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Introduction

Introduction

Background

Researchers analyzing geo-referenced data often need to contend with three critical issues

at the same time in one regression model:

Spatial autocorrelation
Heteroskedasticity
Endogeneity

These issues have been addressed from an econometric theory viewpoint (e.g., Conley,
1999; Kelejian and Prucha, 2007, 2010; Arraiz et al., 2010).

However, they have often been overlooked in empirical applications.

One reason is that estimators accounting for spatial autocorrelation, heteroskedasticity, and
endogeneity at the same time in one regression model are not always accessible.

The purpose of this talk is to introduce two new user-written commands to implement the
non-parametric spatial heteroskedasticity and autocorrelation consistent (SHAC) estimator
of the variance covariance matrix.

The SHAC estimator is robust against potential misspecification of the disturbance terms
and allows for unknown forms of heteroskedasticity and correlation across spatial units.

Heteroskedasticity is likely to arise when spatial units differ in size or in other structural
features.

Jeanty (Rice) Spatial HAC in Stata July 26-27, 2012 3 / 29



Econometric Framework Conley Procedure

The Model

Model specification

Consider the following model:
y = Xβ + γY + ε (1)

where β and γ are parameters to be estimated, X is a matrix of non-stochastic regressors, Y is
matrix of endogenous variables, and ε is a disturbance vector. Conveniently, equation (1) can be

expressed as
y = Zδ + ε (2)

with Z = [X ,Y ] and δ = [β′, γ′]′. To obtain statistical inferences from this model while dealing
with endogeneity, heteroskedasticity, and spatial autocorrelation, Conley (1999) put forth a
spatial covariance estimator which is an application of Hansens (1982) generalized method of
moments estimator (GMM) to spatial error autocorrelation. This estimator involves minimizing a
quadratic form in the sample moment conditions, where the covariance matrix is obtained in a
non-parametric form a la Newey and West (1984). Specifically, the spatial covariances are
estimated from weighted averages of sample covariances for pairs of observations that are within
a given distance band from each other. Note that this approach requires covariance stationarity,
which is only satisfied for a restricted set of spatial processes (e.g., it does not apply to spatial
autoregressive (SAR) error models).
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Econometric Framework Conley Procedure

The GM Estimator

GM estimator

Let H be an n × kh matrix of instruments. Based on H, consider the following unconditional
moment restrictions:

EN [ψ (Gi , δ)] = 0 (3)

where EN is the unconditional expectation operator over observations and

ψ (Gi , δ) = H
′
i (yi − Ziδ).

Corresponding to (3), the GMM estimator δ̂ for δ is the argument that minimizes

QN (δ) =

{
1

N

N∑
i=1

ψ (Gi , δ)

}′
ΨN

{
1

N

N∑
i=1

ψ (Gi , δ)

}
(4)

where ΨN is a positive definite matrix. The solution for the minimization problem in (4) is given
by:

δ̂GMM =
(
Z ′HΨNH

′Z
)−1 (

Z ′HΨNH
′y
)

(5)

Let ΨN = Ω̂−1. Provided that a consistent estimate Ω̂ of Ω can be obtained, the GMM
estimator is efficient. In the spatial context, Conley (1999) suggests a procedure consistent with
the Barlett window estimator proposed by Newey and West (1984).

Jeanty (Rice) Spatial HAC in Stata July 26-27, 2012 5 / 29



Econometric Framework Conley Procedure

Conley’s SHAC Estimator

SHAC estimator

In particular, a consistent estimate Ω̂ of Ω to obtain standard errors robust to spatial
autocorrelation and heteroskedasticity is given by:

Ω̂ = N−1
N∑
i=1

N∑
j=1

K(dij )ψ
(
Gi , δ̃

)
ψ
(
Gi , δ̃

)′
(6)

where δ̃ is an estimate obtained in a first stage estimation such as two stage least squares and
K(dij ) is a weighting matrix. To ensure that Ω̂ is consistent and positive definite, the weighting
matrix K(dij ) is defined as the product of Barlett Kernels in two dimensions (North/South,
East/West):

K(dij ) =

{
(1− dH

ij /CH)(1− dV
ij /CV ) if dH

ij < CH and dV
ij < CV

0 otherwise

}
(7)

where dH
ij and dV

ij represent the horizontal and vertical distances, respectively, between areal
units i and j , and CH and CV represent the horizontal and vertical distance cutoffs beyond which
no spatial correlation is assumed. The weights decline linearly from 1 to 0, ensuring the positive
definiteness of Ω̂. Zero weights, thereby zero spatial autocovariances, result when one of the
coordinates exceeds the distance cutoff. For more details, see Conley (1999). Once Ω̂ is
obtained, the asymptotic variance-covariance of the parameter estimates can be derived.
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Econometric Framework KP Procedure

Spatial Econometric Model

KP’s model

The framework considered by Kelejian and Prucha (2007, hereafter KP) aims to accommodate
spatial processes generated by Cliff-Ord type models. Inherent in these models are local
nonstationarity and heteroskedasticity. Consider the following model:

y = Xβ + λWy + γY + ε (8)

Equation (8) can be written in a compact form as

y = Zδ + ε (9)

with Z = [X ,Wy ,Y ] and δ = [β′, λ, γ′]′.
In KP’s approach, the disturbance terms are assumed to follow a general spatial process of the
form:

ε = Rξ (10)

where ξ is a vector of i.i.d. (0, 1) innovations and R is an n × n non stochastic matrix with
unknown elements and with row and column sums uniformly bounded in absolute value.
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Econometric Framework KP Procedure

KP’s SHAC Estimator

SHAC estimation

As in Conley’s case, the instrumental variable (IV) estimator of the parameters in equation (9)
relies on a set of moment conditions of the form

EH′ε = 0 (11)

The asymptotic distribution of the IV estimator will require the variance covariance matrix of the
moment conditions defined by:

Ψ = VC(n−1/2H′ε) = n−1H′ΣH (12)

where Σ = RR′ denotes the unknown variance covariance matrix of ξ. Let ε̂ = y − Z δ̂S2SLS and
Ψ̂ an estimate of Ψ. Kelejian and Prucha (2007) show that the (r , s) elements of Ψ̂ can be
consistently estimated by:

Ψ̂r,s = n−1
n∑

i=1

n∑
j=1

hirhjs ε̂i ε̂jK(d∗ij /d) (13)

where the subscripts refer to the elements of the matrix of instruments H, d∗ij is the distance

between areal units i and j , K() is a kernel function with the usual properties, d is the bandwidth
or critical distance such that K(d∗ij /d) = 0 for d∗ij ≥ d , and ε̂ a vector of estimated residuals.
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Econometric Framework KP Procedure

Asymptotic Distribution of δ̂S2SLS

Variance Covariance of parameter estimates

The choice of the bandwidth is more important than that of the kernel function
(Cameron and Trivedi, 2005). In fact, so long as K () is bounded, symmetric, real,
and continuous, the kernel choice is immaterial (Mittelhammer et al., 2000). The
bandwidth and the Kernel function place limits on the number of sample
covariances. The bandwidth can be assumed either fixed or variable.
With Ψ̂ available, the asymptotic variance covariance (VC) matrix of the spatial
two-stage least squares estimates is given by:

Φ̂ = n2(Ẑ ′Ẑ )−1Z ′H(H ′H)−1Ψ̂(H ′H)−1H ′Z (Ẑ ′Ẑ )−1 (14)

As a result, small sample inference concerning δ̂S2SLS can be based on the
approximation δ̂S2SLS ∼ N(δ, n−1Φ̂).
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Implementation Stata Routines

Implementation Overview

Commands developed

To implement the aforementioned SHAC estimators, we develop two
Mata-based commands, spcgmm and sphac.

spcgmm is essentially an estimation command.

Since based on regression residuals, sphac is a post-estimation command
though behaves as an estimation command.

Kelejian and Prucha (2007) allow for the researcher to specify multiple
distance measures. However, this version of sphac implements the SHAC
estimator using a single distance measure.

Both fixed and variable bandwidths are allowed.
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Implementation The spcgmm Command

Syntax for spcgmm

Command syntax

spcgmm varlist [if] [in], coord(coordlist) cutoff(numlist) [exog(varlist)
endog(varlist) km level(#) collinear noconstant first]

Remarks

When options exog() and endog() are not specified, the estimator becomes
OLS with SHAC. OLS is a just-identified GMM estimator.

Only the Barlett kernel is implemented.
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Implementation The sphac Command

Syntax for sphac

Command syntax

sphac, dmat(dmatrixname) dfrom(Mata|Stata) [kernel(functionname) fbandw(#)
vbandw(varname) noconst level(#) model(ols|iv |sar |iv − sar)]

Kernel functions implemented

Barlett: K(z) = 1− z

Epanechnikov: K(z) = 1− z2,

Triangular: K(z) = 1− z,

Bisquare: K(z) = (1− z2)2,

Parzen: K(z) = 1− 6z2 + 6|z|3 if z ≤ 0.5 andK(z) = 2(1− |z|)3 if 0.5 < z ≤ 1.

Requirements

sphac requires a pre-calculated distance matrix and a pre-generated variable holding
distance to nearest neighbors when users specify the vband() option. This can be done
easily using the user-written command nearstat.

sphac also uses saved results from estimation commands to perform all calculations. So
far, sphac works after the official Stata commands regress and ivregress and after the
user-written command spivreg.
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Implementation The sphac Command

Syntax for sphac

Command syntax

sphac, dmat(dmatrixname) dfrom(Mata|Stata) [kernel(functionname) fbandw(#)
vbandw(varname) noconst level(#) model(ols|iv |sar |iv − sar)]

Kernel functions implemented
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Parzen: K(z) = 1− 6z2 + 6|z|3 if z ≤ 0.5 andK(z) = 2(1− |z|)3 if 0.5 < z ≤ 1.

Requirements

sphac requires a pre-calculated distance matrix and a pre-generated variable holding
distance to nearest neighbors when users specify the vband() option. This can be done
easily using the user-written command nearstat.

sphac also uses saved results from estimation commands to perform all calculations. So
far, sphac works after the official Stata commands regress and ivregress and after the
user-written command spivreg.
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Implementation The sphac Command

Syntax for sphac

Command syntax

sphac, dmat(dmatrixname) dfrom(Mata|Stata) [kernel(functionname) fbandw(#)
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Parzen: K(z) = 1− 6z2 + 6|z|3 if z ≤ 0.5 andK(z) = 2(1− |z|)3 if 0.5 < z ≤ 1.
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sphac requires a pre-calculated distance matrix and a pre-generated variable holding
distance to nearest neighbors when users specify the vband() option. This can be done
easily using the user-written command nearstat.

sphac also uses saved results from estimation commands to perform all calculations. So
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Demonstration Data Description

Data

Data description

Examples use a dataset of 1789 census tracts for the State of Michigan.

Variables include:

Dependent

Change in log population, 1990− 2000 (popch)

Independent

Racial diversity, 2000 (divx) - Assumed to be endogenous
Log population, 1990 (lnpop9)
College graduate, 1990 (bspct9)
Median household income, 1990 (lavhhin9)
Unemployment rate, 1990 (unemprt9)
Employment share in agriculture, 1990 (pctfarm9)

. use michigan tracts, clear

. global xvars lnpop9 bspct9 lavhhin9 unemprt9 pctfarm9
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Demonstration Data Description

Data Summary

Data description

. summarize popch divx $xvars, separator(0)

Variable Obs Mean Std. Dev. Min Max

popch 1789 .051171 .2530615 -2.241498 2.489235
divx 1789 .2667414 .184348 .0283146 .8802574

lnpop9 1789 8.071044 .4616808 4.927254 9.167328
bspct9 1789 11.97815 10.29886 0 62.67878

lavhhin9 1789 10.54695 .4205478 8.966855 12.31559
unemprt9 1789 9.249566 8.310277 0 52.37288
pctfarm9 1789 .9547646 1.264445 0 12.14511
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Demonstration Data Description

Racial Diversity: The variable of interest

Aspects of racial diversity

Racial diversity is considered endogenous due to reverse causation, as migration affects the
spatial distribution of the minority populations. Also, political leaders may pursue policies
that influence diversity.

There are pros and cons of racial diversity.

Opponents vehemently maintain that racial diversity may cause conflict of preferences,
racism, and prejudices that are often conducive to counter-productive policies for society as
a whole.

Proponents forcefully argue that ethnic diversity propels variety in skills, experiences that
lead to innovations and creativity.

Communities clinging to these views may implement anti or pro-diversity policies that repel
or attract migrants.

The variable racial diversity, defined as Theil’s entropy index, was calculated using block
group level data for four ethnic groups: Hispanic, NonHispanic White, NonHispanic Black,
and NonHispanic Asian.

divx =
M∑

m=1

πmln(1/πm) (15)

where m indexes the ethnic groups and πm is the share of the ethnic group m in a census tract.
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Demonstration Data Description

Spatial Interactions and Spatial Weights

Rationale for spatial dependence

Growing or declining neighborhoods tend to be located near each other in geographic space
because they generally have similar access to transportation, zoning, and topography that
supports housing construction.

Also, economic shocks affecting migration decisions may be transmitted across borders, or
a community is attracting migrants simply because its neighbors are doing so.

As a result, some spillover effects across geographically proximate neighborhoods are
expected.

To get a sense of the spatial distribution of population growth, we generate a Moran
scatter plot by coding:

. splagvar popch, wname(winvsq) wfrom(Mata) moran(popch) plot(popch)
(permute popch : splagvar randper)
(output omitted )

The spatial weights matrix winvsq was generated using the user-written command
spwmatrix.
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Demonstration Data Description

Moran Scatter Plot for Population Growth

Plot from splagvar
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Demonstration Estimation

Model Estimation

Instrumental variables

Given that both diversity and population growth use population data, it is difficult to find
instruments that are correlated with diversity but uncorrelated with shocks to population
growth.

In this exercise, estimations will rely on three constructed instruments.

Using the user-written command splagvar, we generate a quasi-instrument, q divx, by
coding

. qui splagvar, qvar(divx) qname(q divx)

The variable q divx takes on the values of -1, 0, and 1 if the values of divx are in the
bottom, middle, and top third respectively (Fingleton and Le Gallo, 2008).

We construct the other two instruments by data transformation based on the notion that if
the endogenous regressor Y has a skewed distribution, the following transformations of the
data may yield valid instruments Lewbel (1997):

liv1 = (yi − ȳ)(Yi − Ȳ )

liv2 = (Yi − Ȳ )2
(16)
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Demonstration Estimation

Demonstration of spcgmm

Estimation procedures

To implement Conley’s procedure, a distance cutoff is needed. Researchers usually use 10
miles when working with census tract level data (Jeanty et al., 2010; Boarnet et al., 2003).
We use 8.58 miles implied by distances to first nearest neighbors calculated using the
user-written command nearstat. This will be the first model estimated.

nearstat output

. nearstat (intptlat intptlon), near(intptlat intptlon) distv(neardist1) ///
> r(3958.761) des(stat)

Descriptive Statistics for Distance

Variable Obs Mean Std Min Max

distance* 3198732 57.20 46.43 0.23 198.75
neardist1** 1789 1.21 1.16 0.23 8.57

*: Distance between each input feature and all near features
**: Distance from each input feature to its first nearest neighbor

Distance (in miles) calculations completed successfully and/or all requests
> processed
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Demonstration Estimation

GMM Estimation

spcgmm output

. spcgmm popch $xvars, exog(q divx liv1 liv2) endog(divx) ///
> coord(intptlat intptlon) cutoff(8.58 8.58)

Spatial 2-Step GMM (Mata version)
Number of observations = 1789
Crit. fnct. test of overid. restrictions = 1.4788842
DF= 2
P-value = 0.47738

popch Coef. Std. Err. t P>|t| [95% Conf. Interval]

divx .1671914 .0403 4.15 0.000 .0881511 .2462317
lnpop9 -.1673229 .0350197 -4.78 0.000 -.236007 -.0986389
bspct9 -.0046652 .001249 -3.74 0.000 -.0071149 -.0022155

lavhhin9 .1943346 .0394714 4.92 0.000 .1169195 .2717497
unemprt9 -.0070459 .0015382 -4.58 0.000 -.0100627 -.0040291
pctfarm9 .0319771 .0060263 5.31 0.000 .0201577 .0437964

_cons -.6007922 .4340829 -1.38 0.167 -1.452157 .2505729

Instrumented: divx
Instruments: lnpop9 bspct9

lavhhin9 unemprt9
pctfarm9 q divx liv1
liv2

. eststo
(est2 stored)
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Demonstration Estimation

Demonstration of sphac

Estimation procedures

The demonstration of sphac uses the outstanding user-written spivreg

command (Drukker et al., 2011), which requires a spmat object to handle
the spatial weights matrix to be used in the estimation.

A forthcoming updated version of the user-written command spwmatrix has
an external option to facilitate the storage of spatial weights as a spmat

object. For this demonstration, we use two spatial weights, winvsq and
wcontig.

winvsq, an inverse distance squared spatial weights matrix, was generated
using spwmatrix, but wcontig, a contiguity spatial weights matrix, was
created in ArcGIS and imported into Stata using spwmatrix also. Both
spatial weights matrices were then stored as Mata objects for the estimations.
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Demonstration Estimation

Demonstration of sphac

Estimation procedures

Based on Kelejian and Prucha (2007, Assumption 4a), the number of neighbors within the
bandwidth is constrained by ln = o(n1/3).

This yields a threshold number of 12 neighbors. We will use a variable bandwidth
corresponding to distance to the 12th nearest neighbor for each observation.

Next steps consist in calculating distance to the 12th nearest neighbors and in storing the
distance matrix to a Mata file.

We will then estimate three more models.

Model 2 allows for spatial dependence and is estimated by spatial two-stage least squares.

Model 3 is also estimated by spatial 2SLS but with Parzen kernel SHAC standard errors.
The Barlett kernel yields similar results up to 3 decimal places.

As an alternative to model 3, model 4 allows for heteroskedastic innovations ξ and
disturbances ε that follow a first order autoregressive process:

ε = ρW ε+ ξ (17)

Kelejian and Prucha (2010) argue that model 3 is more robust than model 4.

To produce the final table comparing results across estimation methods, we use Ben Jann’s
esttab package.
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Demonstration Estimation

Distance to 12 Nearest Neighbors

nearstat output

. nearstat (intptlat intptlon), near(intptlat intptlon) distv(neardist12) ///
> kth(12) r(3958.761) des(stat) expdist(distmat) expto(Mata)

Descriptive Statistics for Distance

Variable Obs Mean Std Min Max

distance* 3198732 57.20 46.43 0.23 198.75
neardist12** 1789 3.57 3.03 1.03 24.42

*: Distance between each input feature and all near features
**: Distance from each input feature to its 12th nearest neighbor

Distance (in miles) calculations completed successfully and/or all requests
> processed

Also, distance between input and near features exported to the Mata file:
> C:\data\Stata Conference2012/distmat.

. gen neardist12a=neardist12+0.01 // To guarantee 12 neighbors for each
>observation
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Demonstration Estimation

Spatial Two-Stage Least Squares

spivreg output

. spivreg popch (divx=q divx liv1 liv2) $xvars, id(obsid n) dlmat(winvsq)

Spatial autoregressive model Number of obs = 1789
(GS2SLS estimates)

popch Coef. Std. Err. z P>|z| [95% Conf. Interval]

popch
divx .1441401 .0295278 4.88 0.000 .0862667 .2020135

lnpop9 -.1140855 .0107016 -10.66 0.000 -.1350603 -.0931108
bspct9 -.0027862 .0007404 -3.76 0.000 -.0042373 -.0013351

lavhhin9 .101096 .0254452 3.97 0.000 .0512244 .1509676
unemprt9 -.0046386 .0009612 -4.83 0.000 -.0065226 -.0027546
pctfarm9 .0115774 .0042329 2.74 0.006 .0032812 .0198737

_cons -.0905023 .2806597 -0.32 0.747 -.6405853 .4595807

lambda
_cons .6388438 .065243 9.79 0.000 .5109698 .7667178

Instrumented: divx
Instruments: q divx liv1 liv2

. eststo
(est2 stored)
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Demonstration Estimation

Spatial Two-Stage Least Squares with SHAC

sphac output

. sphac, dmat(distmat) dfrom(Mata) vbandw(neardist12a) kernel(Parzen) ///
> model(iv-sar)

Spatial HAC Standard Errors
Kernel = Parzen
Bandwidth = Variable

SHAC
popch Coef. Std. Err. z P>|z| [95% Conf. Interval]

popch
divx .1441401 .029667 4.86 0.000 .085994 .2022863

lnpop9 -.1140855 .0323895 -3.52 0.000 -.1775678 -.0506032
bspct9 -.0027862 .000841 -3.31 0.001 -.0044344 -.0011379

lavhhin9 .101096 .0314031 3.22 0.001 .0395471 .1626449
unemprt9 -.0046386 .0011428 -4.06 0.000 -.0068783 -.0023988
pctfarm9 .0115774 .0043942 2.63 0.008 .002965 .0201899

_cons -.0905023 .3568791 -0.25 0.800 -.7899723 .6089678

lambda
_cons .6388438 .0925785 6.90 0.000 .4573932 .8202944

Instrumented: divx
Instruments: lnpop9 bspct9

lavhhin9 unemprt9
pctfarm9 q divx liv1
liv2

. eststo
(est3 stored)
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Demonstration Estimation

Generalized Spatial Two-Stage Least Squares

spivreg output

. spivreg popch (divx=q divx liv1 liv2) $xvars, id(obsid_n) dlmat(winvsq) ///
> elmat(wcontig) het nolog

Spatial autoregressive model Number of obs = 1789
(GS2SLS estimates)

popch Coef. Std. Err. z P>|z| [95% Conf. Interval]

popch
divx .1624854 .0323197 5.03 0.000 .09914 .2258309

lnpop9 -.1065138 .0298879 -3.56 0.000 -.1650931 -.0479346
bspct9 -.0027052 .0009132 -2.96 0.003 -.004495 -.0009154

lavhhin9 .0908998 .0326279 2.79 0.005 .0269502 .1548493
unemprt9 -.0043872 .001261 -3.48 0.001 -.0068588 -.0019156
pctfarm9 .006457 .0044147 1.46 0.144 -.0021956 .0151097

_cons -.0518782 .3650912 -0.14 0.887 -.7674437 .6636874

lambda
_cons .7343 .0912013 8.05 0.000 .5555487 .9130512

rho
_cons .1316497 .0815937 1.61 0.107 -.028271 .2915705

Instrumented: divx
Instruments: q divx liv1 liv2

. eststo
(est4 stored)
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Demonstration Estimation

Comparison of Results

Regression outputs

Table 1: Regression Results across Estimation Methods
GMM W/ SHAC S2SLS S2SLS W/ SHAC GS2SLS HET

Racial div. 2000 0.1672∗∗∗ 0.1441∗∗∗ 0.1441∗∗∗ 0.1625∗∗∗

(0.0403) (0.0295) (0.0297) (0.0323)
Log pop. 1990 -0.1673∗∗∗ -0.1141∗∗∗ -0.1141∗∗∗ -0.1065∗∗∗

(0.0350) (0.0107) (0.0324) (0.0299)
Col. grad. 1990 -0.0047∗∗∗ -0.0028∗∗∗ -0.0028∗∗∗ -0.0027∗∗∗

(0.0012) (0.0007) (0.0008) (0.0009)
Log inc. 1990 0.1943∗∗∗ 0.1011∗∗∗ 0.1011∗∗∗ 0.0909∗∗∗

(0.0395) (0.0254) (0.0314) (0.0326)
Unempl. 1990 -0.0070∗∗∗ -0.0046∗∗∗ -0.0046∗∗∗ -0.0044∗∗∗

(0.0015) (0.0010) (0.0011) (0.0013)
Agr. jobs 1990 0.0320∗∗∗ 0.0116∗∗∗ 0.0116∗∗∗ 0.0065

(0.0060) (0.0042) (0.0044) (0.0044)
Intercept -0.6008 -0.0905 -0.0905 -0.0519

(0.4341) (0.2807) (0.3569) (0.3651)
lambda 0.6388∗∗∗ 0.6388∗∗∗ 0.7343∗∗∗

(0.0652) (0.0926) (0.0912)
rho 0.1316

(0.0816)
N 1789 1789 1789 1789
Standard errors in parentheses
∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Final Thoughts

Summary and observation

In this presentation, we illustrate two new user-written commands, spcgmm and sphac.

We show how researchers analyzing geo-referenced data can address three typical
econometric issues including endogeneity, spatial autocorrelation, and heteroskedasticity.

In the contrived examples, we estimate a population growth model with racial diversity as
the explanatory variable of interest.

Results show that, net of economic and demographic factors, racial diversity is positively
correlated with population growth, implying that census tracts with more racial diversity
tend to growth faster.

Limitations and potential improvements

Implementation of sphac depends on a dense, rather than sparse, distance matrix

Large sample size may be a problem although the command works well on county level
data.

Improvements will depend on the availability of sparse matrix operations in Mata.

Next steps

We will write the help files and submit to SSC.

Finally, we will consider extend sphac to make it work in non-linear models.

Jeanty (Rice) Spatial HAC in Stata July 26-27, 2012 28 / 29



Summary and Next Steps

Final Thoughts

Summary and observation

In this presentation, we illustrate two new user-written commands, spcgmm and sphac.

We show how researchers analyzing geo-referenced data can address three typical
econometric issues including endogeneity, spatial autocorrelation, and heteroskedasticity.

In the contrived examples, we estimate a population growth model with racial diversity as
the explanatory variable of interest.

Results show that, net of economic and demographic factors, racial diversity is positively
correlated with population growth, implying that census tracts with more racial diversity
tend to growth faster.

Limitations and potential improvements

Implementation of sphac depends on a dense, rather than sparse, distance matrix

Large sample size may be a problem although the command works well on county level
data.

Improvements will depend on the availability of sparse matrix operations in Mata.

Next steps

We will write the help files and submit to SSC.

Finally, we will consider extend sphac to make it work in non-linear models.

Jeanty (Rice) Spatial HAC in Stata July 26-27, 2012 28 / 29



Summary and Next Steps

Final Thoughts

Summary and observation

In this presentation, we illustrate two new user-written commands, spcgmm and sphac.

We show how researchers analyzing geo-referenced data can address three typical
econometric issues including endogeneity, spatial autocorrelation, and heteroskedasticity.

In the contrived examples, we estimate a population growth model with racial diversity as
the explanatory variable of interest.

Results show that, net of economic and demographic factors, racial diversity is positively
correlated with population growth, implying that census tracts with more racial diversity
tend to growth faster.

Limitations and potential improvements

Implementation of sphac depends on a dense, rather than sparse, distance matrix

Large sample size may be a problem although the command works well on county level
data.

Improvements will depend on the availability of sparse matrix operations in Mata.

Next steps

We will write the help files and submit to SSC.

Finally, we will consider extend sphac to make it work in non-linear models.

Jeanty (Rice) Spatial HAC in Stata July 26-27, 2012 28 / 29



Summary and Next Steps

Thank you!!!
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