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Introduction

Plasma Cutting Technology
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Response Surface Methodology

Methodology selected for finding the best machine
settings (factor levels) that optimize multiple part quality
characteristics (responses)

The usually unknown relationship between a response (y)
and the affecting factors (x’s) is modeled with
polynomials, for example, a second-order model

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑
i<j

∑
βijxixj + ε

The polynomial model can be a reasonable approximation
of the true functional relationship (Montgomery and
Runger, 2006)
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Response Surface Methodology (continuation)

Experimental design permits the collection of data for
the response variable at different levels of the
independent variables

Least squares method permits the estimation of the
parameters, β ’s, in the approximating polynomials

Linear/non-linear optimization techniques permits the
finding of an optimum point (x∗1, x

∗
2, ..., x

∗
k) and an

optimal response value (y∗)
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Experimental Design - Part Geometry

All cuts were made on stainless steel sheet metal of 0.25 inch
thickness
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Experimental Design - Factors and Levels

Factor Name Low Medium High Units
A Current 40 60 80 Amps
B Pressure 60 75 90 Psi
C Cut Speed 10 55 100 Ipm
D Torch height 0.1 0.2 0.3 Inch
E Tool type *1 A B C
F Slower on curve 0 2 4
G Cut direction Vertical Horizontal

(G 0) (G 1)

*1 In experiment with missing values level names were (E 1, E 2, E 3)

*1 In experiment with imputed values names names were (E 0, E 1, E 2)
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Experimental Design - Responses

A total of 15 response variables

Surface Flatness Accum. Part Bevel Start Point
Roughness Underneath Geometry Angle Quality

(3) (1) (3) (2) (4) (2)
Int. curve Int. curve x Int. curve Internal edge
Ext. curve Ext. curve y Ext. curve External edge
Str. line Str. line Left Line

Right line
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Experimental Design

Taguchi orthogonal array L-18 (18 rows and 8 columns)
Each row represents an experimental run
One factor at two levels and four to seven factors at three levels
Economic alternative to a full factorial experiment (1458 runs if
one replicate or 2916 if two-replicates)

Design augmented with 71 additional runs to estimate two factor
interactions (end with no aliases for two-factor interactions)

Final number of runs is 89

Objective is to fit valid models for each response (yi) as a
function of the critical factors (some of the x’s). For example, a
fitted second-order model

ŷ = β̂0 +
k∑

i=1

β̂ixi +
k∑

i=1

β̂iix
2
i +

∑
i<j

∑
β̂ijxixj
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Optimization using Desirability Functions -

Derringer and Suich (1980)

There are 3 types of desirability functions. Response must hit
the target (T), response is to be minimized or response is to be
maximized

Examples of desirability functions (di) for the case response (yi)
must hit a target
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Desirability Function - Target is Best

di(Ŷi(x)) =



0 Ŷi(x) < Li(
Ŷi(x)−Li

Ti−Li

)s
Li < Ŷi(x) < Ti(

Ŷi(x)−Ui

Ti−Ui

)t
Li < Ŷi(x) < Ti

0 Ŷi(x) > Ui

The desirability function ”target is best” transforms the
response values to values between 0 and 1, zero if below a
lower bound (L) or one if above an upper bound (U)

The shape of the desirability function is determined by the
values of the weight parameters s and t (function exponents)

Settings for independent variables or factors affect the
predicted response and the desirability function values
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Optimizing the Overall Desirability

maximize

D = (
n∏

i=1

di(Ŷi(x))
wi)

1∑n
i=1

wi

subject to

Low ≤ x ≤ High

This is a non-linear deterministic optimization model with objective function to
maximize the overall desirability. Weights wi represent the importance given to
response yi

x is the vector of model decision variables corresponding to the non-categorical
experimental factors (current, pressure, cut speed, torch height, and slower on
curves)

Constraints in the model say that decision variables x’s must to take values within
the experimented region (Low-High). Categorical factors tool type and cut
direction are fixed to each one of their 6 possible levels. Thus, six different
optimization models need to be solved in this study
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Research Motivation

43 experimental conditions had missed responses (36 had all
responses missing and other 7 had some responses missing)

Analysis of the experiment done through general linear
regression model (GLM) ignoring the missing responses

Is multiple imputation (MI) an effective method for
completing and analyzing this experimental design?
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Multiple Imputation (MI)

Method proposed by Rubin (1987). It is a simulation-based
approach for analyzing incomplete data (Manchenko, 2010)

Each missing value is replaced with a random sample of
simulated values that represent the uncertainty about the right
value (Rubin, 1987)

User specifies the size of the random sample (number of
imputations to add)

Includes 3 steps: imputing, conducting analysis with each
complete set of data, and analyzing aggregate results

Variances of the parameter estimates are estimated more
accurately than in single-imputation reducing the type I error

In contrast to single-imputation, MI permits to estimate the
impact of missing information on parameter estimation
(McKnight, et al., 2007)
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MI in STATA 11 - Multiple Imputation Control

Panel

The MI control panel can be accessed from the main menu under the Statistics option

Some relevant steps needed are, registering the variables that will be imputed (. mi
register imputed), looking at the summary of missing data (.mi misstable summarize),
looking at the data statistics (.mi describe), looking at some patterns for missing
information (.mi misstable patterns), deciding on the format to save the imputations (for
example .mi set mlong)
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Impute Options in STATA 11
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Impute Command - Example

In this example, the number of imputations for each missing value, m, is 5 and the
imputation method selected was predictive mean matching (pmm)
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Impute Options - Predictive Mean Matching

(pmm)

Preferred to linear regression when the normality of the
underlying model is suspect

Introduced by Little (1988) based on Rubin (1986)

Prediction of linear regression is used as a distance measure to
form the set of nearest neighbors or donors for the imputation

Randomly draws a value from the set of nearest neighbors to
impute the missing value

By drawing from the observed data ppm preserves the original
distribution of the observed values

Estimates of the model parameters are simulated from their joint
posterior distribution
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Estimate Command - Example - Output 1

The first time the command mi estimate was invoked, a regression (regress) for
newFlatness as dependent variable and all the possible terms in a second order
polynomial model on the factors (current, pressure, cut speed torch height, slow on
curve, tool type and cut direction) was performed. Quadratic terms and second order
interactions were included except those involving categorical variables

By performing iteratively the command mi estimate, we eliminated from the model the
non-significant factors one at a time until obtaining a final regression model with only
significant factors for each response
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Estimate Command - Example - Output 2

RVI = Relative variance increase due to non-response
FMI = Fraction of missing information
The smaller the RVI and FMI values the better
RVI can be greater than 1

Relative efficiency value, the closer to 1 the better

Novoa et al. (Texas State University) STATA Conference 2012 20 / 29



Deterministic Optimization Model

The multi-response non-linear optimization model was laid out
in Excel

Risk Solver Platform (RSP) software from Frontline Systems was
used for the optimization step.

The optimization technique used by RSP to solve the non-linear
non-smooth optimization problem is genetic algorithms (GA)

Solve times were less than 1 minute 43 seconds in all runs and
the mean was 55.74 seconds
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Excel - Risk Solver Platform Deterministic

Optimization Model
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Numerical Results

Experiment Experiment
Factor no imputation with MI
Current 80 80
Pressure 90 90
Cut Speed 55 65
Torch height 0.3 0.3
Slower on Curves 0.4 0
Tool Type Third tool Second tool
Cut direction Horizontal Horizontal
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Conclusions and Further Research

MI under STATA proved to be effective to analyze the plasma
cutting experiment with missing values
After MI, it was discovered that a setting with slightly higher
speeds do not negatively affect response variables and overall
desirability
MI reports on the variability of the estimates of the regression
coefficients. This variability may be included in a stochastic
simulation optimization model that Risk Solver Platform
(RSP) can solve

The stochastic optimization model objective function is now to
minimize the expected overall desirability under the same
constraints as in the deterministic optimization model
β’s in the regression models are now random variables with a
given mean and standard error. Desirability’s will depend on
responses which will be a function of the factors (x’s) and the
realizations for the β’s
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Steps in Stochastic SimulationOptimization Model
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Questions
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