, heterogeneous and shrinkage estimators; Monte Carlo.
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1 INTRODUCTION
The issue of estimating the parameters of heterogeneous panels has been
paid considerable attention by both the applied and the theoretical litera-
ture in the latest years, and a plethora of estimation techniques has been
derived. Baltagi (2001), Arellano and Honore’ (2001) and Arellano (2003)
provide comprehensive surveys on the topic, and Baltagi and Gri¢n (1997)
discuss the rationale behind the various estimation techniques. These esti-
mation techniques di¤er very much between each other, not only as far as
their computation is concerned, but also with respect to the assumptions
they make on the model. It has then become customary to group them into
three main classes: homogeneous, heterogeneous and shrinkage (or Bayesian)
estimators. While the …rst group hypothesizes poolability of the data in the
panel, and therefore parameters homogeneity across the panel units, the sec-
ond one denies the validity of this assumption taking account explicitly of
the presence of heterogeneity among units. The class of Bayesian estimators
can be regarded as a hybrid solution between the two other classes (see Mad-
dala, Li and Srivatsava, 1994, and Hsiao, Pesaran and Tahmiscioglu, 1999).
It becomes then crucial to understand which estimation methodology is the
”best”, in statistical terms, for the speci…c research interest (e.g. bias re-
duction, e¢ciency, forecast accuracy...). Some previous literature elaborated
on this point. Hsiao et al. (1999) analysed the bias of various estimators,
obtainig the classical result that the Hyerarchical Bayes one achieves the
best performance, and Cornwell and Rupert (1988) compared the e¢ciency
of several IV estimators with an empirical exercise.

Recently, in several seminal empirical papers Professor Badi Baltagi and
associates have focused on investigating which estimator is the “best” when
the speci…ed model has to be used for forecast purposes. Baltagi and Gri¢n
(1997), Baltagi, Gri¢n and Xiong (2000), Baltagi, Bresson and Pirotte (2002)
and Baltagi, Bresson, Gri¢n and Pirotte (2002) apply dynamic panel speci…-
cations to industrial level data and …nd that the predictive ability of homoge-
neous estimators outperforms that of heterogeneous and Bayesian estimators
over any forecast horizon. GLS and within-2SLS, particularly, emerge as
the estimators having the best out-of-sample performances, especially with
respect to long forecasting horizons. Such superiority of homogeneous esti-
mators may sound quite reasonable when the panel is short, and when the
degree of heterogeneity across units is limited, but is rather puzzling when
the time length of the panel T is large or when the degree of heterogeneity
is high. This genuine empirical …nding is particularly interesting especially
in the light of the fact that the hypothesis of homogeneity and poolability is
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rejected by the data considered in the papers cited above. A …rst possible
interpretation of this apparently contra-intuitive empirical regularity is that
a model that is ”simple and parsimonious” o¤ers a better forecasting per-
formance than one whose speci…cation is richer but with a limited degree of
freedom.

It becomes therefore worth investigating whether these results hold gen-
erally speaking or if they are properties of the data considered in the works
cited above, or, possibly, if the outcome of the comparison among the estima-
tors forecasting performance is sensitively dependent on the number of units
N and the time length of the panel T , and on the degree of the parameters
heterogeneity across units. Our main objective in this work is to compare
via a broad simulation exercise the forecasting accuracy of several estima-
tors belonging to each of the three classes (homogeneous, heterogeneous and
shrinkage) for a routinely applied model (the dynamic speci…cation with one
or more exogenous covariates) under various circumstances. Such ”circum-
stances” are the couple (N,T ), the degree of heterogeneity, the dynamic
speci…cation of the error term, and the existence and degree of cross sec-
tional dependency across units. These issues are of paramount importance
in determining the properties of estimators. To do this, we develop a Monte
Carlo exercise, running it for each possible scenario.

A further question that can arise in the light of some recent developments
of the literature is how to assess predictive performance. In their contribu-
tions, Baltagi and associates use the RMSE as the measure of forecasting
accuracy. However, the literature has developed a quite critical attitude to-
wards classical statistical indicators, even though it allows for widely used
results concerning testing - see the review in Mariano (2002). From the sta-
tistical point of view, it has been pointed out (Clements and Hendry, 1993)
that the RMSE is not invariant to isomorphic transformations of models, and
can therefore lead to contradictory results when applied to di¤erent (but iso-
morphic) representations of the same model. Moreover, Diebold and Lopez
(1996) show that since RMSE depends only on the …rst two moments of the
forecast distribution, it will su¤er from serious shortcomings when such dis-
tribution is not adequately summarised by only two moments. The literature
has criticised RMSE also on the basis of economic considerations, arguing
that predictive performance should be evaluated via the losses that arise from
forecasts (and speci…cally their errors) when employed to make decisions -
see Leitch and Tanner (1991). Hence, the economic and econometric litera-
tures have approached the issue under a decision theoretic framework, where
the best forecast is the one that minimizes losses - see Granger and Pesaran
(2000a, 2000b), and the review by Pesaran and Skouras (2002). To brie‡y
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illustrate this theory, let eit be the error made using forecast method i at
time t, and g (eit) the loss associated with this error. A forecasting method
i will be superior to another one, say j, if

g (eit) · g (ejt)

for all ts, the inequality holding for at least one t. The crucial point within
this framework is choosing the loss function g (¢) is the crucial point; this issue
has no general answer since it depends on the decision problem one is dealing
with. A well-known and widely used speci…cation for g (¢) is the quadratic
one, i.e. g (eit) = e2it, and Pesaran and Skouras (2002) show that this loss
function is proportional to the RMSE. However, other speci…cations can be
considered, and have been employed by the literature - see the review by
Pesaran and Skouras (2002) for details, and the discussions by Christo¤ersen
and Diebold (1996) and Mariano (2002).

The use of RMSE can therefore be a¤ected by two problems: the in-
adequacy of its speci…cation in terms of loss function, and its being a raw
number, usuitable for statistical discrimination between forecasting perfor-
mances. Both problems can be overcome employing Diebold and Mariano’s
(1995) test. This - with the adjustment for small sample bias proposed by
Harvey, Leybourne and Newbold (1997) - is still based on a loss function
without assuming a speci…c functional form for it, and it allows to choose
between predictors. In this light, this may be viewed as a second approach
to measuring forecasting performance.

It is also worth noticing that forecasting performance could be referred
to something di¤erent than minimising a loss function. Granger and Pesaran
(2000b) argue that a possible measure for predictive performance could be
based on the capability to capture the sign of changes in the series rather
than its values. A non parametric statistics that evaluates the ability to fore-
cast changes is due to Pesaran and Timmermann (1992), which is extensively
discussed also in Granger and Pesaran (2000b). An application of the Pe-
saran and Timmerman statistics as a descriptive measure to be associated to
each predictor when ranking forecasting techniques was considered by Driver
and Urga (2003). In our paper, we will consider all these three approaches
(statistical measures, testing and turning point predictive capability evalua-
tion).

The remainder of this work is as follows. First, we set out the model
we will be considering for our exercise, and brie‡y describe the estimation
techniques and the predictive performance indicators that will be employed in
our experiment (Section 2). Secondly, we describe the details of the Monte
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Carlo experiment (Section 3). Last, we report and analyse the simulation
outcomes (Section 4); conclusions follow (Section 5).

2 Model and estimation theory
The DGP we employed for simulation is based on a dynamic speci…cation
and one strictly exogenous/predetermined variable:

yit = αi + βiyit¡1 + γixit + uit (1)

where i = 1, .., N and t = 1, .., T . The error term uit is assumed to have no
time speci…c e¤ects, and no cross sectional dependency - i.e. E [uitujs] = 0
for all i 6= j. Model (1) is the classical dynamic panel data speci…cation, as
discussed extensively in Baltagi (2001). It is also worth emphasizing that
what we consider in our exercise are ex post forecasts, i.e. forecasts where
the exogenous variable in model (1) is known without needing forecast it.

As far as estimation is concerned, we employed both homogeneous and
heterogeneous estimators, performing an exercise similar to that in Baltagi,
Bresson and Pirotte (2002), Baltagi and Gri¢n (1997), Baltagi, Bresson,
Gri¢n and Pirotte (2002) and Baltagi, Gri¢n and Xiong (2000). It is worth
emphasizing that whilst heterogeneous estimators are based on model (1)
and therefore take account of the parameters heterogeneity across units, ho-
mogeneous estimators assume the poolability of the data, and are based on
the following di¤erent speci…cation of the DGP:

yit = α + βyit¡1 + γxit + εit, (2)

and the error component εit is assumed to follow the well known one way
speci…cation:

εit = µi + uit,

where µi is the unobservable individual speci…c e¤ect and νit is the remainder
of the disturbance - see Baltagi (2001) for a thorough discussion. The results
of pooling using model (2) on estimators are discussed in Pesaran and Smith
(1995) and Hsiao, Pesaran and Tahmiscioglu (1999). Even with homogeneous
estimators, we assume no time speci…c e¤ects, our aim being focused on the
e¤ect of grouping across units. We choose this speci…cation in the light of the
applied literature we mean to generalize, where the two way error component
model is seldom assumed - an exception being the contribution by Baltagi,
Gri¢n and Xiong (2000).

After setting up the model, we turn our discussion to estimation, refer-
ring to Baltagi (2001) for the details of each estimator. We also sketch the
measures of forecasting performance we employ in our simulation exercise.
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2.1 Homogeneous estimators
The homogeneous estimators we consider fall into two main groups: least
squares and instrumental variables estimators.

Within the class of least squares estimators, we …rst consider six standard
pooled estimators applied to model (2): OLS, which ignores regional e¤ects;
…rst di¤erence OLS to wipe out the e¤ect of (possible) serial correlation
in the error term; Within estimator, which allows for unit speci…c e¤ects;
Between estimator; and WLS and WLS-AR(1), where unit speci…c e¤ects are
assumed to be random. After the results in Pesaran and Smith (1995) and
the review in Baltagi (2001), it is known that none of this estimate is either
unbiased or consistent. This is due to the assumption, common to all these
estimators, that regressors are exogenous. But being the model dynamic,
it is well known that even if all the explanatory variables are uncorrelated
with the error components, the presence of either serial correlation in the
remainder error term νit or of a random unit e¤ect such as µi renders the
lagged dependent variable correlated with the error term and therefore leads
to potentially inconsistent estimates. The asymptotic bias of OLS has been
assessed by Sevestre and Trognon (1985); it is also well known (see Nickell,
1981), that Within estimator is consistent only when T ! 1, being biased of
order O (1/T ) for …nite T . The random e¤ect WLS estimator is also biased
and inconsistent, as pointed out in Baltagi (2001).

To achieve consistency, we focus on pooled estimators based on instru-
mental variables. We …rst employ a standard 2SLS, which is consistent but
not e¢cient; no attempt was made to improve e¢ciency by taking into ac-
count the unit speci…c e¤ects. We also consider Within 2SLS, which, like its
least squares counterpart, wipes out regional e¤ects by transforming the data
in deviations across their mean, and the Between 2SLS. Thirdly, we apply
2SLS to the …rst di¤erenced version of model (2); this estimator (that hence-
forth will be referred to as FD-2SLS) is due to Anderson and Hsiao (1982)
and is meant to eliminate …xed and random e¤ects. However, given that
this estimation procedure may induce autocorrelation in the remainder error
term νit¡νit¡1, we also employ the correction proposed by Keane and Runkle
(1992) that allows for arbitrary types of serial correlation1. This is applied
to both the speci…cation in levels (leading to an estimator denoted as 2SLS-
KR) and the …rst di¤erenced model (obtaining another estimate referred to
as FD-2SLS-KR). Also, we employ EC2SLS estimator - see Baltagi (2001) -
and EC2SLS-AR(1) - see Baltagi, Gri¢n and Xiong (2000) - to potentially
achieve more e¢ciency by taking account of possible serial correlation in the

1Such estimation technique can be applied only if N > T - see Baltagi (2001).
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error term2. As a variant of EC2SLS, we also compute the G2SLS estimator
due to Balestra and Varadharajan-Krishnakumar (1987); it is worth noticing
that such estimator has the same asymptotic covariance matrix as EC2SLS -
see Baltagi and Li (1992) - but its performance is di¤erent in …nite samples.
Finally, we used Arellano and Bond (1991) estimation procedure, using a
GMM estimation method on the speci…cation in di¤erences (whose outcome
will be labelled as FDGMM); also, we employ the same set of instruments in
…rst di¤erence on a speci…cation in levels (GMM)3.

Last, we considered MLE estimation on the ground of the discussion in
Baltagi (2003), using the iterative procedure suggested by Breusch (1987).
In total, we compare 18 homogeneous estimators.

2.2 Heterogeneous estimators
The estimators considered so far are all characterized by the assumption of
poolability of the data. This is a valid assumption only if the parameters
in model (1) are homogeneous across units. As pointed out by Pesaran and
Smith (1995) with respect to the dynamic pooled model, when parameters
are heterogeneous, pooling leads to biased estimates. Therefore, we turned
our attention also onto heterogeneous estimators.

In our Monte Carlo experiment we considered OLS and 2SLS applied to
each unit i, obtaining Individual OLS and 2SLS. Given the presence of a
lagged dependent variable, both estimates are biased. We then consider an
average of both estimates (obtaining Average OLS and 2SLS), as suggested
by Pesaran and Smith (1995). Averaging individual estimates leads to a
consistent estimator as long as both N and T tend to in…nity. We also
compute the Swamy (1970) estimator, which belongs to the class of GLS and
is a weighted average of the least squares estimates, using as weights the
estimated covariance matrix.

Also, we employed a class of shrinkage/Bayesian estimators - see Mad-
dala, Li and Srivatsava (1994) - where each individual estimate is shrunk
towards the pooled estimates by weighting it with weight depending on the
corresponding covariance matrix. The authors claim that shrinkage type

2Note that these estimators, unlike standard 2SLS, also require an estimate of the
variance components in order to be feasible.

3It is worth noticing that such GMM estimation procedures have existence conditions
depending on the sizes of N , T and k (this latter being the number of parameters to
be estimated) when the two-step GMM estimation is considered (see Baltagi 2001) - this
existence condition is N > T (k ¡ 2) + (T + 3) /2. These estimators wouldn’t have been
feasible for all the cases we consider in our experiment, and we did not perform them.
GAUSS code was anyway written and is available upon request.
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estimator are superior to either homogeneous or to other heterogeneous esti-
mators as far as predictive ability is concerned. The estimators we consider
are the Empirical Bayes based on OLS initialization, the Empirical Bayes
based on 2SLS estimation and their iterative counterparts. Finally, we im-
plement the Hierarchical Bayes estimator using the same prior structure as
in Hsiao, Pesaran and Tahmiscioglu (1999), which is found to have the best
performance among heterogeneous estimators in terms of bias reduction, es-
pecially when T is small. In total, we compare 10 di¤erent heterogeneous
estimators.

2.3 Comparing forecasting performance
As mentioned in the introduction, we employ three (classes of) measures of
forecasting performance to assess the out-of-sample predicting ability of each
estimator:

1. statistical measures of accuracy;

2. measures of the capability of predicting turning points;

3. measure of statistical assessment of performance.

The indicators we chose are, for each class:

1. MAE, RMSE and Theil’s U statistics, whose expressions are respec-
tively

MAEj ´ 1
h

hX

i=1

jŷji ¡ yjij

RMSEj ´

vuut1
h

hX

i=1

(ŷji ¡ yji)
2

Uj ´

vuut
Ph

i=1 (ŷji ¡ yji)
2

Ph
i=1 y2ji

where: the index j refers to the j-th unit in the panel, h is the fore-
cast horizon, ŷji is the forecast i steps ahead of yji. To obtain a single
overall measure of performance, we considered the average of each in-
dicator across units, similarly to Baltagi, Bresson and Pirotte (2002),
Baltagi and Gri¢n (1997), Baltagi, Bresson, Gri¢n and Pirotte (2002)
and Baltagi, Gri¢n and Xiong (2000). These indicators are all based
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on the residuals from forecast, and widely employed in the realm of
forecasting. Particularly, the literature that has inspired our contribu-
tion bases its assessment of the estimators predictive ability on RMSE
- see the applied works by Baltagi, Bresson and Pirotte (2002), Baltagi
and Gri¢n (1997), Baltagi, Bresson, Gri¢n and Pirotte (2002) and
Baltagi, Gri¢n and Xiong (2000), and also the works by Granger and
Giacomini (2003) and Maddala, Li and Srivastava (1994). We report
these three ”classical” measures, even though the position we take is
di¤erent from that of the cited literature. Indeed, most of our atten-
tion will be devoted to Theil’s U statistics, given its nature of relative
measure which doesn’t have the scaling problem of both RMSE and
MAE;

2. as a measure of the capability of predicting turning points, we employ
Pesaran and Timmerman’s (1992) statistics, de…ned as

PTj =
P̂j ¡ P̂ ¤

jr
V̂

³
P̂j

´
¡ V̂

³
P̂ ¤

j

´

where

P̂j = h¡1
hX

i=1

sign (ŷjiyji) , P̂ ¤
j = P̂yjP̂xj+

³
1 ¡ P̂yj

´³
1 ¡ P̂xj

´
,

V̂
³
P̂j

´
= h¡1P̂ ¤

j

³
1 ¡ P̂ ¤

j

´
,

V̂
³
P̂ ¤

j

´
= h¡1

³
2P̂yj ¡ 1

´2
P̂xj

³
1 ¡ P̂xj

´
+ h¡1

³
2P̂xj ¡ 1

´2
P̂yj

³
1 ¡ P̂yj

´
+

+4h¡2P̂yjP̂xj

³
1 ¡ P̂yj

´³
1 ¡ P̂xj

´

P̂xj = h¡1
hX

i=1

sign (ŷji) , P̂yj = h¡1
hX

i=1

sign (yji) ,

where the function sign (¢) takes the value of unity if its argument is
positive and is equal to zero otherwise. Pesaran and Timmerman (1992)
prove that this non parametric statistics is distributed as a standard
normal under the null hypothesis that ŷji and yji are independent - and
therefore that the predictor ŷji has no capability to forecast yji. Like
in the previous point, here we compute the Pesaran and Timmerman
statistics for each unit of the panel and then report its average value
across units;
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3. the statistics we use in this group is Diebold and Mariano’s (1995) test.
This statistics can be used for any h and doesn’t require gaussianity,
zero-mean, serial or contemporaneous incorrelation of the forecast er-
rors. The loss function we consider in order to compute the statistics
is a quadratic one, which allows us to compare pairwise RMSEs.4 This
enables us to detect whether one estimator has a superior predictive
ability compared to another one by a proper testing rather than by
the pure comparison of RMSE values. We like to emphasize that un-
der the null hypothesis of there being no di¤erence between forecast
performances, the Diebold and Mariano statistics is distributed as a
standard normal. Even in this case, we compute the test statistics for
every unit of the panel and then take the average across units.

Having described the estimators considered and the methods of evaluating
forecasting accuracy, in the next section we illustrate the design of the Monte
Carlo experiment.

3 The design of the Monte Carlo experiment
We generate a sample of N units with length T +T0, where T0 is the number
of initial values to be discarded to avoid dependence on the initial conditions
(set equal to 0). We let the number of units N and the time dimension T
assume various values.

The DGP we generate at each iteration is the one given in model (1):

yit = αi + βiyit¡1 + γixit + uit,

where:

² the parameters αi, βi and γi are generated as, respectively:

αi = ¹α + αHNα
i ,

βi = ¹β + βHNβ
i ,

γi = ¹γ + γHNγ
i ,

4The Diebold and Mariano testing procedure also requires a non parametric estimate of
the spectral density of the di¤erence of the loss associated with each predictor. The kernel
we employ is the truncated rectangular one employed by Diebold and Mariano (1995),
and the bandwidth we choose is speci…ed as m (h) = 1 + blog (h)c, where the operator b¢c
denotes the rounding to the closest integer.
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where ¹α, ¹β and ¹γ are the mean values of the parameters, N ¢
i denotes an

independent (across i) extraction from a random variable and αH , βH

and γH control the parameters heterogeneity across units, which will be
useful throughout the simulation to assess the predictive performance
of the estimators. Notice that whilst we employed standard normals for
αi and γi. βi was simulated via a uniform distribution with bounded
support so as to rule out the possibility of having a value larger than
(or equal to) unity;

² the disturbance uit is, in a …rst set of experiments, assumed to follow
a stationary, invertible Gaussian ARMA(1,1) speci…cation de…ned by

uit = ρuit¡1 + ζit + ϑζit¡1,

and the parameters (ρ, ϑ) control the degree of autocorrelation of the
error term in model (1). The error term is then rescaled by the factor
λ =

p
(1 + ϑ) / (1 ¡ ρ) to give it unit variance;

² the explanatory variable xit is generated with the following DGP:

xit = αi + βi + δxit¡1 + ηit, (3)

where the error term ηit is a Gaussian white noise generated indepen-
dently of uit. The presence of the term αi +βi introduces a correlation
between ηit and the error term in the random e¤ect speci…cation (2)

εit = µi + uit.

This correlation is such that E (xitνit) = 0 for any i - and hence xit

endogeneity is ruled out - and E (xitµi) 6= 0. This two results make xit a
strictly exogenous variable and a valid instrument for GMM estimation
a la Arellano and Bond (1992) thanks to its correlation with the unit
speci…c e¤ect - see Baltagi (2001) for discussion.

We considered the following values for the parameters of our simulation
exercise:

² we ran 5000 iterations for each simulation, and 2500 iterations (500 of
which in the burn-in period) for every Gibbs sampling algorithm - on
the ground of the results in Hsiao, Pesaran and Tahmiscioglu (1999);
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² as far as the autocorrelation structure is concerned, we considered (ρ, ϑ)
to be equal either to (0, 0) or to (0.9, 0.9)5. These two couples are
aimed at taking into account the case of non autocorrelation and of
near integration;

² the number of initial observations to be discarded was set equal to
T0 = 100;

² the forecasting horizon is set equal to h = 106.

4 Simulation results
In this section we report and comment the results of the various Monte Carlo
experiments. First, we present the predictive performance of the alternative
estimators measured according to the Theil’s U statistics7; second, we report
Pesaran and Timmerman’s (1992) statistics; third, we report some comments
on the outcomes of Diebold and Mariano (1995) test.

4.1 Statistical measures of accuracy
The results we report here are contained in Tables 1.a)-1.e), which are pro-
vided in Appendix I. They refer to two di¤erent degrees of heterogeneity -
obtained by assuming αH = βH = γH ´ H = 0.1 and αH = βH = γH ´ H =
0.9 respectively -, and two di¤erent speci…cations for dynamics - the couple
(ρ, ϑ) was set equal to (0, 0) and (0.9, 0.9). The couples (T,N) we consider
are: (5, 10), (5, 20), (10, 20), (10, 50), and (20, 50).

The main results can be summarised as follows:

² the degree of heterogeneity has indeed a strong impact on the fore-
casting performance, and, as expected, this is particularly true for ho-
mogeneous estimators. For instance in Table 1.a), the performance of
OLS estimator when (N, T ) = (10, 5) becomes four times as weak (the
value of the statistics moves from around 0.4-0.5 to around 1.8-1.9)

5Further developments of this work will consider the following spectrum of values for
(ρ, ϑ): f¡0.9,¡0.3, 0, 0.3, 0.9g £ f¡0.9,¡0.3, 0, 0.3, 0.9g

6We plan to extend this to the cases h = 1 and h = 5, as in Baltagi, Bresson and
Pirotte (2002), Baltagi and Gri¢n (1997), Baltagi, Bresson, Gri¢n and Pirotte (2002)
and Baltagi, Gri¢n and Xiong (2000)

7We only report results for the Theil’s U since this statistics is not a¤ected by scale
problems. We also computed RMSEs and the MAEs for each simulation con…rming the
same …ndings. The results are available upon request.
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when heterogeneity is included. Table 1.e) shows that this behavior is
virtually unchanged when the couple (N,T ) grows large;

² on the other hand, the Hierarchical Bayes estimator (last row in all
Tables) has an almost constant prediction outcome, being thus almost
independent of T (this result con…rms previous …ndings reported in
Hsiao, Pesaran and Tahmiscioglu, 1999), of the degree of heterogeneity
(H) and value of autoregressive coe¤cient ρ. Theil’s U statistics is
never larger than 0.7-0.8, and in most cases it is lower;

² the small sample problem arises when using Individual OLS and 2SLS,
whose performance is instead comparable with that of the other esti-
mators when the sample size is equal to 10 or higher. For T = 5 (see
Tables 1.a)-1.b)), the Theil’s statistics is never lower than 104. This
also a¤ects the performance of shrinkage estimators, whose magnitude
of the Theil’s statistics is much larger (at least of a factor 102) than
that of the best estimators. Thus, for the case of a short panel (T = 5
in our case), our results contradict the …ndings reported in Maddala,
Li and Srivastava (1994);

² …rst di¤erence estimators show an average performance, which improves
when the error dynamics is nearly integrated and heterogeneity remains
low, as shown in the third column of Tables;

² when the size of T is close to that of N , the IV estimators based on
Arellano and Bond’s (1992) instruments performs very poorly, whether
it is based on the model in level or on the …rst di¤erenced one;

² on average, when T is small, homogeneous estimators prove to be better
than heterogenous estimators, even in the presence of large heterogene-
ity, as reported in Table 1.a)-1.b) illustrating the poorness of Individual
OLS and 2SLS estimates. These are unreliable for T = 5, irrespectively
of other parameters in the simulation. OLS and WLS performance is
often the best when there is no dynamics in the idiosyncratic compo-
nent, as reported in the …rst column of Tables 1.a)-1.b). This is no
longer valid when either the time size increases, or the error term has
a nearly integrated dynamics;

² the forecasting performance of Pesaran and Smith’s (1995) average es-
timators is quite good, despite that in the small sample case (T = 5)
the individual estimates performe poorly. Tables 1.a)-1.b) show that
the predictive performance of the heterogeneous estimators is compa-
rable with that of OLS especially when the value of ρ and ϑ increases.
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This result is consistent with the theory that insures the goodness of
these estimates (in terms of bias reduction and consistency) when the
number of units N increases. We notice that for N = 10 we get quite
good outcomes;

² shrinkage estimators show good predictive ability for T larger than
5; in this case their predictive performance is very close to the one
of Hierarchical Bayes estimator, as Tables 1.c)-1.e) show, and they
sometimes outperform it8.

4.2 Measures of capability to forecast turning points
In this section, we describe the results of our Monte Carlo for the Pesaran and
Timmerman’s (1992) statistics, reported in Table 2.a)-2.e). Since Pesaran
and Timmerman’s test is asymptotically distributed as a standard normal
under the null hypothesis of no capability to detect turning points, the data
in our Tables can be interpreted in two ways:

² as raw number to rank estimators (the larger the value of the statistics,
the higher the turning points detection capability);

² comparing them with quantiles of the normal distribution to test whether
each estimator predicting capability is signi…cant or not.

The main results can be summarised as follows:

² heterogeneity has the same impact across experiments. Heterogeneity
makes, ceteris paribus, the turning points predictive ability of homoge-
neous estimators lower than in the nearly homogeneous case (H = 0.1).
The performance of homogeneous estimators becomes very poor when
H = 0.9. This is the case of the OLS, whose capability of detecting
turning points is shrunk towards zero whenever H is set equal to 0.9. It
can be noticed that when the degree of heterogeneity is low, it is always
an homogeneous estimator to achieve the largest value, thereby outper-
forming both Shrinkage and heterogeneous estimators. This happens
independently of the dynamics, or the size of the couple (N,T );

8The improvement coming from considering the iterative version of shrinkage estima-
tors is usually rather marginal, whilst the amount of calculations needed makes them much
more cumbersome. It is also worth noticing that in our simulation exercises the computa-
tion of Hierarchical Bayes estimator was found to be much slower than the one of iterative
shrinkage estimators.
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² the performance of GMM based estimators shows an interesting pat-
tern. Even though the instruments for these estimators are chosen with
respect to a speci…cation in levels for the model, the performance of
estimates based on the speci…cation in …rst di¤erences is always better
than the one based on speci…cation (1). The di¤erence between the
two is found to be very large when heterogeneity is large;

² the predictive ability of Individual estimators is often signi…cant and
very close to be the best among all estimators if one ranks them on the
ground of the statistics. This also happens for small T (i.e. in the case
of T = 5), when these estimators are computed for each unit with a
degree of freedom equal to 2. This should lead to conclude that pre-
dictive performance measured with Theil’s U statistics (and with other
statistical indicators such as RMSE and MAE, too) is di¤erent and
unrelated with this aspect of forecasting performance. When dynam-
ics is close to the case of integration, such estimates show a constant
improvement, which is found to be not sensitive to other parameters;

² the presence of heterogeneity always improves the predictive ability of
heterogeneous and shrinkage estimators. These latter ones particularly
are always the best when heterogeneity is high, and their performance
is always signi…cantly di¤erent from zero;

² the presence of a nearly integrated dynamics makes homogeneous esti-
mators based on the …rst di¤erenced model the best, as shown by the
third column of all Tables.

4.3 Diebold and Mariano’s (1995) test
The outcome of Diebold and Mariano’s test is represented by a lower trian-
gular matrix of dimensions 28 £ 28. Since the amount of output generated
by this part of the exercise exceeds a reasonable number of pages, we decide
not to report it.9

The main results can be summarised as follows:

² when T = 5 no one of the estimators has a signi…cantly better per-
formance than the others. However, there is statistical evidence that
Hierarchical Bayes is marginally better when heterogeneity increases;

9All results on Diebold and Mariano’s test are available upon request.
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² when T increases, the di¤erence between homogeneous and heteroge-
neous estimators becomes signi…cant, the latter group performing bet-
ter than the former. This holds especially, as already seen, when het-
erogeneity increases. When we have a small amount of heterogeneity
there is virtually no di¤erence across estimators, Hierarchical Bayes in-
cluded. Such …nding illustrates that as long as heterogeneity is limited
across units the choice of estimators is not crucial for the forecasting
performance. This holds for T = 10 or greater. Finally, the presence
of dynamics in the error term doesn’t a¤ect these …ndings;

² these conclusions are reinforced when the number of units is large (i.e.
N = 50). Here too the presence of heterogeneity is crucial in mark-
ing the di¤erence between pooled and heterogeneous estimators. Once
again the latter perform better than the former;

² the gain from considering an iterative shrinkage estimator rather than
a non iterative one has been assessed as poor when interpreting the
results concerning Theil’s U statistics; Diebold and Mariano test rein-
forces this conlusion showing that it is not signi…cant.

5 Conclusions
In this paper, we compare the predictive performance of several homoge-
neous, heterogeneous and shrinkage estimators applied to a heterogeneous
model. We analyze the forecasting performance of the various estimators
by varying the degree of heterogeneity in the panel and using alternative
speci…cations for error dynamics.

Our main results are that for short panels with a limited degree of het-
erogeneity, homogeneous estimators are preferable to the heterogeneous ones.
This con…rms the …ndings of Baltagi, Bresson and Pirotte (2002), Baltagi and
Gri¢n (1997), Baltagi, Bresson, Gri¢n and Pirotte (2002) and Baltagi, Grif-
…n and Xiong (2000). This outcome is not a¤ected by the the dynamics in the
error term speci…cation. For the case of near integration, the homogeneous
…rst di¤erence estimators performs best. Homogeneous estimators perform
also well when T increases and heterogeneity is small. On the other hand,
the performance of heterogeneous estimators show some sign of improve-
ments with respect to the caes of small T mainly due to the higher degree
of freedom in the individual regressions. The good performance of the ho-
mogenous estimators is better than that of the Hierarchical Bayes estimator
and of shrinkage estimators, though the Hierarchical Bayes has in general
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a better performance across all experiments, regardless of heterogeneity or
error dynamics.

Heterogeneity greatly a¤ects performance of the various estimators. Ho-
mogeneous estimators show a very poor predictive performance, and in pan-
els with long T heterogeneous estimators are preferrable. Anyway, under the
presence of heterogeneity the shrinkage estimators and the Hierarchical Bayes
estimator show the best performance. This conclusion is consistent with
Hsiao, Pesaran and Tahmiscioglu (1999) analysis, that shows how Bayesian
estimation gives the best results in terms of bias reduction. Diebold and Mar-
iano’s test shows that shrinkage estimators performance is also signi…cantly
better than the one of the other estimators.

If the performance to be looked at is the capability of detecting turning
points, results are quite similar, even if the performance of Individual OLS
and 2SLS is always good across all possible cases. Finally, homogeneous
estimators sistematically fail to predict turning points when heterogeneity is
high.

Our …ndings provide some guidelines when we use panel data to forecast.
When we have panels with reasonably long T (T = 10 or larger) and het-
erogeneity, the Hierarchical Bayes estimator is the best technique as far as
both traditional statistical measures of predicitve accuracy and capability of
detecting turning points are concerned.
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Appendix I
Tables 1.a)-1.f) provide Theil’s U statistics for each set of experiments.

This statistics attains its minimum value (zero) when the prediction is per-
fect. The larger the statistics, the poorer the forecasting performance. We
emphasized in bold the greatest value of the statistics per each experiment.

(T,N) (5, 10) (5, 10) (5, 10) (5, 10)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 0.4252 1.8201 0.4752 1.8828
Within 0.4296 1.8741 0.4404 1.9273
Between 0.6698 1.7434 0.7928 1.8152
FD-OLS 1.1656 1.5509 0.9997 1.9771
WLS 0.4344 1.8911 0.4708 1.9667
WLS-AR(1) 3.1086 20.8932 0.7649 15.5999
2SLS 0.4279 6.3207 0.4526 10.4835
FD-2SLS 0.7748 3.1532 0.3033 17.7187
Within-2SLS 0.4252 1.821 0.4752 1.8828
Between-2SLS 0.4300 36.1206 0.4428 3.0079
MLE 0.4268 1.7379 0.4411 1.7786
EC2SLS 0.4718 1.6463 0.4693 1.6850
EC2SLS-AR(1) 0.4757 1.5808 0.4473 1.6328
G2SLS 0.4672 5.4¢105 0.4638 528.1
2SLS-KR 0.4302 11.4¢105 0.4673 »1012
FD-2SLS-KR 0.7753 2.9¢105 0.3039 1364.9
FDGMM 0.7644 1.4142 0.3116 1.8925
GMM 0.4507 1.4370 0.5426 1.4656
Ind. OLS 2.74¢105 8.6¢107 3.3¢105 2¢104
Ind. 2SLS 2.74¢105 8.6¢107 3.3¢105 2¢104
Average OLS 0.4514 2.3245 0.4443 1.5325
Average 2SLS 0.4514 2.3245 0.4443 1.5325
Swamy 0.4297 1.8245 0.4531 1.8822
Bayes OLS 1.2¢105 2¢105 2¢104 192.2
It. Bayes OLS 0.9¢105 741.5 160.4 52.58
Bayes 2SLS 1.2¢105 2¢105 2¢104 192.2
It. Bayes 2SLS 0.9¢105 741.5 160.4 52.58
It. Bayes 0.4780 0.5075 0.3805 0.4947

Table 1.a). Results are reported for the case of no cross dependence.
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(T,N) (5, 20) (5, 20) (5, 20) (5, 20)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 0.4374 1.2731 0.5463 1.4238
Within 0.4430 4.7539 0.5291 5.4049
Between 0.5461 1.1963 0.7895 1.3203
FD-OLS 1.1.740 1.7872 1.1027 2.2819
WLS 0.4426 1.5104 0.5209 1.8063
WLS-AR(1) 37.17 1.6¢104 4.6772 127.46
2SLS 0.4388 1.3913 0.5328 1.5570
FD-2SLS 0.7641 1.2963 0.5298 1.6177
Within-2SLS 0.4374 1.2731 0.5463 1.4238
Between-2SLS 0.4402 8.1617 0.5286 409.66
MLE 0.4379 4.0258 0.5282 4.5677
EC2SLS 0.4796 1.3017 0.5605 1.4480
EC2SLS-AR(1) 0.4823 1.4137 0.5556 1.6057
G2SLS 0.4753 1.4357 0.5537 1.6052
2SLS-KR 0.4396 1.1960 0.5285 1.3930
FD-2SLS-KR 0.7637 1.8935 0.5239 2515
FDGMM 0.7603 1.3410 0.5259 1.6999
GMM 0.4582 1.4986 0.5359 1.5559
Ind. OLS 6¢108 3.4¢107 5.92¢105 1.2¢1013
Ind. 2SLS 6¢108 3.4¢107 5.92¢105 1.2¢1013
Average OLS 0.4571 1.6222 0.5348 80.851
Average 2SLS 0.4571 1.6222 0.5348 80.851
Swamy 0.4394 1.4283 0.5449 1.6131
Bayes OLS 9¢107 8.5¢105 1.35¢104 4.14¢105
It. Bayes OLS 3¢107 7.9¢105 1717 1.09¢105
Bayes 2SLS 9¢107 8.5¢105 1.35¢104 4.14¢105
It. Bayes 2SLS 3¢107 7.9¢105 1717 1.09¢105
It. Bayes 0.4711 0.4979 0.4852 0.5070

Table 1.b). Results are reported for the case of no cross dependence.
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(T,N) (10, 20) (10, 20) (10, 20) (10, 20)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 0.4359 1.1802 0.4942 1.3399
Within 0.4380 4.3263 0.4618 5.4408
Between 0.6192 0.8990 0.7096 0.8755
FD-OLS 1.1721 1.7838 0.9870 3.0327
WLS 0.4352 1.1956 0.4969 1.3984
WLS-AR(1) 5.7¢105 1.5227 561.2 2854
2SLS 0.4365 1.2437 0.4703 1.4150
FD-2SLS 0.7595 1.2928 0.2643 2.1386
Within-2SLS 0.4359 1.1802 0.4943 1.3399
Between-2SLS 0.4370 8.4888 0.4640 9.1411
MLE 0.4362 3.8103 0.4636 4.7385
EC2SLS 0.4833 0.9121 0.4967 0.9142
EC2SLS-AR(1) 0.4885 0.8758 0.4726 0.8370
G2SLS 0.4791 0.9097 0.4918 0.8996
2SLS-KR 0.4372 3.3284 0.4677 118.21
FD-2SLS-KR 0.7603 1.2402 0.2645 1.8856
FDGMM 0.7571 1.3901 0.2956 2.4016
GMM 0.4866 0.8715 0.5780 0.8470
Ind. OLS 0.4917 0.4862 0.4445 0.4760
Ind. 2SLS 0.5274 0.6794 0.4450 0.5071
Average OLS 0.4383 1.1130 0.4583 0.9885
Average 2SLS 0.4381 1.1130 0.4569 0.9852
Swamy 0.4408 0.9841 0.4896 1.0387
Bayes OLS 0.4583 0.4415 0.4309 0.4076
It. Bayes OLS 0.4412 0.4703 0.4278 0.3948
Bayes 2SLS 0.4601 0.4498 0.4293 0.4046
It. Bayes 2SLS 0.4416 0.4693 0.4261 0.3905
It. Bayes 0.4645 0.4322 0.4196 0.3897

Table 1.c). Results are reported for the case of no cross dependence.
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(T,N) (10, 50) (10, 50) (10, 50) (10, 50)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 0.4231 1.8514 0.4812 2.1556
Within 0.4242 3.5802 0.4446 4.2831
Between 0.5844 0.9458 0.6932 0.9101
FD-OLS 1.1634 1.8818 0.9956 3.0532
WLS 0.4230 1.7449 0.4833 2.0158
WLS-AR(1) 21.325 3.2576 1.4555 6.2860
2SLS 0.4233 1.8226 0.4524 2.0629
FD-2SLS 0.7339 1.4010 0.2497 2.6155
Within-2SLS 0.4231 1.8514 0.4812 2.1556
Between-2SLS 0.4234 4.1183 0.4449 5.1049
MLE 0.4232 3.1429 0.4470 3.7594
EC2SLS 0.4730 1.3635 0.4835 1.5265
EC2SLS-AR(1) 0.4772 0.9544 0.4489 0.9255
G2SLS 0.4686 1.3519 0.4770 1.4358
2SLS-KR 0.4234 1.2984 0.4457 1.4143
FD-2SLS-KR 0.734 1.1097 0.2497 1.8192
FDGMM 0.7331 1.5830 0.2620 2.9752
GMM 0.4508 1.2371 0.5507 1.3424
Ind. OLS 0.4894 0.4433 0.4393 0.4289
Ind. 2SLS 0.5053 0.6018 0.4370 0.4183
Average OLS 0.4244 0.9037 0.4432 0.9005
Average 2SLS 0.4242 0.9045 0.4414 0.8974
Swamy 0.4258 1.6072 0.4726 1.8437
Bayes OLS 0.4479 0.4190 0.4208 0.3681
It. Bayes OLS 0.4251 0.4172 0.4171 0.3610
Bayes 2SLS 0.4494 0.4225 0.4192 0.3636
It. Bayes 2SLS 0.4249 0.4201 0.4157 0.3566
It. Bayes 0.4482 0.4305 0.4099 0.4197

Table 1.d). Results are reported for the case of no cross dependence.
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(T,N) (20, 50) (20, 50) (20, 50) (20, 50)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 0.4218 1.8698 0.4803 2.1673
Within 0.4222 3.3117 0.4500 3.9204
Between 0.6619 0.9303 0.7312 0.8814
FD-OLS 1.1637 1.8951 0.9958 3.0845
WLS 0.4207 1.7100 0.4883 1.9626
WLS-AR(1) 1384 5.0995 1.4142 2.8458
2SLS 0.4219 1.7104 0.4516 1.9216
FD-2SLS 0.7333 1.4204 0.2495 2.6679
Within-2SLS 0.4218 1.8698 0.4803 2.1673
Between-2SLS 0.4219 4.0141 0.4434 5.0345
MLE 0.4219 3.0826 0.4528 3.6505
EC2SLS 0.4760 1.1623 0.4940 1.2160
EC2SLS-AR(1) 0.4822 0.9247 0.4778 0.8737
G2SLS 0.4723 1.0433 0.4886 1.0248
2SLS-KR 0.4220 5.7204 0.4445 75.30
FD-2SLS-KR 0.7336 1.0551 0.2495 1.7034
FDGMM 0.7330 1.6784 0.3041 3.2109
GMM 0.5119 0.9327 0.6196 0.9004
Ind. OLS 0.4428 0.3811 0.4483 0.3423
Ind. 2SLS 0.4446 0.3827 0.4425 0.3334
Average OLS 0.4221 0.8246 0.4472 0.8726
Average 2SLS 0.4220 0.8248 0.4418 0.8687
Swamy 0.4269 1.3887 0.5026 1.5204
Bayes OLS 0.4270 0.3772 0.4398 0.3380
It. Bayes OLS 0.4219 0.3769 0.4383 0.3363
Bayes 2SLS 0.4277 0.3783 0.4346 0.3295
It. Bayes 2SLS 0.4218 0.3780 0.4336 0.3280
It. Bayes 0.4390 0.3823 0.4384 0.3552

Table 1.e). Results are reported for the case of no cross dependence.
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Appendix II
Tables 2.a)-2.f) provide Pesaran and Timmermann’s (1992) measure for

turning points prediction ability. This statistics is close to zero when the
capability to detect turning points is poor; the larger the modulus of the
statistics, the better the turning points forecasting ability.

(T,N) (5, 10) (5, 10) (5, 10) (5, 10)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 1.5157 0.0442 1.7367 0.0801
Within 1.4154 1.7681 1.7640 1.9171
Between 0.4659 -0.0368 0.3644 0.0268
FD-OLS -1.4445 -0.1922 0.0235 -0.3090
WLS 1.5289 0.0177 1.8817 0.0578
WLS-AR(1) 1.2191 0.4393 1.6620 0.4970
2SLS 1.5113 -0.0895 1.7460 -0.0431
FD-2SLS 1.6674 0.9027 2.8754 0.9953
Within-2SLS 1.5157 0.0442 1.7367 0.0801
Between-2SLS 1.4251 1.6882 1.7343 1.8183
MLE 1.5128 0.8167 1.7928 0.8575
EC2SLS 1.4989 0.7126 1.9884 0.7989
EC2SLS-AR(1) 1.4217 0.9230 1.9967 1.0616
G2SLS 1.5855 0.5091 2.0413 0.6094
2SLS-KR 1.5058 -0.0353 1.7585 0.0198
FD-2SLS-KR 1.6705 0.8814 2.8738 0.9733
FDGMM 1.6902 0.9184 2.8551 1.0020
GMM 1.1285 -0.0131 1.0057 0.0694
Ind. OLS 1.3796 2.2323 2.0988 2.7793
Ind. 2SLS 1.3796 2.2323 2.0988 2.7793
Average OLS 1.3926 1.1333 1.8179 1.2663
Average 2SLS 1.3926 1.1333 1.8179 1.2663
Swamy 1.4775 0.5824 1.8351 0.6441
Bayes OLS 1.4545 2.2506 2.1198 2.7796
It. Bayes OLS 1.5011 2.2563 2.1210 2.7791
Bayes 2SLS 1.4545 2.2506 2.1198 2.7796
It. Bayes 2SLS 1.5011 2.2563 2.1210 2.7791
It. Bayes 1.5662 2.3351 2.0884 2.5650

Table 2.a). Results are reported for the case of no cross dependence.
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(T,N) (5, 20) (5, 20) (5, 20) (5, 20)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 1.8793 0.1455 1.7930 0.2660
Within 1.7967 0.6254 1.8693 0.6274
Between 0.6650 -0.0249 0.4923 0.0854
FD-OLS -1.4296 -0.3223 -1.3068 -0.4898
WLS 1.8711 0.1136 1.8012 0.2359
WLS-AR(1) 1.3780 0.0465 1.6473 0.1282
2SLS 1.8647 0.0259 1.8586 0.1547
FD-2SLS 1.6426 0.9149 2.2677 1.0461
Within-2SLS 1.8793 0.1455 1.7930 0.2660
Between-2SLS 1.8308 1.1563 1.8602 1.1929
MLE 1.8819 0.0577 1.8867 0.0696
EC2SLS 1.6032 0.2483 1.7830 0.3720
EC2SLS-AR(1) 1.5578 0.2268 1.8360 0.3706
G2SLS 1.6511 0.1057 1.8655 0.2277
2SLS-KR 1.8576 -0.0179 1.9285 0.0883
FD-2SLS-KR 1.6460 0.9007 2.2734 1.0356
FDGMM 1.6575 0.9135 2.2582 1.0401
GMM 1.5765 0.0027 1.2667 0.1655
Ind. OLS 1.3522 1.7363 1.7468 2.1593
Ind. 2SLS 1.3522 1.7363 1.7468 2.1593
Average OLS 1.7116 0.5292 1.8625 0.6771
Average 2SLS 1.7116 0.5292 1.8625 0.6771
Swamy 1.8584 0.3008 1.8122 0.4118
Bayes OLS 1.5336 1.7755 1.8445 2.1886
It. Bayes OLS 1.6288 1.7802 1.8942 2.1979
Bayes 2SLS 1.5336 1.7755 1.8445 2.1886
It. Bayes 2SLS 1.6288 1.7802 1.8942 2.1979
It. Bayes 1.7578 1.8790 1.9319 2.0729

Table 2.b). Results are reported for the case of no cross dependence.

29



(T,N) (10, 20) (10, 20) (10, 20) (10, 20)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 1.8940 0.1601 2.0616 0.3281
Within 1.8686 0.3896 2.2651 0.3815
Between 0.3627 0.0068 0.2872 0.0865
FD-OLS -1.4311 -0.3281 1.4110 -0.6745
WLS 1.8828 0.1553 1.9632 0.3236
WLS-AR(1) 1.3390 0.0771 1.8783 0.2362
2SLS 1.8889 0.0294 2.1953 0.2063
FD-2SLS 1.6553 0.9261 2.8753 1.2263
Within-2SLS 1.8940 0.1601 2.0616 0.3281
Between-2SLS 1.8820 1.1544 2.2421 1.1896
MLE 1.8964 -0.0204 2.2538 -0.0181
EC2SLS 1.5538 0.0835 2.0894 0.2589
EC2SLS-AR(1) 1.4707 0.0096 2.3043 0.1104
G2SLS 1.6221 0.0185 2.1540 0.2056
2SLS-KR 1.8743 -0.0006 2.2547 0.1484
FD-2SLS-KR 1.6540 0.9234 2.8736 1.2236
FDGMM 1.6621 0.9267 2.8078 1.2454
GMM 1.1041 0.0002 0.8994 0.1612
Ind. OLS 1.7322 1.9982 2.2394 2.6322
Ind. 2SLS 1.7126 1.9867 2.2528 2.6351
Average OLS 1.8923 0.7826 2.2668 0.8977
Average 2SLS 1.8814 0.7761 2.2820 0.9334
Swamy 1.8308 0.0743 2.0919 0.3067
Bayes OLS 1.8115 2.0170 2.2650 2.6306
It. Bayes OLS 1.8693 1.9927 2.2674 2.6276
Bayes 2SLS 1.7991 2.0098 2.2816 2.6363
It. Bayes 2SLS 1.8656 1.9839 2.2838 2.6347
It. Bayes 1.7850 2.0265 2.3314 2.4804

Table 2.c). Results are reported for the case of no cross dependence.
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(T,N) (10, 50) (10, 50) (10, 50) (10, 50)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 2.0308 0.8432 2.2123 1.0375
Within 2.0539 1.5085 2.4786 1.6013
Between 0.5198 0.1057 0.5726 0.2373
FD-OLS -1.5026 -0.5947 0.9225 -0.8751
WLS 2.0250 0.8588 2.0549 1.0629
WLS-AR(1) 1.5595 0.7704 2.0565 0.9583
2SLS 2.0277 0.4112 2.4099 0.5692
FD-2SLS 1.7300 1.3878 2.9010 1.7071
Within-2SLS 2.0308 0.8432 2.2123 1.0375
Between-2SLS 2.0476 1.4494 2.5203 1.5778
MLE 2.0305 0.2240 2.4546 0.2593
EC2SLS 1.6810 0.6490 2.2157 0.8360
EC2SLS-AR(1) 1.6420 0.1872 2.4554 0.3323
G2SLS 1.7228 0.2638 2.2751 0.4135
2SLS-KR 2.0323 0.1848 2.5071 0.3174
FD-2SLS-KR 1.7305 1.4761 2.9012 1.8628
FDGMM 1.7340 1.3003 2.8754 1.5795
GMM 1.8347 0.4513 1.4645 0.6129
Ind. OLS 1.8101 2.2141 2.2979 2.7084
Ind. 2SLS 1.7924 2.2055 2.3083 2.7102
Average OLS 2.0366 1.3731 2.4837 1.6344
Average 2SLS 2.0365 1.3696 2.4978 1.6505
Swamy 1.9931 0.6985 2.2691 0.8822
Bayes OLS 1.9065 2.2362 2.3250 2.7070
It. Bayes OLS 2.0221 2.2227 2.3379 2.7072
Bayes 2SLS 1.9059 2.2262 2.3346 2.7120
It. Bayes 2SLS 2.0208 2.2153 2.3449 2.7125
It. Bayes 1.9243 2.1690 2.3871 2.5308

Table 2.d). Results are reported for the case of no cross dependence.
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(T,N) (20, 50) (20, 50) (20, 50) (20, 50)
(ρ, ϑ,H) (0, 0, 0.1) (0, 0, 0.9) (0.9, 0.9, 0.1) (0.9, 0.9, 0.9)
OLS 2.0335 0.8566 2.1985 1.0595
Within 2.0495 1.4905 2.4189 1.5643
Between 0.3158 0.0735 0.2982 0.1267
FD-OLS -1.4960 -0.5708 1.1885 -0.8350
WLS 2.0196 0.8836 2.0812 1.0971
WLS-AR(1) 1.5571 0.7759 2.0171 0.9728
2SLS 2.0309 0.4329 2.4087 0.6015
FD-2SLS 1.7322 1.3700 2.9002 1.6907
Within-2SLS 2.0335 0.8566 2.1985 1.0595
Between-2SLS 2.0468 1.4064 2.5203 1.5013
MLE 2.0322 0.7182 2.3968 0.7876
EC2SLS 1.6503 0.5200 2.0895 0.6683
EC2SLS-AR(1) 1.5859 0.0957 2.2769 0.1810
G2SLS 1.7010 0.2231 2.1507 0.3032
2SLS-KR 2.0335 0.2938 2.5132 0.4516
FD-2SLS-KR 1.7315 1.4774 2.9002 1.8634
FDGMM 1.7343 1.3827 2.7851 1.7262
GMM 1.0420 0.2808 0.9318 0.4051
Ind. OLS 1.9102 2.3173 2.2822 2.6933
Ind. 2SLS 1.9000 2.3108 2.3185 2.7046
Average OLS 2.0445 1.4157 2.4316 1.6296
Average 2SLS 2.0457 1.4139 2.4797 1.6595
Swamy 1.9674 0.5810 2.0490 0.7598
Bayes OLS 1.9761 2.3206 2.3077 2.6911
It. Bayes OLS 2.0415 2.3153 2.3204 2.6904
Bayes 2SLS 1.9724 2.3175 2.3419 2.7043
It. Bayes 2SLS 2.0433 2.3124 2.3565 2.7051
It. Bayes 1.9243 2.3031 2.3404 2.6673

Table 2.e). Results are reported for the case of no cross dependence.
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