

Issues for analyzing competing-risks data with missing or misclassification in causes

Dr. Ronny Westerman

Institute of Medical Sociology and Social Medicine Medical School & University Hospital

July 27, 2012

· Outline

- Introduction/Background
- · Data
- · Methods
- Discussion
- · Perspectives

· Introduction

- · Limited Failure Models (Immortal)
- Competing Risks
- · Missing and Misclassification of causes (Masked causes)

- · Limited Failure Model (Cure Survival Models)
- Examples: Infant Mortality
- Curability of cancer and decreasing mortality risk since diagnosis of cancer
- · None defective units are not expected to fail from risk

The Competing Risk Problem:

Each subject being exposed to many competing risks, but only one will be caused the failure

Subject ist still right-censored if it do not fail within the follow-up duration

Competing Risks

•

- Non-parametric, semi-parametric and full-parametric models
 Cause-spezific hazard function
 - Problem: Assumption of independence through cause often violated?
- Failure Time for all risks are operatively the same, in that case, all risks being removed except the risk under consideration

- Missclassification and Missing of causes
- Cause of event for some of units or individuals not exactly identified or recored
- · Partial masking: Cause is narrowed down but not exactely identified
- Reason for missclassification:
- documentation containing the information needed for attributing the cause of failure may be not collected, or the cause of diseases for some patients may be difficult to determine

• Difficulties for determination: (aetiological problems)

• Example: Cardioembolic stroke (Leary and Caplan, 2008)

 Cardioembolic stroke occurs when the heart pumps unwanted materials into the brain circulation, resulting in the occlusion of a brain blood vessel and damage to the brain tissue.

 CS diagnosed in 3-8% stroke patients, but in various current stroke registries, approximately 10-20% patients with CS have not maximal symptoms at the onset of their stroke — Exclusion

- Missclassification:
- · Example: Breast Cancer
- TNM Staging vs . I-IV Staging
- Stage migration: improved detection of illness leads to movement of people from the set of healthy people to the set of unhealthy people
- Will Rogers phenomen:
 - "When the Okies left Oklahoma and moved to California, they raised the average intelligence level in both states"

٠

- Methods for treating masked cause data
- 1) Mutiple Imputations

Should be used, when Baseline are not proportional Works good in case of Missing at Random (for cause) Problem: High-Mortality-Risks, Multiple-Specific and High-Potential-Risks often not Missing at Random

False classification or misinterpretation of cause-specific mortality

- Methods for treating masked cause data
- · 2) Second Stage Analysis
 - Models with non-proportional cause-specific hazard
- 3) EM for grouped Survival data Bayesian Methods
- · Assumptions for masked causes:
- · Right censoring, if causes not exactly identified
- · Masking probabilty is constant over time

- SEER Cancer Statistic Data Base National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch (released April 2012)
 - Incidence by Race, Gender and Age (different periods of time)
- · Cause-Specific Mortality including all specific cancer

 SEER public use dataset on survival of breast cancer patients from 1992-2009 (n=69,990 in Situ)

· Leading Cause of Death in the U.S. 1975 vs. 2009

Source: US Moratlity Files, National Center of Health Statistics, Centers of Disease Control and Prevention

US Death Rates, 1975-2009 Heart Disease compared to Neoplasms, by age at death

Source: US Moratlity Files, National Center of Health Statistics, Centers of Disease Control and Prevention Rates are per 100,000 and age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1103).

Partition of Trend in Death Rates For the Time Period 2000-2009 All Races, Both Sexes

Overall Decreasing Regression Coefficient : -2.9

Source: US Moratlity Files, National Center of Health Statistics, Centers of Disease Control and Prevention

· 5-year Conditional Relative Survival for Cancer of female Breast

- And now, what's the problem?
 Preliminary Analysis with SEER- DATA (Sen et al. 2010)
- · Over-sampling the masked cases
- · 46 % of the women died during follow-up
- Specific mortality related to breast cancer, other cancer or non-cancer related causes
- \cdot for 56 % the exact cause of death was known
- for 35 % partial information available
- 30 % with missing cause of death: false classification (breast cancer to other or multiples cancer)
- · 65 % missing causes were complety masked

- How do deal with masked causes ?
- Motivation to use Two-Component-Model for masked causes
 - Risks are latent: no specific information about the cause of the component failure
- Only some individuals may susceptible to the event of interest (curability or the recessive risk for the disease)

Introduction	Background	Data and Methods	Results	Discussion	Referenc

 Useful Stata commands for cure models: Incure, spsurv, and cureregr (Lambert, 2007)

 the advances of cureregr: fits both mixture and nonmixture cure models
 parametric distributions: exponential, Weibull, lognormal, and gamma parametric distributions available

· Optional: **strsmix** allowing more flexible parametric distributions

Data Analysis with SEER Breast Cancer Data

- Survival of breast cancer patients from 1992-2009 (n=69,990 in Situ)
 - cause of death: breast cancer and other causes other causes as competing risks
- We used a non-mixture cure fraction model with Weibull and Exponential specification

Results from Data Analysis (Estimates for the Long-Term Survival Function)

Table 1: MLEs and the standard errors for SEER Breast Cancer Data				
Distribution	λ	φ	р	
Weibull	0.0047 (0.00021)	0.6732 (0.1428)	0.28057 (0.1016)	
Exponential	0.0041 (0.0009)		0.3032 (0.0962)	

A-scale parameter, ϕ - shape parameter, p- long-term parameter

Table 2: Likelihood, AIC and BIC values				
Model	l(.)	AIC	BIC	
Weibull	-46.12845	98.27691	103.7626	
Exponential	-46.20798	96.43586	100.1032	

Introduction	Background	Data and Methods	Results	Discussion	Reference

· Results

 no evidence that Weibull provides a better fitting than the Exponential for Seer Breast Cancer Data at 5% significance

· corrobate the empirical Kaplan-Meier Survival

Introduction	Background	Data and Methods	Results	Discussion	Reference
--------------	------------	------------------	---------	------------	-----------

Time

Thrills and Tears with Cure Survival Models

Thrills: less assumptions and minor computation problems

Tears: to overcome the naïve assumption for infinite failure time of the nonsusceptiple units

Limitations for parametric hazard functions

The complexity of the baseline hazard function (Crowther and Lambert, 2011)

- · beyond standard and sometimes biologically and implausible shapes
- · a turning point in the hazard function is observed
- · 2-component mixture distribution e.g. Weibull-Weibull-distribution

$$S_0(t) = p \exp(-\lambda_1 t^{\gamma_1}) + (1-p) \exp(-\lambda_2 t^{\gamma_2})$$

other distribution families also available

· Options in STATA

 STPM2: Stata module to estimate flexible parametric survival models (Royston-Parmar models) (updated by Lampert, 2012)

· STPM2 also used with single- or multiple- record (more generalized)

 STMIX: 2-component parametric mixture survival models (Crowther and Lambert, 2011)
 distribution choices includes Weibull-Weibull or Weibull-exponential

· STMIX can be used with single- or multiple-record

- References
- Craiu and Lee (2005): Model Selection for the Competing-Risks Model with and without masking. Technometrics, Vol.25, No.4, 457-467
- Leary MC, Caplan LR (2008): Cardioembolic stroke: An updated on etiology, diagnosis and management. Annuals Indian Academic Neurology, 11, 52-63
- Lu and Liang (2008): Analysis of competing risks data with missing cause of failure under additive hazard model. Statistica Sinica 18, 219-234.
- Crowther and Lampert (2011): Simulating complex survival data. Stata Nordic and Baltic Users' Group Meeting
- National Cancer Institute DCCPS Surveillance Research Programme, Surveillance, Epidemiology and End Results (SEER) Programme (www.cancer.seer.gov) Research Data (1973-2009) (Released April 2012)
- Louzda et al. (2012): The Long-Term Bivariate Survival FGM Copula Model: An Application to a Brazilian HIV Data. Journal of Data Science 10, 515-535
 - Roman et al. (2012): A New Long-Term Survival Distribution for Cancer Data. Journal of Data Science 10, 242-258
- Sen et al. (2010): A Bayesian approach to competing risks analysis with masked cause of death. Statistics in Medicine, 29, 1681-1695

Thank you for your attention

von behring | röntgen | stiftung

Mon, 7/30/2012, 8:30 AM - 10:20 AM CC-Room 24C

Biometrics Section

Advances in Modeling Competing Risks — Contributed Papers

