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Abstract

We present three approaches to value American continuous-installment calls and

puts and compare their computational precision. In an American continuous-installment

option, the premium is paid continuously instead of up-front. At or before maturity,

the holder may terminate payments by either exercising the option or stopping the

option contract. Under the usual assumptions, we are able to construct an instanta-

neous riskless dynamic hedging portfolio and derive an inhomogeneous Black-Scholes

partial differential equation for the initial value of this option. This key result allows

us to derive valuation formulas for American continuous-installment options using the

integral representation method and consequently to obtain closed-form formulas by

approximating the optimal stopping and exercise boundaries as multipiece exponen-

∗We are grateful to Manfred Gilli, Henri Loubergé and Evis Këllezi for encouragements, suggestions and
remarks.
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tial functions. This process is compared to the finite-difference method to solve the

inhomogeneous Black-Scholes PDE and a Monte Carlo approach.

1 Introduction

In a conventional American-style option contract, the buyer pays the premium entirely up-

front and acquires the right, but not the obligation, to exercise the option at any time up

to a fixed maturity time T . Here we consider an alternative form of American-style option

contract in which the buyer pays a smaller up-front premium and then a constant stream of

installments at a certain rate per unit time. However, the buyer can choose at any time to

stop making installment payments either by exercising the option or by stopping the option

contract.

There is little literature on installment options. Davis et al. (2001, 2002) derive no-

arbitrage bounds for the initial premium of a discretely-paid installment option and study

static versus dynamic hedging strategies within a Black-Scholes framework with stochastic

volatility. Their analysis is restricted to European-style installment options, which allows

for an analogy with compound options, previously considered in Geske (1977) and Selby

and Hodges (1987). Davis et al. (2003) values venture capital using an analogy with the

installment option. Ben-Ameur et al. (2004) develops a dynamic-programming procedure

to price American-style installment options and derive some theoretical properties of the

installment option contract within the geometric Brownian motion framework. Their ap-

proach is applied to installment warrants, which are actively traded on the Australian Stock

Exchange. Finally, Wystup et al. (2004) compares pricing techniques for installment options

written on exchange rates.

The aim of this paper is to present three alternative approaches for valuing American

continuous-installment calls and puts and to compare their computational advantages. In

Section 2, we formulate the American continuous-installments option valuation problem as

a free boundary-value problem and obtain an analytic solution by utilizing the results in

Carr et al. (1992), Jacka (1991) and Kim (1990)1. In Section 3, we describe in detail the

alternative approaches. Numerical results are compared in Section 4. Section 5 concludes.
1We are grateful to Steward Hodges for suggesting this approach.
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2 American Continuous-Installment Options

The particular feature of the pricing problem of an American continuous-installment option

is the determination, along with the initial premium and the optimal exercise boundary, of

a further boundary called the optimal stopping boundary.

2.1 Black-Scholes PDE for Continuous-Installment Options

We assume the standard model for perfect capital markets, continuous trading, no-arbitrage

opportunities, a constant interest rate r > 0, and an asset paying continuous proportional

dividends δ > 0 with price St following a geometric Brownian motion

dSt = µSt dt + σSt dBt , (1)

where µ = (r − δ) and dBt is a Wiener process on a risk-neutral probability space. The

Black-Scholes initial premium V of a continuous-installment option

Vt = V (St, t; q) (2)

depends on the current value of the underlying asset St, time t, and the continuous install-

ment rate q. Applying Itô’s Lemma to (2) we obtain the dynamics for the initial value of

this option

dVt =
(∂Vt

∂t
+ µSt

∂Vt

∂S
+

1
2

σ2S2
t

∂2Vt

∂S2
− q

)
dt + σSt

∂Vt

∂S
dBt . (3)

The only difference in expression (3) relative to the standard Black-Scholes framework is

the presence of the constant rate q that has to be paid to stay in the option contract.

We now construct the replicating portfolio consisting of one continuous-installment op-

tion and an amount −Φ of the underlying asset. The value of this portfolio is

Πt = Vt − ΦSt

and its dynamics is given by

dΠt = dVt − ΦdSt − Φ(Stδdt) .
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Putting (1) and (3) together, we get

dΠt =
(

µSt

(∂Vt

∂S
− Φ

)
+

∂Vt

∂t
+

1
2

σ2S2
t

∂2Vt

∂S2
− q − ΦSt δ

)
dt + σSt

(∂Vt

∂S
− Φ

)
dBt .

Setting Φ = ∂Vt

∂S the coefficient of dBt vanishes. The portfolio is instantaneously riskless

and, to avoid arbitrage opportunities, must yield return r. So we must have

r

(
Vt − ∂Vt

∂S
St

)
=

(
∂Vt

∂t
+

1
2
σ2S2

t

∂2Vt

∂S2
− q − ∂Vt

∂S
St δ

)
.

Rearranging this equation gives the inhomogeneous Black-Scholes PDE for the initial pre-

mium of a continuous-installment option

∂Vt

∂t
+ µSt

∂Vt

∂S
+

1
2

σ2S2
t

∂2Vt

∂S2
− rVt = q . (4)

2.2 Valuation of American Continuous-Installment Calls

Consider an American continuous-installment call on St with strike price K and maturity

time T . We denote the initial premium of this call at time t by C(St, t; q), defined on the

domain D = {(St, t) ∈ [0,∞[×[0, T ]}. For each time t ∈ [0, T ], there exists an upper critical

asset price Bt above which it is optimal to stop the installment payments by exercising the

option early, as well as a lower critical asset price At below which it is advantageous to

terminate payments by stopping the option contract. According to these upper and lower

critical asset prices the initial premium C(St, t; q) is

C(St, t; q) = (St −K)+ if St ∈ [0, At] ∪ [Bt,∞[ (5)

C(St, t; q) > (St −K)+ if St ∈ ]At, Bt[ . (6)

The stopping and exercise boundaries are the time paths of lower and upper critical asset

prices At and Bt, for t ∈ [0, T ], respectively. These boundaries divide the domain D into

a stopping region D1 = {(St, t) ∈ [0, At] × [0, T ]}, a continuation region D2 = {(St, t) ∈
]At, Bt[×[0, T ]}, and an exercise region D3 = {(St, t) ∈ [Bt,∞[×[0, T ]}.

To ensure that the fundamental constraint C(St, t; q) ≥ (St−K)+ is satisfied in the do-

main D, equation (5) impose that, in the stopping and exercise regions, the initial premium
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C(St, t; q) equals to the option payoff (St−K)+. By contrast, the inequality expressed in (6)

shows that, in the continuation region, it is advantageous to continue paying the installment

premiums since the call is worth more alive than dead. The initial premium is given by (5) if

the asset price starts either in D1 or D3, so we assume that the call is alive at the valuation

time 0, i.e., A0 < S0 < B0.

The initial premium C(St, t; q) of the American continuous-installment call satisfies the

inhomogeneous Black-Scholes PDE (4) in D2; that is,

∂C(St, t; q)
∂t

+ µSt
∂C(St, t; q)

∂S
+

1
2
σ2S2

t

∂2C(St, t; q)
∂S2

− rC(St, t; q) = q on D2. (7)

Extending the analysis of McKean (1965), we determine that C(St, t; q) and the stopping

and exercise boundaries At and Bt jointly solve a free boundary-value problem consisting

of (7) subject to the following final and boundary conditions:

C(ST , T ; q) = (ST −K)+ (8)

lim
St↓At

C(St, t; q) = 0 (9)

lim
St↓At

∂C(St, t; q)
∂S

= 0 (10)

lim
St↑Bt

C(St, t; q) = Bt −K (11)

lim
St↑Bt

∂C(St, t; q)
∂S

= 1 . (12)

The value matching conditions (9) and (11) imply that the initial premium is continuous

across the stopping and exercise boundaries, respectively. Furthermore, the high contact

conditions (10) and (12) further imply that the slope is continuous. Equations (9–12) are

jointly referred to as smooth fit conditions and ensure the optimality of the stopping and

exercise boundaries.

We solve this problem with the integral representation method introduced in Carr et al.

(1992), Jacka (1991) and Kim (1990). Ziogas et al. (2004) presents a survey of the methods

for deriving the various integral representations of American option prices.

Let Z(St, t) ≡ e−rt C(St, t; q) be the discounted initial premium function of the Amer-

ican continuous-installment call, defined in the domain D. In this domain, the function

Z(St, t) inherits the properties of the initial premium function C(St, t; q), i.e., it is a convex
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function in St for all t, continuously differentiable in t for all St and a.e. twice continuously

differentiable in St for all t. Applying Itô’s Lemma to Z(St, t) yields

Z(ST , T ) = Z(S0, 0) +
∫ T

0

∂Z(St, t)
∂S

dSt +
∫ T

0

(
σ2

2
S2

t

∂2Z(St, t)
∂S2

+
∂Z(St, t)

∂t

)
dt.

In terms of C(St, t; q) this means

e−rT C(ST , T ; q) = C(S0, 0; q) +
∫ T

0

e−rt ∂C(St, t; q)
∂S

dSt

+
∫ T

0

e−rt

(
σ2

2
S2

t

∂2C(St, t; q)
∂S2

− r C(St, t; q) +
∂C(St, t; q)

∂t

)
dt.

From (8) we know that C(ST , T ; q) = (ST −K)+ and, separating the initial premium into

C(St, t; q) = 1{At<St<Bt} C(St, t; q) + 1{St≥Bt} (St −K), we have

e−rT (ST −K)+ = C(S0, 0; q)

+
∫ T

0

e−rt

(
1{At<St<Bt}

∂C(St, t; q)
∂S

+ 1{St≥Bt}

)(
µStdt + σStdBt

)

+
∫ T

0

e−rt1{At<St<Bt}

(
σ2

2
S2

t

∂2C(St, t; q)
∂S2

− r C(St, t; q) +
∂C(St, t; q)

∂t

)
dt

+
∫ T

0

e−rt1{St≥Bt}
(
− r(St −K)

)
dt .

On the continuation region, the initial premium function C(St, t; q) satisfies the inhomoge-

neous Black-Scholes PDE (7), so the terms multiplying 1{At<St<Bt} sum to q. Using this,

and taking expectations, reduces the above equation to

c0 ≡ E
[
e−rT (ST −K)+

]
= C(S0, 0; q) + q

∫ T

0

e−rt
(
N

(
d2(S0, At, t)

)−N
(
d2(S0, Bt, t)

))
dt

+
∫ T

0

e−rt
(
− δS0 e(r−δ)tN

(
d1(S0, Bt, t)

)
+ rKN

(
d2(S0, Bt, t)

))
dt.

By rearranging this expression, we obtain the integral representation for the initial premium

of the American continuous-installment call:

C(S0, 0; q) = c0 +
∫ T

0

(
δS0e

−δtN
(
d1(S0, Bt, t)

)
+ (q − rK)e−rtN

(
d2(S0, Bt, t)

))
dt

− q

∫ T

0

e−rtN
(
d2(S0, At, t)

)
dt , (13)
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where

d1(x, y, t) =
ln(x/y) + (r − δ + σ2/2)t

σ
√

t
and d2(x, y, t) = d1(x, y, t)− σ

√
t

and c0 is the Black-Scholes/Merton European call pricing formula.

Equation (13) expresses the initial premium of an American continuous-installment call

as the sum of the corresponding European call value, the early exercise premium, and

the expected present value of installment payments along the optimal stopping boundary.

The early exercise premium can be viewed as the value of a contingent claim that allows

interest earned on the strike price, decreased by the installment premium, to be changed for

dividends paid by the asset whenever the asset price is above the optimal exercise boundary.

The optimal stopping boundary At is implicitly defined by the following integral equa-

tion:

0 = ct

(
At,K, T − t

)

+
∫ T

t

(
δAte

−δ(s−t)N
(
d1(At, Bs, s− t)

)
+ (q − rK)e−r(s−t)N

(
d2(At, Bs, s− t)

))
ds

− q

∫ T

t

e−r(s−t)N
(
d2(At, As, s− t)

)
ds . (14)

Equation (14) reflects the fact that the initial premium of an American continuous-installment

call at the time of optimal stopping is equal to the option payoff, which is zero. Similarly, ap-

plying the boundary condition (11), we obtain the integral equation satisfied by the optimal

exercise boundary Bt:

Bt −K = ct

(
Bt, K, T − t

)

+
∫ T

t

(
δBte

−δ(s−t)N
(
d1(Bt, Bs, s− t)

)
+ (q − rK)e−r(s−t)N

(
d2(Bt, Bs, s− t)

))
ds

− q

∫ T

t

e−r(s−t)N
(
d2(Bt, As, s− t)

)
ds . (15)

This suggests that the initial premium of American continuous-installment calls should be

computed in two steps. In the first, (14) and (15) are solved for At and Bt, respectively.

Given the optimal stopping and exercise boundaries, (13) is solved next. Unfortunately,

direct solutions for the integral equations (14) and (15) are not possible. According to

Kolodner (1956), these are Volterra integral equations and can only be solved numerically.
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In Section 3.1, we present a numerical approximation method for solving (13) directly in

closed form.

2.3 Valuation of American Continuous-Installment Puts

For the valuation of an American continuous-installment put we proceed in the same way

as for the call. We denote by P (St, t; q), defined on the same domain D, the initial premium

function of the American continuous-installment put.

For each time t, there must be a lower critical asset price Ft below which it is optimal

to terminate payments by exercising the option, as well as an upper critical asset price Gt

above which it is advantageous to terminate payments by stopping the option contract. The

exercise and stopping boundaries, which are the time paths of lower and upper critical asset

prices Ft and Gt, divide the domain D into an exercise region D̃1 = {(St, t) ∈ [0, Ft]×[0, T ]},
a continuation region D̃2 = {(St, t) ∈ ]Ft, Gt[×[0, T ]}, and a stopping region D̃3 = {(St, t) ∈
[Gt,∞[×[0, T ]}.

The initial premium function P (St, t; q) satisfies the inhomogeneous Black-Scholes PDE

in the continuation region D̃2; that is,

∂P (St, t; q)
∂t

+ µSt
∂P (St, t; q)

∂S
+

1
2
σ2S2

t

∂2P (St, t; q)
∂S2

− rP (St, t; q) = q on D̃2 , (16)

subject to the following terminal and boundary conditions

P (ST , T ; q) = (K − ST )+ (17)

lim
St↓Ft

P (St, t; q) = K − Ft (18)

lim
St↓Ft

∂P (St, t; q)
∂S

= −1 (19)

lim
St↑Gt

P (St, t; q) = 0 (20)

lim
St↑Gt

∂P (St, t; q)
∂S

= 0 . (21)

By applying the results of the previous section, the solution to the free boundary-value
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problem (16–21) is

P (S0, 0; q) = p0 +
∫ T

0

(
(q + rK) e−rtN

(− d2(S0, Ft, t)
)− S0δ e−δtN

(− d1(S0, Ft, t)
))

dt

− q

∫ T

0

e−rtN
(− d2(S0, Gt, t)

)
dt . (22)

Using the property of the normal cdf, we can rewrite the equation (22) as

P (S0, 0; q) = p0 +
1
r

(
q + rK

)(
1− e−rT

)
− S0

(
1− e−δT

)

+
∫ T

0

(
S0δ e−δtN

(
d1(S0, Ft, t)

)− (q + rK) e−rtN
(
d2(S0, Ft, t)

))
dt

− q

r

(
1− e−rT

)
+ q

∫ T

0

e−rtN
(
d2(S0, Gt, t)

)
dt . (23)

Applying the boundary conditions (18) and (20), we obtain the integral equations for Ft

and Gt:

(K − Ft) = pt

(
Ft,K, T − t

)
+

1
r

(
q + rK

)(
1− e−r(T−t)

)
− Ft

(
1− e−δ(T−t)

)

+
∫ T

t

(
Ftδ e−δ(s−t)N

(
d1(Ft, Fs, s− t)

)− (q + rK) e−r(s−t)N
(
d2(Ft, Fs, s− t)

))
ds

− q

r

(
1− e−r(T−t)

)
+ q

∫ T

t

e−r(s−t)N
(
d2(Ft, Gs, s− t)

)
ds , (24)

0 = pt

(
Gt,K, T − t

)
+

1
r

(
q + rK

)(
1− e−r(T−t)

)
−Gt

(
1− e−δ(T−t)

)

+
∫ T

t

(
Gtδ e−δ(s−t)N

(
d1(Gt, Fs, s− t)

)− (q + rK) e−r(s−t)N
(
d2(Gt, Fs, s− t)

))
ds

− q

r

(
1− e−r(T−t)

)
+ q

∫ T

t

e−r(s−t)N
(
d2(Gt, Gs, s− t)

)
ds . (25)

3 Numerical Methods

Here we present the three alternative approaches to value the American continuous-installment

options. First we implement the valuation formulas derived in Section 2 using the multipiece

exponential function method of Ju (1998). Second the finite-difference method for solving

the inhomogeneous Black-Scholes PDE is presented. Finally, we consider a Monte Carlo

method.
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3.1 Implementation of the Valuation Formulas by the Multipiece

Exponential Function (MEF) Method

Once the integral equations defining the optimal stopping and exercise boundaries are solved,

the computation of the initial premium simply implies numerical integration. Unfortunately,

these integral equations cannot be solved explicitly. However, there is a special feature of

equations (13) and (23) that has been investigated in the literature. Noting that the exercise

boundary appears only as an argument to the logarithm function in the definitions of d1(·)
and d2(·), Ju (1998) argues that the integral equation for the American put value does

not depend on the exact values of the exercise boundary critically. Making use of this

property and approximating the boundary as a multipiece exponential function, he obtains

a closed-form formula for pricing American-style options.

To extend the approach in Ju (1998), hereafter called the Multipiece Exponential Func-

tion (MEF) method, we divide the interval [0, T ] into M equal time intervals and define

tj = j T/M , j = 1, 2, . . . ,M . Let CCI be the approximated initial premium of an American

continuous-installment call corresponding to the approximated optimal stopping and exer-

cise boundaries by M -piece exponential functions Aj e ajt and Bj e−bjt, for j = 1, 2, . . . ,M ,

respectively. Then CCI is given by

CCI =





0 if S0 ≤ AM

C
(
M, S0, A, B, a, b, φ, ν, T

)
if AM < S0 < BM

S0 −K if S0 ≥ BM ,

(26)

where

C
(
j, x, A,B, a, b, φ, ν, τ

)
= c(x,K, τ)− q

j∑

i=1

I
(
ti−1, ti, x, Aj−i+1e

aj−i+1(T−τ), aj−i+1,−1, r
)

+
(

x

j∑

i=1

δ I
(
ti−1, ti, x, Bj−i+1e

−bj−i+1(T−τ),−bj−i+1, 1, δ
)

+ (q − rK)
j∑

i=1

I
(
ti−1, ti, x,Bj−1+1e

−bj−i+1(T−τ),−bj−i+1,−1, r
))

.

To determine the coefficients Aj , aj , Bj and bj , j = 1, 2, . . . , M , we apply the value-match
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and high-contact conditions (9–12) at each time step tj . This yields





C
(
j, Aj eaj(T−tj), A, B, a, b, φ, ν, tj

)
= 0

Cx

(
j, Aj eaj(T−tj), A, B, a, b, φ, ν, tj

)
= 0

C
(
j, Bj e−bj(T−tj), A, B, a, b, φ, ν, tj

)
= Bj e−bj(T−tj) −K

Cx

(
j, Bj e−bj(T−tj), A, B, a, b, φ, ν, tj

)
= 1 ,

(27)

where

Cx

(
j, x, A,B, a, b, φ, ν, τ

)
= e−δτ N

(
d1(x,K, τ)

)

−q

j∑

i=1

Ix

(
ti−1, ti, x, Aj−i+1e

aj−i+1(T−τ), aj−i+1,−1, r)

+
j∑

i=1

δI
(
ti−1, ti, x, Bj−i+1e

−bj−i+1(T−τ),−bj−i+1, 1, δ
)

+ x

j∑

i=1

δIx

(
ti−1, ti, x, Bj−i+1e

−bj−i+1(T−τ),−bj−i+1, 1, δ
)

+ (q − rK)
j∑

i=1

Ix

(
ti−1, ti, x,Bj−i+1e

−bj−i+1(T−τ),−bj−i+1,−1, r
)
.

The functions I(·) and Ix(·) are defined, respectively, by2

I(ti−1, ti, x, y, z, φ, ν) =
1
ν

(
e−νti−1N

(
z1

√
ti−1 +

z2√
ti−1

)
− e−νtiN

(
z1

√
ti +

z2√
ti

))

+
1
2ν

(z1

z3
+ 1

)
ez2(z3−z1)

(
N

(
z3

√
ti +

z2√
ti

)
−N

(
z3

√
ti−1 +

z2√
ti−1

))

+
1
2ν

(z1

z3
− 1

)
e−z2(z3+z1)

(
N

(
z3

√
ti − z2√

ti

)
−N

(
z3

√
ti−1 − z2√

ti−1

))
, (28)

Ix

(
ti−1, ti, x, y, z, φ, ν) =

1
ν

(
e−νti−1

√
ti−1

n
(
z1

√
ti−1 +

z2√
ti−1

)
− e−νti

√
ti

n
(
z1

√
ti +

z2√
ti

))
1

σx

+
1
2ν

(z1 + z3

z3

)[
ez2(z3−z1)(z3 − z1)

(
N

(
z3

√
ti +

z2√
ti

)
−N

(
z3

√
ti−1 +

z2√
ti−1

))

+ ez2(z3−z1)

(
n
(
z3

√
ti +

z2√
ti

) 1√
ti
− n

(
z3

√
ti−1 +

z2√
ti−1

) 1√
ti−1

)]
1

σx

− 1
2ν

(z1 − z3

z3

)[
e−z2(z3+z1)(z3 + z1)

(
N

(
z3

√
ti − z2√

ti

)
−N

(
z3

√
ti−1 − z2√

ti−1

))

+ e−z2(z3+z1)

(
n
(
z3

√
ti − z2√

ti

) 1√
ti
− n

(
z3

√
ti−1 − z2√

ti−1

) 1√
ti−1

)]
1

σx
, (29)

2See the Appendix for the derivation of these functions.
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where

z1 =
(r − δ − z + φσ2/2)

σ
, z2 =

ln(x/y)
σ

and z3 =
√

z2
1 + 2ν.

To find the coefficients, we must solve the system of four equations (27) for j = 1, 2, . . . , M .

At each step j, the above system is solved using a Newton method.

The approximation procedure of American continuous-installment puts proceeds in the

same way as for calls. Let PCI be the approximated initial premium of an American

continuous-installment put corresponding to the approximated optimal exercise and stop-

ping boundaries by M -piece exponential functions Fj e fjt and Gj e−gjt, for j = 1, 2, . . . ,M ,

respectively. Then PCI is given by

PCI =





(K − S0) if S0 ≤ FM

P
(
M,S0, F, G, f, g, φ, ν, T

)
if FM < S0 < GM

0 if S0 ≥ GM ,

(30)

where

P
(
j, x, F, G, f, g, φ, ν, τ

)
= p(x, K, τ) +

1
r

(
q + rK

)(
1− e−rτ

)
− x

(
1− e−δτ

)

+
(

x

j∑

i=1

δI
(
ti−1, ti, x, Fj−i+1 efj−i+1(T−τ), fj−i+1, 1, δ

)

− (q + rK)
j∑

i=1

I
(
ti−1, ti, x, Fj−i+1 efj−i+1(T−τ), fj−i+1,−1, r

))

− q

r

(
1− e−rτ

)
+ q

j∑

i=1

I
(
ti−1, ti, x, Gj−i+1 e−gj−i+1(T−τ),−gj−i+1,−1, r

)
.

As for calls, applying the value-match and high-contact conditions (18–21) at each time step

tj , we can determine the coefficients Fj , fj , Gj and gj , j = 1, 2, . . . , M .

3.2 Solving the Inhomogeneous Black-Scholes PDE with Finite Dif-

ferences

The valuation of the initial premium of an American continuous-installment option by finite

differences is obtained with the Crank-Nicolson method. For the call, the inhomogeneous

Black-Scholes PDE and the final and boundary conditions have been defined in (7) and

(8–12). For the put, these are defined in (16) and (17–21). For discretization, a uniform

12



grid in space and time is used. To achieve greater accuracy, critical points are fixed midway

between two grid points in space. The optimal exercise problem is solved simply by taking

the maximum between the continuation value and the option payoff. This technique is

known as the explicit payout method. Other techniques consider a PSOR or a Newton

method to solve the linear complementarity problem (e.g., Coleman et al. (2002)). The

optimal stopping problem is solved in a similar way by taking only positive continuation

values.

3.3 Valuation with a Monte Carlo Method

We modify the least-squares Monte Carlo method introduced by Longstaff and Schwartz

(2001) to accommodate the pricing of the American continuous installment options. Let us

consider a discrete-time sample path Si, i = 0, 1, . . . ,M for the price of an underlying asset,

with M = T/∆t, where T is the time to maturity and ∆t is the time discretization. For

European-style options the price is given by

E
(
e−rT f(SM )

)
,

where f(·) denotes the payoff function and E(·) the expectation under the risk-neutral

measure.

When we consider on early exercise, the value of the contract for each simulated time

instant i corresponds to the maximum between the intrinsic value f(Si) and the expected

continuation value. Therefore at time step i, the value Vi(Si) of the option, conditional on

Si, is

Vi(Si) = max
{

f(Si), Ei

(
e−r∆t Vi+1(Si+1) |Si

)}
,

where the function V (·) is defined recursively for i = M − 1, M − 2, . . . , 0. The value of

VM (SM ) is simply f(SM ), i.e., the payoff at maturity. Longstaff and Schwartz (2001) ap-

proximates the conditional expectation of the continuation value Ei(·) by a linear regression

of the present value of Vi+1(Si+1) at i on a set of polynomials of the current asset price Si.

To get observations for the regression, we have to replicate the sample path of the underlying

asset price. The jth replication for the asset price is denoted by Sj
i , and correspondingly

the jth replication of the continuation value, which is the present value of V j
i+1(S

j
i+1), is

13



denoted by yj
i . Regressing on a second-order polynomial, the approximation of yj

i is

yj
i
∼= α1 + α2 Sj

i + α3 (Sj
i )2 ,

and the conditional expectation of the continuation value Ei(y
j
i ) is given by ŷj

i = α̂1 +

α̂2 Sj
i + α̂3 (Sj

i )2, where α̂k, k = 1, 2, 3, are the estimated regression coefficients.

In the case of continuously-paid installments at a constant rate q, the continuation value

yj
i becomes

e−r∆tV j
i+1(S

j
i+1)−

q

r

(
1− e−r∆t

)
,

and we use the same regression for the estimation of the conditional expectation. The

decision for early exercise at time i, for a sample j, is taken if

f(Sj
i ) > ŷj

i ,

where j ∈ JE
i , the set of paths that are in-the-money at time i. The decision for early

stopping is taken if

ŷj
i < 0 ,

where j ∈ JS
i , the set of paths that are out-of-the-money at time i. The sets JE

i and

JS
i constitute a partition of the set J of replicated paths. It should be noticed that the

conditional expectation ŷj
i is estimated separately on the set JE

i and the set JS
i .

Therefore the initial value of the option at time step i, conditional on Sj
i , is

V j
i (Sj

i ) =





max
{

f(Sj
i ), Ei

(
e−r∆t V j

i+1(S
j
i+1) |Sj

i

)}
if j ∈ JE

i

max
{

0, Ei

(
e−r∆t V j

i+1(S
j
i+1) |Sj

i

)}
if j ∈ JS

i .

The computation of the option price is now achieved through the Algorithm 1, which

provides a skeleton for the implementation of a computer code.
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Algorithm 1
1: Generate S ∈ RN×M

2: Initialize Tj = M and Vj = f(Sj
M ), for j = 1, . . . , N

3: for i = M − 1 → 1 do
4: yj = e−r (Tj−i) Vj − q

r
(1− e−r (Tj−i)), for j = 1, . . . , N

5: Compute JE
i = {j | f(Sj

i ) > 0}
6: Estimate ŷj∈JE

i = E(yj∈JE
i |Sj∈JE

i
i )

7: Compute JE∗
i = {j | j ∈ JE

i ∧ f(Sj
i ) > ŷj∈JE

i }
8: Update Tj = i and Vj = f(Sj

i ), for j ∈ JE∗
i

9: Compute JS
i = {j | f(Sj

i ) = 0}
10: Estimate ŷj∈JS

i = E(yj∈JS
i |Sj∈JS

i
i )

11: Compute JS∗
i = {j | j ∈ JS

i ∧ ŷj∈JS
i < 0}

12: Update Tj = i and Vj = 0, for j ∈ JS∗
i

13: end for
14: yj

0 = e−r Tj Vj − q
r
(1− e−r Tj ), for j = 1, . . . , N

15: v = 1
N

PM
j=1 yj

0

Statements 5–8 consider the case where early exercise has to be checked and state-

ments 9–12 where stopping has to be checked. The sets JE∗ and JS∗ correspond respec-

tively to the paths where early exercising or stopping has taken place. Element j of array

T informs us about the time step where the early exercise or stopping decision has been

taken for the jth path. The intrinsic value of the option at time step Tj is given in Vj . In

statement 14, the option value at time 0 for each path is saved in y0, and, in statement 15,

the average of these values is computed.

The convergence of this method is analyzed in Glassermann and Yu (2004), where the

choice of the order of the polynomial approximating E(·) is discussed in conjunction with

the number N of path replications and time steps M .

4 Numerical Results and Discussions

In this section we report and compare numerical results obtained with each of the three

methods for several values of some relevant parameters. All algorithms have been imple-

mented in Matlab 7.xx and the results are reported in Table 1.
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FDM MEF Monte Carlo

σ S0 T q M = 2 M = 6 M = 12 (s.e.)

1 2.0700 2.0670 2.0695 2.0699 2.0702 (.010)

3/12 3 1.6812 1.6738 1.6802 1.6812 1.6808 (.011)

8 .8945 .8858 .8941 .8952 .8927 (.009)

96
1 5.2789 5.2669 5.2766 5.2783 5.2777 (.022)

1 3 3.8362 3.8132 3.8320 3.8344 3.8361 (.021)

8 1.4232 1.4164 1.4231 1.4239 1.4181 (.020)

1 3.8410 3.8380 3.8405 3.8409 3.8407 (.010)

3/12 3 3.4293 3.4211 3.4281 3.4291 3.4286 (.011)

8 2.5477 2.5362 2.5468 2.5482 2.5455 (.011)

0.20 100
1 7.2717 7.2594 7.2693 7.2710 7.2712 (.023)

1 3 5.7884 5.7654 5.7853 5.7878 5.7878 (.022)

8 3.1951 3.1864 3.1946 3.1957 3.1900 (.016)

1 6.2438 6.2411 6.2433 6.2437 6.2441 (.011)

3/12 3 5.8427 5.3500 5.8415 5.8424 5.8423 (.009)

8 5.0192 5.0095 5.0185 5.0198 5.0175 (.008)

104
1 9.5839 9.5718 9.5816 9.5833 9.5898 (.025)

1 3 8.1123 8.0883 8.1079 8.1104 8.1122 (.016)

8 5.5935 5.5859 5.5933 5.5942 5.5851 (.015)

1 3.9032 3.8996 3.9026 3.9031 3.9051 (.019)

3/12 3 3.4926 3.4831 3.4910 3.4922 3.4928 (.016)

8 2.5826 2.5668 2.5805 2.5823 2.5825 (.019)

96
1 8.9756 8.9607 8.9732 8.9755 8.9753 (.043)

1 3 7.4528 7.4233 7.4484 7.4515 7.4549 (.036)

8 4.4203 4.3908 4.4161 4.4196 4.4200 (.036)

1 5.8118 5.8081 5.8111 5.8116 5.8138 (.020)

3/12 3 5.3909 5.3810 5.3892 5.3905 5.3909 (.018)

8 4.4420 4.4248 4.4396 4.4416 4.4418 (.015)

0.30 100
1 11.0836 11.0682 11.0810 11.0834 11.0841 (.045)

1 3 9.5415 9.5109 9.5369 9.5403 9.5443 (.038)

8 6.4218 6.3903 6.4173 6.4211 6.4208 (.030)

1 8.1425 8.1388 8.1417 8.1422 8.1426 (.023)

3/12 3 7.7246 7.7148 7.7229 7.7241 7.7236 (.016)

8 6.7900 6.7733 6.7877 6.7895 6.7910 (.013)

104
1 13.4023 13.3863 13.3993 13.4017 13.4059 (.036)

1 3 11.8595 11.8286 11.8548 11.8585 11.8582 (.029)

8 8.7391 8.7076 8.7346 8.7384 8.7348 (.023)

Table 1: Initial premiums of American continuous-installment calls (K = 100 and δ = 0.04).

For the finite-difference method, we use 600 steps between 0 and 200 for the asset price

and 400 time steps per quarter of a year. The multipiece exponential function (MEF)

method has been tested for M = 2, M = 6 and M = 12. The results for the Monte

Carlo method are based on 100 000 antithetic paths and a fourth-order Hermite polynomial

for the regressions. The number of time steps used for this method is 80 per quarter of
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a year. Following Glassermann and Yu (2004, p. 18) these settings satisfy the conditions

for convergence. To estimate the standard errors, we compute a statistic with 50 initial

premiums. The values reported in the table are the medians of this statistic.

Comparing the results obtained by the MEF method for M = 12 with the results given

by the other two methods we see, in Table 1, that the approximations coincide from two to

five digits. If the MEF method is used with M = 2, we get from one to three correct digits.

In terms of computational efficiency, the finite-difference method result to be fastest

with a computational time of less than 1 second to calculate the initial premiums at all

grid points for a 3-month American continuous-installment call. The optimal stopping and

exercise boundaries can be derived from the values on the space-time grid.

The MEF method with M = 12 needs roughly 10 seconds to solve the pricing problem

for the same option and provides the initial premium for a single value of St, as well as

a pointwise approximation of the boundaries. If we consider M = 2, the computational

time becomes comparable to that of the finite differences. A interesting feature of this

method is the determination of the three components in which the initial premium has been

decomposed via integral representation. A difficulty of the MEF method may consist in

the appropriate choice of the initial values when one solving the non-linear system (27).

The Monte Carlo approach needs approximatively 14 seconds to find the initial premium.

Since the result is of random nature we need to compute confidence intervals which imply

repeated evaluations of the initial premium. An advantage of the Monte Carlo method is

that it can be extended easily to exotic payoffs and multifactor option.

The left panel in Figure 1 presents the initial premium function C(St, t; q) and the opti-

mal stopping and exercise boundaries, both calculated by finite differences. The right panel

in Figure 1 shows how each method approximates the boundaries. The approximations of

the exercise and stopping boundaries obtained by the finite-difference method are respec-

tively the solid and the dotted lines. The crosses and circles represent the twelve-piece

exponential exercise and stopping boundaries, respectively. The clouds of points along the

boundaries are the optimal stopping and exercise decisions for each path in the Monte Carlo

method.
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Figure 1: Left panel: Initial premium function C(St, t; q) of an American continuous-
installment call (K = 100, T = 3/12, σ = 0.2, r = 0.05, δ = 0.04 and q = 8). Right
panel: Optimal stopping and exercise boundaries approximated by finite differences, the
twelve-piece exponential boundaries and the stopping and exercise decisions of the Monte
Carlo simulations.

5 Concluding Remarks

We have presented three alternative approaches for solving the free boundary-value problem

of American continuous-installment options. First we derived the inhomogeneous Black-

Scholes PDE for continuous-installment options using a combination of hedging and risk-

neutral valuation arguments. This result allows the derivation of an integral representation

for the initial premium of these options, using the results in Carr et al. (1992), Jacka (1991)

and Kim (1990).

The multipiece exponential function (MEF) method allows an approximation in closed

form to the valuation formulas for the American continuous-installment options. To test

the MEF method we adapted two existing numerical methods to the pricing problem of the

nonstandard American options. All three methods produce similar results from which we

conclude the soundness of our approaches.

The focus of this paper is on American continuous-installment calls. However, by pre-

senting a mathematically and computationally meaningful way to analyze the premature

stopping of American options, this study enhances applications of the contingent-claims

approach to investment problems in general. For example, investments involving periodic

payments that can be stopped at any time can be analyzed using the framework developed

in this paper.
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Appendix

Derivation of functions I(·) and Ix(·)

Let us assume that for the generic interval [ti−1, ti] the stopping and exercise boundaries

At and Bt are approximated by exponential functions Aeat and Be−bt, respectively. To

make use of this approximation, the integrals in equations (13) and (23) can be evaluated

in closed form for this interval. We first consider the integral

I1 =
∫ ti

ti−1

e−rtN
(
d2(S0, Aeat, t)

)
dt .

Defining x1 = (r− δ− a− σ2/2)/σ, x2 = ln(S0/A)/σ, we have that d2(S0, At, t) = x1t
1/2 +

x2t
−1/2. Integration by parts yields

I1 =
1
r

(
e−rti−1N(x1t

1/2
i−1 + x2t

−1/2
i−1 )− e−r tiN(x1t

1/2
i + x2t

−1/2
i )

)

+
e−x1x2

r
√

2π

∫ ti

ti−1

e−
1
2 (x2

3t+x2
2t−1)

(x1

2
t−1/2 − x2

2
t−3/2

)
dt,

where x3 =
√

x2
1 + 2r. By making use of the following identities

dN(x3t
1/2 + x2t

−1/2) =
e−x3x2

√
2π

e−
1
2 (x2

3t+x2
2t−1)

(x3

2
t−1/2 − x2

2
t−3/2

)

dN(x3t
1/2 − x2t

−1/2) =
ex3x2

√
2π

e−
1
2 (x2

3t+x2
2t−1)

(x3

2
t−1/2 +

x2

2
t−3/2

)
,

we get

I1 =
1
r

(
e−rti−1N

(
x1

√
ti−1 +

x2√
ti−1

)
− e−rtiN

(
x1

√
ti +

x2√
ti

))

+
1
2r

(x1

x3
+ 1

)
ex2(x3−x1)

(
N

(
x3

√
ti +

x2√
ti

)
−N

(
x3

√
ti−1 +

x2√
ti−1

))

+
1
2r

(x1

x3
− 1

)
e−x2(x3+x1)

(
N

(
x3

√
ti − x2√

ti

)
−N

(
x3

√
ti−1 − x2√

ti−1

))
.

From the above equation follows immediately that

I2 =
∫ ti

ti−1

e−rtN
(
d2(S0, Be−bt, t)

)
dt

=
1
r

(
e−rti−1N

(
x4

√
ti−1 +

x5√
ti−1

)
− e−rtiN

(
x4

√
ti +

x5√
ti

))

+
1
2r

(x4

x6
+ 1

)
ex5(x6−x4)

(
N

(
x6

√
ti +

x5√
ti

)
−N

(
x6

√
ti−1 +

x5√
ti−1

))

+
1
2r

(x4

x6
− 1

)
e−x5(x6+x4)

(
N

(
x6

√
ti − x5√

ti

)
−N

(
x6

√
ti−1 − x5√

ti−1

))
,
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where x4 = (r − δ + b− σ2/2)/σ, x5 = ln(S0/B)/σ, and x6 =
√

x2
4 + 2r.

If we define y1 = (r−δ+b+σ2/2)/σ, y2 = ln(S0/B)/σ, y3 =
√

y2
1 + 2δ, a similar derivation

would yield

I3 =
∫ ti

ti−1

e−δtN
(
d1(S0, Be−bt, t)

)
dt

=
1
δ

(
e−δti−1N

(
y1

√
ti−1 +

y2√
ti−1

)
− e−δtiN

(
y1

√
ti +

y2√
ti

))

+
1
2δ

(y1

y3
+ 1

)
ey2(y3−y1)

(
N

(
y3

√
ti +

y2√
ti

)
−N

(
y3

√
ti−1 +

y2√
ti−1

))

+
1
2δ

(y1

y3
− 1

)
e−y2(y3+y1)

(
N

(
y3

√
ti − y2√

ti

)
−N

(
y3

√
ti−1 − y2√

ti−1

))
.

Using equation (28), the integrals I1, I2 and I3 can be expressed uniquely as

I1 = I
(
ti, ti−1, x, A, a,−1, r

)
,

I2 = I
(
ti−1, ti, x,B,−b,−1, r

)
,

I3 = I
(
ti−1, ti, x,B,−b, 1, δ

)
.

The function Ix(·) is the first partial derivative of (28) with respect to x.
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