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Motivation 

-- Focus here is on two-stage optimization estimators (2SOE) 

-- Asymptotic theory for 2SOE (correct standard errors) available for many years 

 -- Both stages are maximum likelihood estimators (MLE)  
 
 Murphy, K.M., and Topel, R.H. (1985):  "Estimation and Inference in Two-  

  Step Econometric Models," Journal of Business and Economic    
  Statistics, 3, 370-379. 

 
 -- More general cases 
 
 Newey, W.K. and McFadden, D. (1994):  Large Sample Estimation and   

  Hypothesis Testing, Handbook of Econometrics, Engle, R.F., and   
  McFadden, D.L., Amsterdam:  Elsevier Science B.V., 2111-2245,   
  Chapter 36. 

 
 White, H. (1994): Estimation, Inference and Specification Analysis, New   

  York: Cambridge University Press. 
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Motivation (cont’d) 

-- Textbook treatments of the subject 

 Cameron, A.C. and Trivedi, P.K. (2005):  Microeconometrics:  Methods and  
  Applications,” New York:  Cambridge University Press. 

 
 Greene (2008):  Econometric Analysis, 6th Edition, Upper Saddle River, NJ:   

  Pearson, Prentice-Hall. 
 
 Wooldridge, J.M. (2010): Econometric Analysis of Cross Section and Panel  

  Data, 2nd Ed. Cambridge. 
  
-- Nonetheless, applied researchers often implement resampling methods or ignore 

the two-stage nature of the estimator and report the uncorrected outputs from 

packaged statistical software.  
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Motivation (cont’d) 

--  With a view toward easy software implementation (in Stata), we offer the 

practitioner a simplification of the textbook asymptotic covariance matrix 

formulations (and their estimators – standard errors) for the most commonly 

encountered versions of the 2SOE -- those involving MLE or the nonlinear least 

squares (NLS) method in either stage. 

--  We cast the discussion in the context of regression models involving endogeneity – 

a sampling problem whose solution often requires a 2SOE. 
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Motivation (cont’d) 

-- In the paper -- we detail our simplified covariance specifications (standard errors) 

for three very useful estimators in applied contexts involving endogeneity:  

 1) The two-stage residual inclusion (2SRI) estimator suggested by Terza et al.  

  (2008) for nonlinear models with endogenous regressors 

Terza, J., Basu, A. and Rathouz, P. (2008):  “Two-Stage Residual Inclusion 
Estimation:  Addressing Endogeneity in Health Econometric Modeling,” 
Journal of Health Economics, 27, 531-543. 

 
 2) The two-stage sample selection estimator (2SSS) developed by Terza (2009)  

  for nonlinear models with endogenous sample selection 

Terza, J.V. (2009): “Parametric Nonlinear Regression with Endogenous 
Switching,” Econometric Reviews, 28, 555-580. 
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 Motivation (cont’d) 

and  

 3) Causal incremental and marginal effects estimators proposed by Terza 

 (2012b).   

Terza, J.V. (2012b):  "Health Policy Analysis via Nonlinear Regression 
Methods:  Estimation and Inference from a Potential Outcomes 
Perspective, Unpublished manuscript, Department of Economics, 
University of North Carolina at Greensboro. 

 
-- In this presentation we will discuss (1) and (2) – 2SRI and Causal Effects 

-- We will detail the analytics and Stata code for our simplified standard error 

 formulae for both of these and give an illustrative example of the latter. 
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2SOE and Their Asymptotic Standard Errors 

-- The parameter vector of interest is partitioned as ω [δ γ ]    and estimated in 

 two-stages:  

 -- First, an estimate of δ is obtained as the optimizer of an appropriately   

  specified first-stage objective function 

   
n

1 i
i 1

q (δ,V )

              (1) 

 where iV  denotes the relevant subvector of the observable data for the ith  

 sample individual (i = 1, ..., n); e.g., if the first-stage implements the nonlinear 

 least squares (NLS) method 

   2
1 i pi iq (δ,V ) (X Wδ)    
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2SOE and Their Asymptotic Standard Errors (cont’d) 

 -- Next, an estimate of γ is obtained as the optimizer of 

  
n

i
i 1

ˆq(δ, γ, Z )

              (2) 

 where iZ  is the full vector of observable data, and δ̂ denotes the first-stage 

 estimate of δ; e.g., if the second-stage is MLE 

     i i pi i
ˆ ˆq(δ, γ, Z ) ln f (Y |X ,W ;δ, γ)  

 with i pi i
ˆf (Y |X ,W ;δ, γ) being the relevant conditional density of the dependent 

 variable iY . 
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2SOE and Their Asymptotic Standard Errors (cont’d) 

-- It is incorrect to ignore the two-stage nature of the estimator and use the 

“packaged” standard errors from the second-stage.  

-- Practitioners often opt for resampling methods like bootstrapping, or in the case 

of “effect” estimation, the approach suggested by Krinsky, I. and Robb L. (1986, 

1990, 1991).  

-- A possible reason for this is that the expressions for the correct asymptotic 

covariance matrix of the generic 2SOE found in textbooks are daunting. 

-- In the following, we offer a substantial and legitimate simplification that may 

make implementation of the correct asymptotic standard error formulations more 

accessible to practitioners. 
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2SOE and Their Asymptotic Standard Errors:  Some Notation 

-- The correct asymptotic covariance matrix of ω̂  is  

 11 12

12 22

D D
D

D D
 

   
 

where  

 11
ˆAVAD R(δ)  denotes the asymptotic covariance matrix of δ̂,  

 22 ˆAVAD R(γ)  

 12D  is left unspecified for the moment. 

 
--  The devil, of course, is in the “D”-tails. 
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2SOE and Their Asymptotic Standard Errors:  More Notation 

-- 1q  is shorthand notation for 1q (δ,V)as defined in (1)  

-- q is shorthand notation for q(δ, γ, Z)as defined in (2)  

-- sq  denotes the gradient of q with respect to parameter subvector s.  This is a 

 row vector whose typical element is jq / s  ; the partial derivative of q with 

 respect to the jth element of s  
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2SOE and Their Asymptotic Standard Errors:  More Notation (cont’d) 

-- stq  denotes the Jacobian of sq  with respect to t.  This is a matrix whose typical 

 element is 2
j mq / s t   ; the cross partial derivative of q with respect to the jth 

 element of s and the mth element of t – the row dimension of stq  corresponds 

 to that of its first subscript and the column dimension to that of its second 

 subscript. 
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2SOE and Their Asymptotic Standard Errors (cont’d) 

--  The typical textbook rendition of the “D”-tails is something like the following  

 12 δδ 1 γ δ 1 γγ γ
1 11

δ γγD q q q q qˆE E E AVAR(δ)E E q
                           

 22 γγ γ γδ
1

δ
ˆˆAVAR(γ) E E AVAR(δ)E 'D q q q


               

   γ δ 1 δδ δ
1

γE E Eq q 'q q            
   γδ δδ γ δ 1 γγ

11q q q q ˆE E E ' E AVAR * (q γ)
                  

 
where ˆAVAR(δ) is the “packaged” and legitimate asymptotic covariance matrix of 
the first-stage estimator of δ̂, and ˆAVAR *(γ) is “packaged” but incorrect 
covariance matrix of the second-stage estimator of γ̂ . 
 
--  No need to define any of the components of this mess at this point.  Just wanted to 
 make a point. 
  
-- We seek simple estimators of 12D  and 22D . 
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Simple Standard Error Formulae – MLE  

-- In the paper we show that when the second stage estimator is MLE the correct 

 formulations simplify as  

 
 

12 γ δ
ˆD δ qAVAR( )E AVAR *(q γ)        

 

 
   

22 γ δ γ δAVAR*(γ)E AVAR( )E 'AVAR*(γ) AVˆD q q δ q q AR*(γ)                
where 

 

n
γ i δ i

i 1
γ δ

ˆq(δ,γ,Z )' q(,γ,Z )
q q

n
E    

 
 

 
   

 
δ̂ and γ  denote the first and second stage estimators, respectively, and AVAR(δ̂) 

and AVAR *(γ) are the estimated covariance matrices obtained from the first and 

second stage packaged regression outputs, respectively. 
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Simple Standard Error Formulae – NLS  

-- When the second stage estimator is NLS the correct  formulations simplify as 
 

 


12 γδ γ
1

γ
ˆ ˆD̂ ˆAVAR( E Eq qδ)

           
 

 
 

22 γγ γδ γ
1

δ γγ
1ˆˆ ˆ ˆ ˆ ˆE E AVAR(δ)E ' ED̂ q q q AVAR*(γq )

 
                  

 
where 

 

n
γδ i

i 1
γδ

ˆ ˆq(δ,γ, )
ˆ

n
E

Z
q  






  
 

n
γγ i

i 1
γγ

ˆ ˆq(δ,γ, )
ˆ

n
E

Z
q  






  

  
where δ̂ and γ̂  denote the first and second stage estimators, respectively, and 

 ˆAVAR(δ) and ˆAVAR *(γ) are the estimated covariance matrices obtained from the 

first and second stage packaged regression outputs, respectively. 
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Simple Standard Error Formulae (cont’d)  

So, for example, the “t-statistic” k k 22(k)ˆ(γ - γ ) D̂/  for the kth element of γ is 

asymptotically standard normally distributed and can be used to test the hypothesis 

that 0
k kγ γ  for 0

kγ , a given null value of kγ . 
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Example:  Two-Stage Residual Inclusion (2SRI) 

-- Suppose the researcher is interested in estimating the effect that a policy variable 

of interest pX  has on a specified outcome Y.   

-- Moreover, suppose that the data on pX  is sampled endogenously – i.e. it is 

correlated with an unobservable variable uX that is also correlated with Y (an 

unobservable confounder).   
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Example:  2SRI (cont’d) 

-- To formalize this, we follow Terza et al. (2008), and assume that 

 p o u p o uE[Y | X , X , X ] μ(X , X , X ;β)     and    p uX  r(W, α) + X  
  [outcome regression]      [auxiliary regression] 
 
 oX  denotes a vector of observable confounders (variables that are possibly   

  correlated with both Y and pX )  

 uX  is a scalar comprising the unobservable confounders  

 β and α are parameters vectors 

 oW = [X W ]  

 W  is an identifying instrumental variable, and  

 μ(   ) and r(    ) are known functions.   
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Example:  2SRI (cont’d) 

-- The (pseudo) regression model in this case is 

 
  p o uY μ(X , X , X ;β) e    

where e is the random error term, tautologically defined as 

p o ue Y μ(X , X , X ;β)  .   

-- The β parameters are not directly estimable (e.g. by NLS) due to the presence of 

the unobservable confounder uX -- hence, the “pseudo” modifier.   
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Example:  2SRI (cont’d) 

The following 2SOE is, however, feasible and consistent.   

First Stage:  Obtain a consistent estimate of α by applying NLS to the auxiliary 

regression and compute the residuals as 

 u p
ˆ ˆX = X  r(W, α)  

where α̂  is the first-stage estimate of α. 

 
Second Stage:  Estimate β by applying NLS to 

 Y = p o uμ(X ,X , X̂ ;β)  + e2SRI 

where e2SRI denotes the regression error term. 
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Example:  2SRI (cont’d) 

-- In order to detail the asymptotic covariance matrix of this 2SRI estimator, we cast 

 it in the framework of the generic 2SOE discussed above with α and β playing 

 the roles of δ and γ, respectively.   

-- This version of the 2SRI estimator implements NLS in its second stage. 

-- Therefore the relevant version of ˆ ˆq(δ, γ, Z) is 

  2
p p o u

ˆX ,W Yˆq(α, β μ(X , X ,Y β), ) X, ;   .  
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Multi-Stage Causal Effect Estimators 

-- For contexts in which the policy variable of interest ( pX ) is qualitative (binary), 

 Rubin (1974, 1977) developed the potential outcomes framework (POF) which 

 facilitates clear definition and interpretation of various policy relevant 

 treatment effects.  

-- Terza (2012b) extends the POF to encompass contexts in which pX  is quantitative 

 (discrete or continuous) and planned policy changes in pX  are incremental or 

 infinitesimal.   
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Multi-Stage Causal Effect Estimators (cont’d) 

As counterparts to the average treatment effect in the POF, Terza (2012b) defines the 

average incremental effect and the average marginal effect, respectively, as 

   p1 p1 p1p1 X (X ) XAIE (X ) E[Y ] E[Y ]  
    

and   
0

AIE(Δ)AME lim
Δ

   

 
where p1X  denotes the pre-policy version if pX  (a random variable) 

 p1(X )  denotes the policy mandated exogenous increment to the policy variable 

 *
pXY  denotes the potential outcome (a random variable) -- the version of the   

  outcome that would obtain if the policy variable were exogenously and   

  counterfactually set at *
pX . 



24 
 

Multi-Stage Causal Effect Estimators (cont’d) 

-- Terza (2012b) shows that under primitive regression assumptions (e.g. the 

outcome and auxiliary models in 2SRI), if we can consistently estimate the 

parameters of the model (e.g. τ [α β ]   in the above 2SRI setup) and can find an 

appropriate way to proxy uX , AIE and AME can be consistently estimated using 

 
  n

p1i p1i i p1i oi ui p1i oi ui
i 1

1 ˆ ˆˆ ˆAIE( (X )) μ(X (X ),X ,X ;τ ) μ(X , X ,X ;τ)
n

      

 

 n p1i oi ui

i 1 p1i

ˆ ˆμ(X , X , X ;τ)1AME
n X


 

   
where τ̂  is a consistent estimate of τ, uiX̂ is the proxy value for uX , and the i 

subscript denotes the ith observation in a sample of size n (i = 1, …, n). 
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Multi-Stage Causal Effect Estimators (cont’d) 

-- We now turn to the asymptotic properties of these estimators.   

-- We use the notation “PE” to denote the relevant policy effect [AIE or AME] and 

rewrite AME and AIE in generic form as 

 
n

i

i 1

ˆˆpe (α, β)
PE

n
 

       


i
ˆˆpe (α, β) being shorthand for p1i oi ui i

ˆˆ ˆpe(X ,X ,X (α,W ),β)  

where 
 

p1 o upe(X , X , X (α,W),β)   = 
 
  p1 p1 o u p1 o uμ(X (X ), X , X (α,W),β ) μ(X , X , X (α,W),β)    for AIE 
or 

  p1 o u

p1

μ(X , X , X (α,W),β)
X




        for AME 

and ui i pi i
ˆ ˆ ˆX (α,W ) X  r(W , α)  . 
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PE as a 2SOE  

-- We can cast PE as a 2SOE: 

 -- First stage... consistent estimation of α and β (e.g. via 2SRI). 

 -- Second stage... PE itself is easily shown to be the optimizer of the following  

  objective function 

       
n

i
i 1

ˆˆq(α, β, PE, Z )

  

  where 

    2

ii
ˆ ˆˆ ˆq(α, β, PE, Z ) α,pe ( Eβ) P     

1i i p i i[Y XZ W ]  and ˆˆ[α β ]   is the first-stage estimator of [α β ]  . 
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PE as a 2SOE – Asymptotic Standard Error 

-- Because PE is virtually NLS, using the above results, its correct standard error is 

 

 





[α β ] [α β ]
n n

i i
i 1 i 1

pe ( ) pe ( )
ˆˆAVAR

ˆ ˆˆ ˆα, β α, β
a var(PE) ([α β ])

n n

   
 

        
    

      
   

    

            
  2n

i
i 1

pe ( )ˆα̂, PEβ

n



  

where 

n

i
i 1

[α β ]
ˆˆpe ( )α, β


  denotes [α β ] p1 o upe(X , X , X (α,W),β)   evaluated at Xpi, Xoi, iW ,

 and ˆˆ[α β ]   and  

 ˆˆAVAR([α β ])   is the estimated asymptotic (2SRI?) covariance matrix of ˆˆ[α β ]  .   
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PE as a 2SOE – Asymptotic t-stat 

-- So, for example, the “t-statistic”    n(PE PE) / a var PE  is asymptotically 

standard normally distributed and can be used to test the hypothesis that 0PE PE  

for 0PE , a given null value of PE. 
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Smoking and Birthweight:  Parameter Estimation via 2SRI 

-- Re-estimate model of Mullahy (1997) using 2SRI 
 
Mullahy, J. (1997):  "Instrumental-Variable Estimation of Count Data Models: 

Applications to Models of Cigarette Smoking Behavior," Review of 
Economics and Statistics, 79, 586-593. 

 
Y = infant birthweight in lbs 
 

pX = number of cigarettes smoked per day during pregnancy 
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AIE of Smoking During Pregnancy on Birthweight 

--  The objective is to evaluate a policy that would bring smoking during pregnancy 
 to zero. 
 
--  Pre-policy version of the policy variable:  p1 pX X  

--  Post-policy version of the policy variable: p2 p pX X Δ(X )   where p pΔ(X ) X   

--  AIE estimator is 
  

 


n
i

i 1

ˆpe (β)
PE

n
 

 
 


ipe ( β̂) is p1 ope(X , X ,β)  evaluated at Xpi, Xoi, and β̂ ˆˆ[α β ]  , with  
 
 p1 ope(X , X ,β)  =  pi pi p o o pi p o o

ˆ ˆ ˆ ˆexp([X (X )]β X β ) exp(X β X β )      
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AIE of Smoking on Birthweight – Asymptotic Standard Error 
 
 

 

 



n n

i i
i 1

β
i

GMM
β

1
pe ( ) pe ( )

COV
n

ˆ ˆβ β
a var(

n
PE)  

        
   
      
   



  2n

i
i 1

pe ( ) PE

n

β̂





 

 
    

p oβ βi i iβ
ˆ ˆ ˆβ βpe ( ) [ pe ( ) pe )]β(   

 
 

  


pβ pi pi p oi o pi pii

ˆ ˆpe ( ) exp([X Δ(X )]β X β )[X Δ(X )β̂ ]          

             pi p oi o pi
ˆ ˆexp(X β X β )X 

 
 

  


oβ pi pi p oi o pi p oi o oii

ˆ ˆ ˆ ˆpe ( ) exp([X Δ(X )]β X β ) exp(X β X β ) Xβ̂          
 
  

and GMMCOV  is the GMM estimated asymptotic covariance matrix of β̂ .  
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AIE Asymptotic Standard Error -- Practical Notes on Stata Implementation 
 

-- MATA code for calculating the AIE estimator 
 

pβ̂  = BXpGMMC = BGMMC[1] 
 

p p o( )   X X X  = XNULL= J(rows(Xo),1,0),Xo 

 

p p o o
ˆ ˆβ βX X  = XBGMMC = XC*BGMMC 

 

p p p o o
ˆ ˆ[ ( )]β β  X X X = XBNULLGMMC=XNULL*BGMMC 

 
 ˆpe(β) = peAIEGMM = exp(XBNULLGMMC):-exp(XBGMMC) 
 
AIE  =  PEAIEGMM = mean(peAIEGMM) 
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Practical Notes on Stata Implementation (cont’d) 
 

-- MATA code for calculating the asymptotic standard error estimate 
 


p pβ o
ˆpe( , ,β) X X = ppebpAIEGMM=exp(XBNULLGMMC):*XpC 

 


o pβ o
ˆpe( , ,β) X X =peboAIEGMM=(exp(XBNULLGMMC):-exp(XBGMMC)):*Xo 

 


β p o
ˆpe( , ,β) X X  = ppebAIEGMM=ppebpAIEGMM,ppeboAIEGMM 

 
 a var(AIE)= 
 avarPEAIEGMM=mean(ppebAIEGMM*n:*COVGMMC)*mean(ppebAIEGMM)' 
   +mean((peAIEGMM:-PEAIEGMM):^2) 
 
where oX  and 

o pβ o
ˆpe( , ,β) X X  are n × K matrices; pX , p( ) X ,  ˆpe(β)and 


p oβ p

ˆpe( , ,β ) X X  are n × 1 vectors; 
β p o

ˆpe( , ,β) X X  is an n × (K+1) matrix; AIE 

and  a var(AIE) are scalars; and K is the dimension of oX . 
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Results for Smoking and Birthweight Model 

 
 

AIE of Eliminating Smoking During Pregnancy w/ Corrected St. Errors 
 

    +-----------------------------------------------------------------------+ 
  1 |  %smoke-decr   incr-effect       std-err        t-stat       p-value  | 
  2 |                                                                       | 

3 |          100      .2300237      .0726222      3.167401      .0015381   


