Bingo Pricing: a Game Simulation and Evaluation using the Derivatives Approach

Antonio Annibali

Francesco Bellini

University of Rome 'La Sapienza' Faculty of Economics
Department of Mathematics for Economic, Financial and Insurance Decisions
Via del Castro Laurenziano, 9 (00139) Roma / Italia
aannib@scec.eco.uniroma1.it
fbellini@scec.eco.uniroma1.it

Keywords: computation, nested arrays, game, probability, financial derivatives
JEL classification: Game Theory and Bargaining Theory (C7), Mathematical Methods and
Programming (C6)

1. Introduction

The Bingo game is well known and played all over the world. Its main feature is the sequential drawing without repetition of a set of numbers. Each of these numbers is compared to the numbers contained in the boxes printed on the different rows (and columns) of the score -cards owned by the Bingo participants. The winner will be the participant that firstly is able to check all the boxes (numbers) into a row (Line) or into the entire score-card (Bingo).
Assuming that the score-card has a predetermined purchase price and that the jackpot is divided into two shares, respectively for the Bingo and the Line winner, it is evident that all the score-cards show the same starting value (initial price).
After each drawing, every score-card will have different values (current price(s)) according with its probability to gain the Line and/or the Bingo. This probability depends from the number of checked boxes in the rows of the score-card and from the number of checked boxes in the rows of all the other playing scorecards.

The first aim of this paper is to provide the base data structure of the problem and to formalize the needed algorithms for the initial price and current price calculation. The procedure will evaluate the single scorecard and/or the whole set of playing score-cards according to the results of the subsequent drawings. In fact, during the game development and after each drawing, it will be possible to know the value of each scorecard in order to choose if maintain it or sell it out. The evaluation will work in accordance to the traditional Galilee's method of "the interrupted game jackpot repartition". This approach has been also mentioned by Blaise Pascal and Pierre de Fermat in their mail exchange about the "jackpot problem".

More advanced objective of the paper would be the application of the stock exchange techniques for the calculation of the future price of the score-card (and/or of a set of score-cards) that will have some checked numbers after a certain number of future drawings. In the same way will be calculated the value of the right to purchase or sell a score-card (and/or of a set of score-cards) at a pre-determined price (option price).
Especially during the prototyping phase, the modelling and the development of these kind of problems need the use of computational environments able to manage structured data and with high calculation skills.

The software that meet these requirements are APL, J^{TM} and Matlab ${ }^{\mathrm{TM}}$, as for their capability to use nested arrays and for the endogenous parallelism features of the programming environments.

In this paper we will show the above mentioned issues through the use of Apl2Win/IBM ${ }^{\text {TM }}$.
The formalisation of the game structure has been made in a general way, in order to foresee particular cases that act differently from the Bingo. In this way it is possible to simulate the traditional game with 90 numbers in the basket, 3 rows per 10 columns score-cards, 15 number for the Bingo and 5 numbers for the Line but already, for example, the Roulette with 37 (or 38) numbers, score-cards with 1 (or more) row and 1 column and Line with just 1 number.

2. Description of the game structure

In order to describe the game structure the following elements have been defined, in coherence with the variables used for the programming environment Apl2Win:

- NUM number of numbers contained in the Bingo basket
(i.e: 90 in the traditional Bingo game, 37 or 38 in the Roulette game)
- WUM number of numbers to be drawn
(i.e.: 90 in the Bingo game, 1 in the Roulette)
- ROW number of rows in a score-card
(i.e.: 3 in the Bingo game, 1 or more than 1 in the Roulette game, considering a single number or a predefined set of numbers, such as, for example, even numbers or odd numbers)
- COL range-width vector of the single columns in a score-card
(i.e.: $9,10,10,10,10,10,10,10,11$ in the Bingo game, 1 in the Roulette)
$N U M=\sum_{h=1}^{[C O L]}(C O L)_{h}$
being [COL] the number of columns
- LIN number of checked box for the Line win (i.e.: 5 in the Bingo game, 1 in the Roulette)
- BIN number of checked box for the Bingo win
(i.e.: 15 in the Bingo game)
$B I N=R O W \cdot L I N$
- SET number of score-cards in a score-cards subset
(i.e.: 6 in the Bingo game)
$S E T=\frac{N U M}{B I N}$
- NCA number of score cards participating to the game
- NDR vector of drawn number
$(N D R)_{h}$

$$
h=1,2, \ldots,[N D R] \leq W U M
$$

being [NDR] the number of drawn numbers

- CBB vector containing the number of checked box for each score-card participating to the game $(C B B)_{h} \mid[N D R] \quad h=1,2, \ldots, N C A$
- CBL matrix containing the number of checked box in the different rows for each score-card participating to the game
$(C B L)_{h, k} \mid[N D R]$

$$
h=1,2, \ldots, N C A ; k=1,2, \ldots, R O W
$$

being
$(C B B)_{h} \mid[N D R]=\sum_{k=1}^{R O W}\left((C B L)_{h, k} \mid[N D R]\right)$
$h=1,2, \ldots, N C A$

- NCB vector containing the number of playing score-cards, having a determined number of checked box
$(N C B)_{N N} \mid[N D R]=\sum_{h=1}^{N C A}\left((C B B)_{h} \mid[N D R]=N N\right) \quad N N=0,1, \ldots, B I N$ being

$$
\sum_{N N=0}^{B I N}\left((N C B)_{N N} \mid[N D R]\right)=N C A
$$

- NCL vector containing the number of rows in the playing score-cards, having a determined number of checked box
$(N C L)_{N N} \mid[N D R]=\sum_{k=1}^{N C A R O W} \sum_{k=1}\left((C B L)_{h, k} \mid[N D R]=N N\right)$
$N N=0,1, \ldots, L I N$
being

$$
\sum_{N N=0}^{L N}(N C L)_{N N} \mid[N D R]=N C A \cdot R O W
$$

- PRC purchase price of a single score-card
- MNT amount retained from the game organiser

$$
M N T=N C A \cdot P R C
$$

- ALPHA $\%$ of the gross jackpot for the Bingo winner
- BETA $\%$ of the gross jackpot for the Line winner
- MNB share of the jackpot for the Bingo winner

$$
M N B=M N T \cdot A L P H A
$$

- MNL share of the jackpot for the Line winner

$$
M N L=M N T \cdot B E T A
$$

- MNZ share of the jackpot for the winners

$$
M N Z=M N T \cdot(A L P H A+B E T A)
$$

- PRI initial price of a single playing score-card

$$
P R I=P R C \cdot(A L P H A+B E T A)
$$

3. Performing and evaluating the game

Considering the definition of generalised binomial coefficient
<1> $\binom{m}{n}=\frac{\prod_{j=1}^{n}(m-n+j)}{\prod_{j=1}^{n} j} \quad m, n \in \mathbb{N} \quad$ being $\binom{m}{n}=0$ if $(m<n)$,
the probability of the $\mathbf{1}$-nth score-card (sole competitor with $b_{1}(z)=(C B B)_{1} \mid[N D R]<b$ checked numbers after the drawing of $z=[N D R]$ numbers) to obtain the Bingo within the t -nth drawing results
<2> $\pi_{b_{1}}^{b}(z, t)=\frac{\binom{w-z-\left(b-b_{1}(z)\right)}{t-z-\left(b-b_{1}(z)\right)}}{\binom{w-z}{t-z}}=\frac{\binom{t-z}{b-b_{1}(z)}}{\binom{w-z}{b-b_{1}(z)}}$

$$
t=z+1, z+2, \ldots, w
$$

having indicated with $w=W U M$ and $b=B I N$ and being

$$
\pi_{b_{1}}^{b}(z, t)=0 \quad t=z+1, z+2, \ldots, z+b-b_{1}(z)-1
$$

and the probability of the above mentioned score-card to obtain the Bingo at the t-nth drawing results
<3> $p_{b_{1}}^{b}(z, t)=\pi_{b_{1}}^{b}(z, t)-\pi_{b_{1}}^{b}(z, t-1)=\frac{\binom{t-z}{b-b_{1}(z)}-\binom{t-z-1}{b-b_{1}(z)}}{\binom{w-z}{b-b_{1}(z)}}=\frac{\binom{t-z-1}{b-b_{1}(z)-1}}{\binom{w-z}{b-b_{1}(z)}} \quad t=z+1, z+2, \ldots, w$
being

$$
\begin{array}{lr}
p_{b_{1}}^{b}(z, t)=0 & t=z+1, z+2, \ldots, z+b-b_{1}(z)-1 \\
\pi_{b_{1}}^{b}(z, t)=\sum_{h=z+1}^{t} p_{b_{1}}^{b}(z, h) & t=z+1, z+2, \ldots, w
\end{array}
$$

and consequently the victory probability of the sole competitor is (obviously)
<4> $\sum_{t=z+b-b_{1}(z)}^{w} p_{b_{1}}^{b}(z, t)=\frac{\sum_{t=z+b-b_{1}(z)}^{w}\binom{t-z-1}{b-b_{1}(z)-1}}{\binom{w-z}{b-b_{1}(z)}}=\frac{\binom{w-z}{b-b_{1}(z)}}{\binom{w-z}{b-b_{1}(z)}}=w_{b_{1}}^{b}(z, w)=1$
Given a couple of score-cards (the 1-nth (playing with $b_{1}(z)<b$ checked number) and the $\mathbf{2}$-nth score-card (with $b_{2}(z)<b$ checked numbers)), the probability of the 1-nth score-card to obtain the Bingo at the t -nth drawing results
<5>

$$
p_{b_{1} \mid b_{1}, b_{2}}^{b}(z, t)=\left\{\begin{array}{c}
0 \\
p_{b_{1}}^{b}(z, t) \cdot\left(1-\pi_{b_{2}}^{b}(z, t)\right)
\end{array}\right.
$$

$$
\begin{gathered}
t=z+1, z+2, \ldots, z+b-b_{1}(z)-1 \\
t=z+b-b_{1}(z), z+b-b_{1}(z)+1, \ldots, w
\end{gathered}
$$

and similarly, the probability of the 2 -nth score-card to obtain the Bingo at the t-nth drawing results
<6>

$$
p_{b_{2} \mid b_{1}, b_{2}}^{b}(z, t)=\left\{\begin{array}{c}
0 \\
p_{b_{2}}^{b}(z, t) \cdot\left(1-\pi_{b_{1}}^{b}(z, t)\right)
\end{array} \quad \begin{array}{c}
t=z+1, z+2, \ldots, z+b-b_{2}(z)-1 \\
t=z+b-b_{2}(z), z+b-b_{2}(z)+1, \ldots, w
\end{array}\right.
$$

and, finally, the probability of both the score-card to obtain the Bingo at the t-nth drawing results <7>

$$
p_{b_{2} \phi_{2} \phi_{1} b_{2}}^{b}(z, t)=\left\{\begin{array}{c}
0 \\
p_{b_{1}}^{b}(z, t) \cdot p_{b_{2}}^{b}(z, t)
\end{array} \quad \begin{array}{c}
t=z+1, z+2, \ldots, z+b-\min \left(b_{1}(z) \mid b_{2}(z)\right)-1 \\
t=z+b-\min \left(b_{1}(z) \mid b_{2}(z)\right), \ldots, w
\end{array}\right.
$$

Distributing equally the probability of a simultaneous Bingo of both the score cards, the probability of the $\mathbf{1}$ nth score-card to obtain the Bingo at the t-nth drawing results
<8>

$$
p_{b_{1} \mid b_{1}, b_{2}}^{b}(z, t)=\left\{\begin{array}{c}
0 \\
p_{b_{1}}^{b}(z, t) \cdot\left(1-\pi_{b_{2}}^{b}(z, t)+\frac{p_{b_{2}}^{b}(z, t)}{2}\right)
\end{array} \quad \begin{array}{c}
t=z+1, z+2, \ldots, z+b-b_{1}(z)-1 \\
t=z+b-b_{1}(z), z+b-b_{1}(z)+1, \ldots, w
\end{array}\right.
$$

and similarly, the probability of the $\mathbf{2}$-nth score-card to obtain the Bingo at the t -nth drawing results
<9>

$$
p_{b_{2} \mid b_{1}, b_{2}}^{b}(z, t)=\left\{\begin{array}{c}
0 \\
p_{b_{2}}^{b}(z, t) \cdot\left(1-\pi_{b_{1}}^{b}(z, t)+\frac{p_{b_{1}}^{b}(z, t)}{2}\right)
\end{array}\right.
$$

$$
\begin{gathered}
t=z+1, z+2, \ldots, z+b-b_{2}(z)-1 \\
t=z+b-b_{2}(z), z+b-b_{2}(z)+1, \ldots, w
\end{gathered}
$$

and consequently the probability to win the Bingo for the 1 -nth score-card is
<10>

$$
\sum_{t=z+b-b_{1}(z)}^{w} p_{b_{1} b_{1}, b_{2}}^{b}(z, t)=\sum_{t=z+b-b_{1}(z)}^{w} p_{b_{1}}^{b}(z, t) \cdot\left(1-\pi_{b_{2}}^{b}(z, t)+\frac{p_{b_{2}}^{b}(z, t)}{2}\right)=\pi_{b_{1} \mid b_{1}, b_{2}}^{b}(z, w)
$$

and similarly the probability to win the Bingo for the 2-nth score-card is

$$
<11>\sum_{t=z+b-b_{2}(z)}^{w} p_{b_{2} b_{1}, b_{2}}^{b}(z, t)=\sum_{t=z+b-b_{2}(z)}^{w} p_{b_{2}}^{b}(z, t) \cdot\left(1-\pi_{b_{1}}^{b}(z, t)+\frac{p_{b_{1}}^{b}(z, t)}{2}\right)=\pi_{b_{2} b_{1}, b_{2}}^{b}(z, w)
$$

obviously resulting

$$
\pi_{b_{1} \mid b_{1}, b_{2}}^{b}(z, w)+\pi_{b_{2} \mid b_{1}, b_{2}}^{b}(z, w)=1
$$

Given a set of $\mathbf{N}=$ NCA score-cards (in which the \mathbf{h}-nth plays with $b_{h}(z)<b$ checked numbers), the probability of this score cards the obtain the Bingo at the t-nth drawing results
<12>

$$
p_{b_{h} \mid b_{1} b_{2}, \ldots b_{N}}^{b}(z, t)=\left\{\begin{array}{c}
0 \\
p_{b_{h}}^{b}(z, t) \prod_{j=1, j \neq h}^{N}\left(1-\pi_{b_{j}}^{b}(z, t)\right)
\end{array}\right.
$$

$$
\begin{gathered}
t=z+1, z+2, \ldots, z+b-b_{h}(z)-1 \\
t=z+b-b_{h}(z), z+b-b_{h}(z)+1, \ldots, w
\end{gathered}
$$

the probability of this score cards-the obtain the Bingo at the t-nth drawing, simultaneously with another playing score-card, results
<13> $p_{b_{h} \wedge b_{h_{2}} \mid b_{1}, b_{2}, \ldots b_{N}}^{b}(z, t)=\left\{\begin{array}{c}0 \\ p_{b_{h}}^{b}(z, t) \cdot p_{b_{b_{2}}}^{b}(z, t) \prod_{j=1, j \neq h, j \neq h_{2}}^{N}\left(1-\pi_{b_{j}}^{b}(z, t)\right)\end{array}\right.$

$$
\begin{gathered}
t=z+1, z+2, \ldots, z+b-\min \left(b_{h}(z) \mid b_{h_{2}}(z)\right)-1 \\
t=z+b-\min \left(b_{h}(z) \mid b_{h_{2}}(z)\right), \ldots, w
\end{gathered}
$$

the probability of the above mentioned score-cards the obtain the Bingo at the t -nth drawing, simultaneously with two other playing score-cards, results
$<14>p_{b_{h} \wedge b_{b_{2}} 火_{b_{3}} \mid b_{1} b_{2}, \ldots b_{N}}^{b}(z, t)=\left\{\begin{array}{c}0 \\ p_{b_{h}}^{b}(z, t) \cdot \prod_{j=2}^{3} p_{b_{h_{j}}}^{b}(z, t) \prod_{j=1, j \neq h, j \neq h_{2}, j \neq h_{3}}^{N}\left(1-\pi_{b_{j}}^{b}(z, t)\right)\end{array}\right.$

$$
\begin{gathered}
t=z+1, z+2, \ldots, z+b-\min \left(b_{h}(z) \mid b_{h_{j}}(z) ; j=2,3\right)-1 \\
t=z+b-\min \left(b_{h}(z) \mid b_{h_{j}}(z) ; j=2,3\right), \ldots, w
\end{gathered}
$$

and, finally, the probability of the entire set of score-cards to obtain the Bingo simultaneously at the tnth drawing, results
$<15>\quad p_{b_{1} \wedge b_{2} \wedge \ldots \wedge b_{N} b_{1} b_{2}, \ldots b_{N}}^{b}(z, t)=\left\{\begin{array}{c}0 \\ \prod_{j=1}^{N} p_{b_{j}}^{b}(z, t) \\ t=z+1, z+2, \ldots, z+b-\min \left(b_{j}(z) ; j=1,2, \ldots, N\right)-1 \\ t=z+\min \left(b_{j}(z) ; j=1,2, \ldots, N\right), \ldots, w\end{array}\right.$
Distributing equally the probability of a simultaneous Bingo for every score-cards, the probability that the \mathbf{h} nth score-card to obtain the Bingo at the t-nth drawing, results
$<16>p_{b_{h} \mid b_{1} b_{2}, \ldots b_{N}}^{b}(z, t)=\left\{\begin{array}{c}0 \\ p_{b_{h}}^{b}(z, t) \prod_{j=1, j \neq h}^{N}\left(1-\pi_{b_{j}}^{b}(z, t)\right)+\sum_{k=2}^{N} \sum_{h_{2}, h_{3}, \ldots, h_{k}}^{N\binom{N-1}{k-1}} \frac{p_{b_{h}}^{b} \wedge b_{b_{2}} \wedge \ldots, b_{h_{k}, p_{1}, b_{2}, \ldots b_{N}}^{b}(z, t)}{k}\end{array}\right.$

$$
\begin{gathered}
t=z+1, z+2, \ldots, z+b-b_{h}(z)-1 \\
t=z+b-b_{h}(z), z+b-b_{h}(z)+1, \ldots, w
\end{gathered}
$$

and consequently the probability to win the Bingo for the h -nth score-card is
$<17>\sum_{t=z+b-b_{h}(z)}^{w} p_{b_{h} \mid b_{1}, b_{2}, \ldots b_{N}}^{b}(z, t)=\sum_{t=z+b-b_{h}(z)}^{w} p_{b_{h}}^{b}(z, t) \prod_{j=1, j \neq h}^{N}\left(1-\pi_{b_{j}}^{b}(z, t)\right)+$

$$
+\sum_{k=2}^{N} \sum_{h_{2}, b_{3}, \ldots, h_{k}}^{\binom{N-1}{k-1}} \frac{p_{b_{h} \wedge b_{b_{2}} \wedge \ldots, \wedge b_{b_{k}} \mid b_{1}, b_{2}, \ldots b_{N}}^{b}(z, t)}{k}=\pi_{b_{h} b_{1}, b_{2}, \ldots b_{N}}^{b}(z, w)
$$

$$
h=1,2, \ldots, N
$$

obviously resulting

$$
\sum_{h=1}^{N} \pi_{b_{h} \mid b_{1}, b_{2}, \ldots b_{N}}^{b}(z, w)=1
$$

Indicating with $\mathrm{R}=\mathrm{ROW}$ the number of rows in a score-card and similarly to the process described before, the probability to obtain the Line win for the knth row in the hnth score-card (playing with $l_{h, k}(z)<l$ checked numbers) is
<18>

$$
\pi_{l_{h, k} l_{1,1,}, l_{1,2}, \ldots l_{N, R}}(z, w)
$$

$$
h=1,2, \ldots, N ; k=1,2, \ldots R
$$

having indicated with $l=L I N$ and being

$$
\sum_{h=1}^{N} \sum_{k=1}^{R} \pi_{l_{h, k} l_{1,1} f_{, 2}, \ldots l_{N, R}}^{l}(z, w)=1
$$

Starting from the initial price of each score-card participating to the game
<19> $P R I=P R C \cdot(A L P H A+B E T A)$
the current price of the \mathbf{h}-nth score-card (playing, after the drawing of z numbers, with $l_{h, k}(z)<l \mid k=1,2, \ldots, R$ checked numbers on the rows and $b_{h}(z)=\sum_{k=1}^{R} l_{h, k}<b$ checked numbers on the scorecard) results
<20> $\quad P R V_{h}=P R C \cdot N C A \cdot\left(A L P H A \cdot \pi_{b_{h} l_{1}, b_{2}, \ldots b_{N}}^{b}(z, w)+B E T A \cdot \sum_{k=1}^{R} \pi_{l_{h, k} l_{1,1} l_{1}, \ldots, l_{N, R}}^{l}(z, w)\right)$

$$
h=1,2, \ldots, N
$$

4. Future and option pricing

The model for the calculation of the current price, shown in the last relation < 20>, can be used for the calculation of the future price of a score-card with a certain situation of checked numbers (on the different rows) after a certain number of drawings. At the same time it can be calculated the option price that provides the right to buy or sell (call or put) the score-card at a pre-determined price. This can be obtained in the following way:

- starting from the overall situation of checked boxes for the whole set of score-cards after z drawings, it is necessary to build up the model describing the future evolution of the scenario,
- with reference to the future time for the exercise of the future or the option it is needed to estimate the random variable "future" current price for the observed score-card,
- on the base of the defined random variable, it is possible to calculate (for example, using the appropriate mean) the future price and the option price of the score-card,
- at the future time, with the evolved game status, the contracts can be executed or the following differences can be settled.

APPENDIX

The appendix describes the game simulation using the Apl2Win/IBM ${ }^{\text {TM }}$ programming environment.
The game structure is ruled from the function RULE, that enables to build up the game rules array through the following input parameters:

```
WUM number of numbers to be drawn
ROW number of rows in a score-card
LIN number of checked box for the Line win
COL vector of the col um numbers range-witdth in a score
    -card, being ECOL the number of colums
```

and the set up of further game parameters:

```
NUMR+/ COL numbers of numbers in the Bi ngo basket
BI N\OmegaROW LIN number of checked box for the Bi ngo win
SET\OmegaNUM^BIN number of score-cards in a subset
```

```
[0] RUL\OmegaWRL RULE COL; NUM; WUM; ROW LI N; BI N; SET
[ 1] (WUM ROW LI N) \OmegaWRL
[ 2] SET\Omega( NUM\Omega+/ COL) ^BI N\OmegaROW LI N
[ 3] RUL\OmegaNUM WUM ROW, COL) LI N BI N SET
```

The set up of the playing score-cards can be done in two different ways:
a) creation of a set of score-cards,
b) creation of a set with a number of score-cards subsets.

The creation of the set a) is possible through the derivative function (RUL CARDS) obtained by applying the operator CARDS to the game rules array.
The function (RUL CARDS) uses the function WCARD (and the function WWCARD).
[0] CARS(RUL CARDS) NUN
[1] CAR』(Ï ÊCAR) , CAR』WCARD، NUNÊ, RUL

```
[0] WCA\OmegaWCARD RUL; NUM; ROW, COL; LI N; DRW
[1] (NUM ROW COL LIN) \Omega1 3 4 5n,.,RUL
[ 2] WCA\OmegaDRW, , 1++/ (DRK\OmegaNUM? NUM) - . >+\ COL
[ 3] WCA\Omega1 „. . 1 «,"WWCARD/ (ROWÊ, Ï 0) , , , , WCA
[ 4] WCA\Omega(, ` WCA)". WCA
```

```
[0] WCA\OmegaNUL WWCARD CAR; DRW, I NT; MSK; DRZ
[ 1] MSK\Omega( I NTİ̈ I NT) =ï Êl NT\Omega2 ,, DRK\Omega1,,CAR
[ 2] MSK\OmegaMSK\LI NÚ`,( MSK/I NT) „., COL
[ 3] WCA\OmegaCAR,,DRZ\OmegaMSK/ DRW
[ 4] COL\OmegaCOL-(Ï ÊCOL)Ó2", DRZ
[ 5] (1„WCA) \Omega( ~MSK) / DRW
```

The creation of the set b) (corresponding to a number of score-cards equal to the number of subset multiplied for the number of score-cards contained in every subset) is possible through the derivative function (RUL SETS) obtained by the application of the SETS operator on the game rules array.
The function (RUL SETS) uses the function WSETS (and function WCARD (and function WWCARD).

$[0]$	SER Ω (RUL SETS) NUN
$[1]$	SER (Ï ÊSER) , , SER $\Omega,,, ~ / ~ W S E T, ~ N U N E ̂, ~ R U L ~$

[0] WSESWSET RUL; ROW, SET

[2] WSEQ(ROW Ï SET), WCARD RUL

It is possible to determine the subset of score-cards participating to the game through the function SUB, that draws a subset of score-cards from the set built up through the function (RUL CARDS) or through the function (RUL SETS).
The SUB function uses the WONLY and WSORT functions.
[0] SUB 0 NCA SUB CAR
[1] SUB』(WSORT WONLY NCA) „., CAR

```
[0] WON\OmegaWONLY ARR
[ 1] WON\Omega(( ARRÏ ARR) =Ï ÊARR) / ARR\Omega, ARR
```

[0] WSORWSORT ARR
[1] $\mathrm{WSO} O\left(,{ }^{\circ}\right.$ ARR) "ARR Ω, ARR

It is possible to determine the subset of the score-cards participating to the game (randomly drawn) through the function XSUB, that performs the random drawing of a pre-defined number of scorecards from the set built up through the function (RUL CARDS) or the function (RUL SETS).
The function XSUB uses the function WSORT.

```
[0] SUB\OmegaNCA XSUB CAR
[1] SUB\Omega( WSORT NCA?ÊCAR) .., CAR
```

The START function prepares the execution of the game using the game rules array and the set of participating score-cards. The function defines the arrays that will contain the information on the game development (distribution of score-cards and lines in relation to the checked drawn numbers).
The START function uses the operator XPOINT (and operator XDRAW and function WPOINT (and function WFREQ)) and the function DISP.

| $[0]$ | RUL START CAR |
| :--- | :--- | :--- |
| $[1]$ | DI SP \quad XPNT $\Omega($ (XRUL $\Omega R U L) \times$ XPOI NT \quad XCAR $\Omega C A R) 0$ |

[0] PNT $\Omega($ RUL XPOI NT CAR) NDR; DRN; DRW, NUW
[1] (DRN DRW) Ω (RUL XDRAW) NDR
[2] PNT Ω, , (NUW 20 , Ï ÊDRW) $\Delta_{\text {، }}$, DRW) WPOI NT , , CAR
[3] PNT Ω (, DRN DRW), NUW, . PNT
[0] DRWQ(RUL XDRAW) NDR; NUM; WUM
[1] (NUM WUM) $\Omega 1$ 2,., RUL
[2] DRW 2 NDR, , (NDR』NDRæWUM) $\triangle W U M$? NUM
[0] WPN日DRW WPOI NT CAR; LI N; BI N; PBN; PLN
[1] (LIN BI N) $\Omega 5$ 6,., RUL
[2] PBN $\Omega+/$, $P L N \Omega+/$. (1 «. CAR) Óc ., DRW
[3] $W P N \Omega(B I N$ WFREQ PBN), LI N WFREQ PLN
[0] WFRQBLX WFREQ PNX
[1] $W F R \Omega,+/(0, I ̈ B L X)^{-}$. =ÓPNX

$[0]$	DI S Ω DI SP ARR
$[1]$	DI S SDI SPLAYÌ (1, ÊARR) ÊARR

The game evolution is controllable through the GAME function that updates the arrays created with the START function on the base of the game rules after the drawing of a number.

The GAME function uses the operator POINT (and operator WDRAW (and function WONLY) and function WPOINT (and function WFREQ)) and the function DISP.

$[0]$	GAME	NDR		
$[1]$	DI SP	XPNT Ω XPNT(XRUL	POI NT	XCAR) NDR

$[0]$	PNT Ω PNZ(RUL POI NT CAR) NDR; DRN; DRW
$[1]$	(DRN DRW $\Omega(1 „$ PNZ) (RUL WDRAW) NDR
$[2]$	PNT Ω, DRN DRW) , DRN, (, DRW) WPOI NT CAR

```
[0] DRW@DRZ( RUL WDRAW) NDR; NUM
[ 1] DRW\OmegaWONLY( 2,2ÊDRZ),NDRæNUM21,,RUL
[ 2] DRW\Omega( ÊDRW), , DRW\Omega(( NDRÙO) । ÊDRW ÊDRW
```

The game evolution can be already obtained automatically through the function GAMEE, that, like GAME, generates the arrays update after the drawing of a random number always in accordance to the current game rules.

The GAMEE function uses the GAME function (and operator POINT (and operator WDRAW (and function WONLY) and function WPOINT (and function WFREQ)) and function DISP).

```
[0] GAMEE; NDR
[ 1] GAME( ?ÊNDR) „NDR\Omega(Ï 1,"XRUL) ~2 „1"XPNT
```

Finally the game evolution can be generated, automatically and globally, through the XGAME function that, starting from the game rules array and like GAME and GAMEE, performs the arrays update after a global random drawing of a fixed number of numbers.
The function XGAME uses the operator XPOINT (and the operator XDRAW and the function WPOINT (and function WFREQ)) and the function DISP.

```
[0] XGAME NDR
[ 1] DI SP XPNT\Omega( XRUL XPOI NT XCAR) NDR
```

Assuming that the game is characterised from the following parameter definitions:

- number of the playing score-cards
- cost of a single score-card
- $\quad \%$ of the gross jackpot for the Bingo winner
- $\quad \%$ of the gross jackpot for the Line winner the following values will result at the starting time:
- amount retained from the game organiser
- prize-money for the Bingo winner
- prize-money for the Line winner
- initial price of each playing score-card

NCA
PRC
ALPHA
BETA

MNT Ω NCAI PRC
MNTI ALPHA
MNTI BETA
PRCI (ALPHA+BETA)

During the game it is possible to calculate the current price of each score-card taking into account the number of checked boxes in every row of it and in every row of each score-card.
The problem could be faced in the analytical way, but, according to the function previously described, it is preferable to use the following numeric-simulative approach.

The existing game situation can be considered as follows:

- vector of the drawn numbers
- partition of the playing score-cards subset into equivalence classes, as result of the equality between the checked boxes vector (with ROWcomponents) related to every score-card
- definition of the equivalence classes number and numerousness of each class

After the simulation of the following game development for a number of times "big enough" (until the end of the game and in any case not further the number WMM of foreseen drawings), it is possible to consider the following status:

- definition of the eventual Line or Bingo prize-money for every simulation and every equivalence class
- definition of the average prize-money for every equivalence class
- definition of the average prize-money for each score-card in every equivalence class, dividing the average prize-money of the equivalence class to the numerousness of the class
The current price of each score-card type can be considered equal to the average prize-money of the equivalence class in which the score card is included.

Bibliography

- A. Annibali/F. Bellini - Bingo Pricing: a Game Simulation and Evaluation using APL - APL 2002 Conference, Madrid
- J.A.Brown/S.Pakin/R.P.Polivka - APL2 at a glance - Prentice Hall
- N.D.Thompson/R.P.Polivka - Ap12 in depth - Springer Verlag
- W.Feller - An introduction to probability theory and its applic 14tions - Wiley
- E. Parzen - Modern probability and its applications - Wiley
- A.Papoulis - Probability, random variables, stochastic processes - McGraw Hill
- R.Graham/D.E.Knuth/O.Patashnik - Concrete mathematics - Addison Wesley
- D.E.Knuth - The art of computer programming - Addison Wesley
- I.B.M. - Apl2 Programming: Language Reference
- I.B.M. - Apl2 Programming: User's Guide

