An Application of Multiple Imputation and Sampling Based Estimation

Haluk Gedikoglu

Cooperative Research Programs Lincoln University of Missouri

July 26, 2012

Haluk Gedikoglu

Multiple Imputation

July 2012 1 / 27

(日) (四) (三)

Outline

• Background

- Objectives
- MI Imputation Step
- MI Completed Data Analysis
- MI Sampling Based Estimation
- Application

Outline

• Background

• Objectives

- MI Imputation Step
- MI Completed Data Analysis
- MI Sampling Based Estimation
- Application

Outline

- Background
- Objectives
- MI Imputation Step
- MI Completed Data Analysis
- MI Sampling Based Estimation
- Application

Outline

- Background
- Objectives
- MI Imputation Step
- MI Completed Data Analysis
- MI Sampling Based Estimation
- Application

-

Outline

- Background
- Objectives
- MI Imputation Step
- MI Completed Data Analysis
- MI Sampling Based Estimation
- Application

Outline

- Background
- Objectives
- MI Imputation Step
- MI Completed Data Analysis
- MI Sampling Based Estimation
- Application

Outline

- Background
- Objectives
- MI Imputation Step
- MI Completed Data Analysis
- MI Sampling Based Estimation
- Application
- Conclusions

Outline

- Background
- Objectives
- MI Imputation Step
- MI Completed Data Analysis
- MI Sampling Based Estimation
- Application
- Conclusions

Background

- Missing data is a problem that occurs frequently in survey data.
- Missing data can cause biased estimates and reduced efficiency for the regression estimates (Rubin, 1987).
- The standard procedure on Stata is to use only complete observations, which is called list-wise deletion.

イロト イヨト イヨト イヨト

Background, Cont'd

- List-wise deletion can lead to a loss of significant number of observations. For example in the current study list-wise deletion leads to a loss of 43% of the data.
- Overtime, different methods have been used to handle missing data, including single imputation and multiple imputation.
- Simple imputation treats imputed values as known in the analysis, which understates the variance of the estimates and overstates the precision.

・ロト ・ 同ト ・ ヨト ・ ヨト

Background, Cont'd

- Multiple imputation addresses this problem by creating multiple sets of imputed data and take into account the sampling variability due to missing data, which is called between-imputation variability.
- Although statistical literature has been developed for missing data imputation, the use of these methods have been relatively low in applied fields, such as agricultural household survey analysis.
- There are many practical problems that have not been answered in applying missing data imputation methods, such as how to analyze the data when all the variables have missing observations.
- Implications of sampling based estimation for missing data imputation, when all the variables have missing observations, should be analyzed.

イロト イヨト イヨト イヨト

Objectives

- Analyze the implications of multiple imputation when all the variables have missing observations.
- Analyze the implications of multiple imputation when sampling based estimation is used for stratified random sampling.

イロト イヨト イヨト イヨト

Data Augmentation

- *Multiple Imputation* is based on simulation from a Bayesian posterior distribution of missing data.
 - Data Augmentation (an iterative Markov Chain Monte Carlo method). Data augmentation consists of two steps, an I step (imputation step) and a P step (posterior step), which are preformed at each iteration $t = 0, 1, \ldots, T$ (Schafer, 1997).
 - <u>I-Step</u>: At iteration t of the I step, the missing values in are replaced with draws from the conditional posterior distribution of given observed data and the current values of model parameters and independently for each observation (Little and Rubin, 2002).

$$\mathbf{x}_{i(m)}^{(t+1)} \sim P\left(x_{i(m)}|z_i, x_{i(0)}, \boldsymbol{\Theta}^{(t)}, \boldsymbol{\Sigma}^{(t)}\right), i = 1, \dots, N$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ − つへの

Data Augmentation, cont'd

• <u>P-Step</u>: During the P step new values of model parameters and are drawn from their conditional posterior distribution given observed data and data imputed in the previous I step $\mathbf{x}_{i(m)}^{(t+1)}$:

$$\boldsymbol{\Sigma}^{(t+1)} \sim P\left(\boldsymbol{\Sigma}|z_i, x_{i(0)}, \mathbf{x}_{i(m)}^{(t+1)}\right)$$
$$\boldsymbol{\Theta}^{(t+1)} \sim P\left(\boldsymbol{\Theta}|z_i, x_{i(0)}, \mathbf{x}_{i(m)}^{(t+1)}\right)$$

• I and P steps are repeated until the MCMC sequence $\left(\mathbf{X}_{m}^{(t)}, \mathbf{\Theta}^{(t)}, \mathbf{\Sigma}^{(t)}\right)$ converges to the stationary distribution $P\left(\mathbf{X}_{m}, \mathbf{\Theta}, \mathbf{\Sigma} | \mathbf{Z}, \mathbf{X}_{0}\right).$

・ロト ・日ト ・ヨト ・ヨト ・ロト

Expectation-Maximization Algorithm

• The EM algorithm iterates the expectation step (E step) and maximization step (M step) to maximize the log-likelihood function:

$$l_{l}(\boldsymbol{\Theta}, \boldsymbol{\Sigma} | \mathbf{X_{0}}) = \sum_{s=1}^{s} \sum_{i \in I(s)} \{-0.5 \ln(|\boldsymbol{\Sigma_{s}}|) - 0.5(\mathbf{x}_{i(o)} - \boldsymbol{\Theta}'_{(s)} z_{i})' \boldsymbol{\Sigma}_{s}^{-1}(x_{i(o)} - \boldsymbol{\Theta}_{(s)} z_{i})\}$$

- E- Step:Following Little and Rubin (2002) the expectations $E\left(\sum_{s=1}^{N} x_i x_i'\right)$ and $E\left(\sum_{s=1}^{N} z_i x_i'\right)$ are computed with respect to the conditional distribution $P(\mathbf{X}_m | \boldsymbol{\Theta}^{(t)}, \boldsymbol{\Sigma}^{(t)}, \mathbf{X}_0)$.
- M- Step: During the M step, the model parameters are updated using the computed expectations of the sufficient statistics:

$$\Theta^{(t+1)} = (\mathbf{Z}'\mathbf{Z})^{-1} E\left(\sum_{i=1}^{N} z_i x_i'\right)$$

$$\Sigma^{(t+1)} = \frac{1}{N+\lambda+p+1} \left\{ E(\sum_{i=1}^{N} x_i x_i') - E(\sum_{i=1}^{N} z_i x_i')(\mathbf{Z}'\mathbf{Z})^{-1} E(\sum_{i=1}^{N} z_i x_i') + \mathbf{A}^{-1} \right\}$$
Multiple Imputation
July 2012
9/27

MI Estimation Stage

- The results obtained from M completed-data analyses are combined into a single multiple-imputation based estimation results.
- Let{(\$\hftyre{\mathbf{q}}\$i,\$\hftyre{\mu}\$i]: i = 1, 2, ..., M} be the completed-data estimates of \$\mu\$ and the respective variance covariance estimates \$\mu\$ from \$M\$ imputed datasets. The multiple imputation estimate of \$\mu\$ is \$\bar{q}_M = \frac{1}{M} \sum_{i=1}^M \$\hftyre{\mu}\$i].
- The var-cov estimate of \overline{q}_M (total) is $\mathbf{T} = \overline{\mathbf{U}} + (\mathbf{1} + \frac{1}{M}) \mathbf{B}$, where $\overline{\mathbf{U}} = \frac{1}{M} \sum_{i=1}^{M} \widehat{\mathbf{U}}_i / \mathbf{M}$ is the within-imputation var-cov matrix and $\mathbf{B} = \frac{1}{M} \sum_{1=1}^{M} (\mathbf{q}_i \overline{\mathbf{q}}_M) (\mathbf{q}_i \overline{\mathbf{q}}_M)' / (\mathbf{M} \mathbf{1})$ is the between-imputation variance-covariance matrix.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ − つへの

MI Sampling Based Estimation

- For each strata h, the sampling weights are calculated as $W_h = N_h/n_n$, where N_h is the number of observations in population in strata h and n_n is the number of observations sampled in strata h.
- Sampling weights W_h are used in the estimation stage for each imputation $m = 1 \dots M$.
- Within variance-covariance estimate $\overline{\mathbf{U}} = \frac{1}{M} \sum_{i=1}^{M} \widehat{\mathbf{U}}_i / \mathbf{M}$ includes $\widehat{\mathbf{U}}_i$ is computed using Taylor series linearization.
- Degrees of freedom is now the small-sample method, which is $\tilde{v}_{mi} = \left(\frac{1}{(M-1)\hat{\gamma}^{-2}} + \frac{1}{\hat{v}_{obs}}\right)^{-1}$.

◆ロト ◆□ ▶ ◆ヨ ▶ ◆ヨ ▶ ● ● ● ●

- A mail survey of 2,995 livestock farmers was conducted in Iowa and Missouri in Spring 2011.
- Farmers were stratified by farm sales and by type of livestock.
- The effective response rate for the survey was 21 percent.

・ロト ・ 同ト ・ ヨト ・ ヨト

Missing Data Table

. misstable summarize, all

re summarize, ar	1				Obs<.	
Variable	obs=.	obs>.	Obs<.	Unique values	Min	Max
rrsoybean	22		450	2	0	1
age	12		460	60	24	89
lowned	6		466	194	0	1832
lrentout	11		461	46	0	1200
Irentin	13		459	108	0	4000
watqua	9		463	5	1	5
airqual	29		443	2	1	5
globalwarm	9		463	5	1	5
othtarm	20		452	2	1	2
neignbors	22		450	2	1 I	2
bank	23		449	2	1	2
contractor	23		449		1	2
university	19		453	2	0	2
Othor	23		447	2	+	2
other	20		440	2	4	2
state	14		407		1	÷
educop	14		430	2	÷	5
offformor	35		476		1	5
offfarmen	120		352	6	1	0
dairycaau	120		467	73	5	1571 429
beefcaau	4		468	56	ŏ	2200
beefcoau	i i i i i i i i i i i i i i i i i i i		466	75	ň	2200
swinele55au	Š		467	37	ŏ	300
swinebi55au	. ő		466	56	ŏ	4000
broilerau	ž		465	22	ŏ	35
turkeyau	6		466	34	ŏ	1000
sheepau	Š		467	38	ŏ	60
otherau			466	49	ō	12000
hirelabor			463	2	ō	1
fs1 9	16		456	2	Ó	1
fs10_49	16		456	2	ō	1
fs50_99	16		456	2	0	1
fs100_249	16		456	2	0	1
fs250_499	16		456	2	0	1
fs500	16		456	2	0	1
strata	1		472	30	1	49
weight			472	29	10	2169
fsc			472	30	10	32805

・ロト ・四ト ・ヨト ・ヨト

Multiple Imputation

Haluk Gedikoglu

July 2012 1

Setting Data as Multiple Imputation (MI)

```
. mi set mlong
```

```
. mi set M = 10
(10 imputations added; M = 10)
```

. mi register imputed rrsoybean age lowned lrentout lrentin watqual airqual glob > alwarm Othfarm neighbors bank contractor university USDA Other state educop ed > ucsp offfarmop offfarmop offfarmop airquaa beefcaau beefcaau swinele55au swinebi55au b > roilerau turkeyau sheepau otherau hirelabor fs1_9 fs10_49 fs50_99 fs100_249 f > s250_499 fs500 (199 m=0 obs. now marked as incomplete)

When missing data is not imputed, only 273 out of 472 observations are used, which leads to a loss of 43% of observations.

Probit regression	Number of obs	=	273
-	LR chi2(33)	=	155.88
	Prob > chi2	=	0.0000
Log likelihood = -110.87757	Pseudo R2	=	0.4128

<ロト (四) (三) (三) (三) (三)

Using Multivariate Normal Distribution(MVN)

mi impute mvn rrsoybean age lowned lrentout lrentin watqual airqual globalwarm
 Othfarm neighbors bank contractor university USDA Other state educop educsp o
 ffarmop offfarmsp dairycaau beefcaau beefcoau swinele55au swinebi55au broiler
 au turkeyau sheepau otherau hirelabor fs50_99 fs100_249 fs250_499 fs500, add(
 10) rseed(2232) noisily emlog emoutput force

Expectation-maximization estimation Prior: uniform	Number obs Number missing Number patterns Obs per pattern:	= = min = avg = max =	471 632 88 1 5.352273 273
Observed log likelihood = -29374.08 at	iteration 26		
Performing MCMC data augmentation			
Multivariate imputation Multivariate normal regression Imputed: <i>m</i> =1 through <i>m</i> =10 Prior: uniform	Imputations = added = updated = Iterations = burn-in = between =	10 10 0 1000 100 100	
		_	

TT 3	1 1	<u> </u>	1		
Ha	111 2	1-01		200	
II au	nun.			VO E	1.0

July 2012

15 / 27

Convergence of Data-Augmentation

- We use the worst linear function (WLF), developed by Schafer (1997) is used to detect the convergence and autocorrelation for the Data-Augmentation.
- WLF corresponds to the linear combination of parameter estimates where the coefficients are chosen such that this function has the highest asymptotic rate of missing information.
- WLF can be calculated as (Schafer, 1997): $w(\theta) = \hat{v}'(\theta \hat{\theta})$

. mi impute mvn rrsoybean age lowned lrentout lrentin watqual airqual globalwarm > Othfarm neighbors bank contractor university USDA Other state educop educsp o > fffarmop offfarmsp dairycaau beefcaau beefcoau swinele55au swinebi55au broiler > au turkeyau sheepau otherau hirelabor fs10_49 fs50_99 fs100_249 fs250_499 fs5 > 00, mcmconly burnin(2000) rseed(2232) savewlf(wlf)

. tsset iter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

[.] use wlf, clear

Convergence of Data-Augmentation

. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)

Haluk Gedikoglu

July 2012

17 / 27

Multiple Imputation Application

Convergence of Data-Augmentation

. ac wlf, title(Worst linear function) ytitle(Autocorrelations)

Haluk Gedikoglu

July 2012

18 / 27

æ

Imputed Data

	Observations per <i>m</i>						
Variable	complete	incomplete	imputed	total			
rrsoybean	450	22	22	472			
age	460	12	12	472			
lowned	466	6	6	472			
lrentout	461	11	11	472			
lrentin	459	13	13	472			
watqual	463	9	9	472			
airqual	443	29	29	472			
globalwarm	463	9	9	472			
Othfarm	452	20	20	472			
neighbors	450	22	22	472			
bank	449	23	23	472			
contractor	449	23	23	472			
university	453	19	19	472			
USDA	447	25	25	472			
Other	446	26	26	472			
state	467	5	5	472			
educop	458	14	14	472			
educsp	373	99	99	472			
offfarmop	436	36	36	472			
offfarmsp	352	120	120	472			
dairycaau	467	5	5	472			
beefcaau	468	4	4	472			
beefcoau	466	6	6	472			
swinele55au	467	5	5	472			
swinebi55au	466	6	6	472			
broilerau	465	7	7	472			
turkeyau	466	6	6	472			
sheepau	467	5	5	472			
otherau	466	6	6	472			
hirelabor	463	9	9	472			
fs50_99	456	16	16	472			
fs100_249	456	16	16	472			
fs250_499	456	16	16	472			
fs500	456	16	16	472			

Haluk Gedikoglu

July 2012 1

19 / 27

Imputed Data vs. Non-Imputed Data

. mi xeq 0 5 10: summarize

Comparison of the Mean Between No Imputation and Multiple Imputations							
Variables	No Imputation	MVN Multiple	Imputation				
	0	m=5	m=10				
Roundup Ready Corn	0.466	0.464	0.466				
Age	53	53	53				
Owned Land	235	234	234				
Land Rented Out	20	20	20				
Land Rented In	170	167	166				
Missouri(Base=Iowa)	0.490	0.489	0.489				
Non-Family Labor	0.283	0.282	0.284				
Environmental Perceptions							
Water Quality	3.994	3.994	3.994				
Managing Manure	4.115	4.104	4.113				
Global Warming	2.544	2.541	2.541				
Farm Sales							
\$1-\$9,999	2.573	2.571	2.574				
\$10,000-\$49,999	1.718	1.716	1.716				
\$50,000-\$99,999	1.866	1.864	1.864				
\$100,000-\$249,999	1.490	1.490	1.490				
\$250,000-\$499,999	2.210	2.210	2.210				
\$500,000 or more	2.145	2.145	2.145				
Off-Farm Income							
Farm Operator	2.614	2.614	2.614				
Spouse	2.842	2.842	2.842				
Education							
Farm Operator	2.744	2.758	2.742				
Spouse	2.736	2.735	2.801				

Haluk Gedikoglu

July 2012

20 / 27

Imputed Data vs. Non-Imputed Data, cont'd

. mi xeq 0 5 10: summarize

Comparison of the Mean Between No Imputation and Multiple Imputations							
Variables	No Imputation	MVN Multiple	Imputation				
	0	m=5	m=10				
Roundup Ready Corn	0.496	0.496	0.496				
Age	12	12	12				
Owned Land	256	257	256				
Land Rented Out	103	104	103				
Land Rented In	337	338	337				
Missouri(Base=Iowa)	0.500	0.500	0.500				
Non-Family Labor	0.453	0.452	0.453				
Environmental Perceptions							
Water Quality	1.193	1.193	1.197				
Managing Manure	1.094	1.094	1.072				
Global Warming	1.355	1.355	1.361				
Farm Sales							
\$1-\$9,999	0.343	0.343	0.343				
\$10,000-\$49,999	0.448	0.448	0.448				
\$50,000-\$99,999	0.370	0.370	0.368				
\$100,000-\$249,999	0.412	0.412	0.418				
\$250,000-\$499,999	0.341	0.341	0.341				
\$500,000 or more	0.269	0.269	0.272				
Off-Farm Income							
Farm Operator	1.625	1.625	1.644				
Spouse	1.474	1.474	1.498				
Education							
Farm Operator	1.151	1.151	1.181				
Spouse	1.258	1.258	1.297				

イロト 不得 とうき イヨト し

3

TT 3	1 1	<u> </u>		
H D	111 2	-0	200	C 11
			 N U 1 P	

July 2012 21 / 27

MI Regression

. mi estimate, dftable vartable ufmitest : logistic rrsoybean age lowned lrent > out lrentin state hirelabor watqual airqual globalwarm fs50_99 fs100_249 fs250 > _499 fs500 offfarmop offfarmsp educop educsp dairycaau beefcaau beefcoau swine > le55au swinebi55au broilerau turkeyau sheepau otherau

Logistic regression		Number	of obs	=	472	
5 5			Average	RVI	=	0.0957
DF adjustment:	Large sam	mple	DF:	min	=	45.11
-	-	-		avg	=	3349.41
				max	=	16588.59
Model F test:	Unrestr.	FMI	F(26,	1109.5)	=	3.56
Within VCE type:		OIM	Prob > 1	=	=	0.0000

July 2012 22 / 27

<ロト (四) (三) (三) (三) (三)

MI Regression

Regression Results for Roundup Ready Soybean

Variables	N	o Imputat	ion		Multivariate Normal Imputation				
	Coeff.	Std.Err.	p-Value	Coeff.	Std.Err.	p-Value	DOF	Inc.S.E.(%)	
Age	1.001	0.015	0.948	0.024	0.010	0.021	12358	1.38	
Owned Land	1.001	0.001	0.174	0.001	0.001	0.056	639	6.52	
Land Rented Out	0.999	0.002	0.819	-0.001	0.001	0.302	4247	2.38	
Land Rented In	1.003	0.001	0.005	0.002	0.001	0.032	243	11.29	
Missouri (Base=Iowa)	0.319	0.118	0.002	-1.037	0.261	0.000	4210	2.4	
Non-Family Labor	1.301	0.494	0.488	-0.260	0.294	0.378	1749	3.79	
Environmental Perceptions									
Water Quality	0.746	0.133	0.100	-0.250	0.129	0.053	429	8.13	
Managing Manure	1.130	0.209	0.510	0.226	0.151	0.135	140	15.77	
Global Warming	0.868	0.111	0.271	-0.135	0.091	0.138	24002	0.98	
Farm Sales									
\$50,000-\$99,999	3.586	1.630	0.005	0.955	0.329	0.004	4274	2.38	
\$100,000-\$249,999	7.554	4.030	0.000	1.368	0.374	0.000	3419	2.67	
\$250,000-\$499,999	16.078	12.982	0.001	2.169	0.569	0.000	653	6.44	
\$500,000 or more	9.137	11.341	0.075	2.263	0.964	0.019	576	6.91	

Haluk Gedikoglu

・ロト ・ (日) ・ ・ (日) ・ ・ (日) ・

23 / 27

- 12

July 2012

Setting Data as Survey

. mi svyset _n [pweight=weight], strata(strata) fpc(fsc) vce(linearized) singleu
> nit(certainty)

pweight: weight VCE: linearized Single unit: certainty Strata 1: strata SU 1: <observations> FPC 1: fsc

. mi estimate, ufmitest : svy linearized : logistic rrsoybean age lowned lrento > ut lrentin state hirelabor watqual airqual globalwarm fs1_9 fs10_49 fs50_99 > fs100_249 fs250_499 fs500 offfarmop offfarmsp educop educsp dairycaau beefcaau > beefcoau swinele55au swinebi55au broilerau turkeyau sheepau otherau

Multiple-imputation estimates Survey: Logistic regression	Imputations Number of obs	= 10 = 456
Number of strata = 30 Number of PSUs = 456	Population size	= 97933.342
	Average RVI Complete DF	= 0.1559 = 426
DF adjustment: Small sample	DF: min avg	= 33.14 = 265.40
Model F test: Unrestr. FMI Within VCE type: Linearized	max F(27, 211.9) Prob > F	$= 411.08 \\ = 2.65 \\ = 0.0001$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

MI Sampling Based Regression

Variables	Multiple Imputation				Multiple Imputation (Sampling Based				ng Based)	
	Coeff.	Std.Err.	p-Value	DOF	Inc.S.E.(%)	Coeff.	Std.Err.	p-Value	DOF	Inc.S.E.(%)
Age	0.024	0.010	0.021	12358	1.38	0.014	0.013	0.276	374	2.63
Owned Land	0.001	0.001	0.056	639	6.52	0.002	0.001	0.094	88	17.32
Land Rented Out	-0.001	0.001	0.302	4247	2.38	-0.004	0.002	0.050	155	10.54
Land Rented In	0.002	0.001	0.032	243	11.29	0.002	0.001	0.073	56	24.95
Missouri (Base=Iowa)	-1.037	0.261	0.000	4210	2.4	-1.192	0.351	0.001	410	1.51
Non-Family Labor	-0.260	0.294	0.378	1749	3.79	-0.019	0.400	0.962	325	3.95
Environmental Perceptions										
Water Quality	-0.250	0.129	0.053	429	8.13	-0.219	0.152	0.149	365	2.86
Managing Manure	0.226	0.151	0.135	140	15.77	0.159	0.183	0.385	95	16.21
Global Warming	-0.135	0.091	0.138	24002	0.98	-0.102	0.128	0.428	399	1.89
Farm Sales										
\$50,000-\$99,999	0.955	0.329	0.004	4274	2.38	1.156	0.485	0.018	431	0.64
\$100,000-\$249,999	1.368	0.374	0.000	3419	2.67	1.720	0.547	0.002	401	1.81
\$250,000-\$499,999	2.169	0.569	0.000	653	6.44	2.541	0.929	0.007	291	4.93
\$500,000 or more	2.263	0.964	0.019	576	6.91	1.921	1.468	0.192	336	3.67

Regression Results for Roundup Ready Soybean

Haluk Gedikoglu

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > July 2012

25 / 27

2

Impact of Missingness on Estimates

Variables	Multiple Imputation			Multiple	Multiple Imputation(S.B.)		
	RVI	FMI	Rel.Eff.	RVI	FMI	Rel.Eff.	
Age	0.028	0.027	0.997	0.053	0.051	0.995	
Owned Land	0.135	0.121	0.988	0.376	0.285	0.972	
Land Rented Out	0.048	0.046	0.995	0.222	0.188	0.982	
Land Rented In	0.239	0.199	0.980	0.561	0.377	0.964	
Missouri (Base=Iowa)	0.048	0.047	0.995	0.030	0.030	0.997	
Non-Family Labor	0.077	0.073	0.993	0.081	0.076	0.992	
Environmental Perceptions							
Water Quality	0.169	0.149	0.985	0.058	0.055	0.994	
Managing Manure	0.340	0.264	0.974	0.351	0.270	0.974	
Global Warming	0.020	0.019	0.998	0.038	0.037	0.996	
Farm Sales							
\$50,000-\$99,999	0.048	0.046	0.995	0.013	0.013	0.999	
\$100,000-\$249,999	0.054	0.052	0.995	0.036	0.035	0.996	
\$250,000-\$499,999	0.133	0.120	0.988	0.101	0.094	0.991	
\$500,000 or more	0.143	0.128	0.987	0.075	0.071	0.993	

Impact of Missing Observations on Variable Estimates

Haluk Gedikoglu

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ うへの

July 2012

26 / 27

Conclusions

- Although multiple imputation is a very robust method, care should be given when addressing practical questions.
- When complex survey design is used for data collection, sampling based estimation should be used for more realist standard errors.

・ロト ・ 同ト ・ ヨト ・ ヨト