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Outline

• What is Agent-Based Computational
Economics (ACE)?

• ACE and Electricity Market Design

• Illustrative Application
(Electricity Double Auction)

• A More Substantial Application
(Testing the reliability of FERC’s 2003
Wholesale Power Market Platform design)
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What is ACE?What is ACE?

• Computational study of economies
modeled as evolving systems of
autonomous interacting agents with
learning capabilities

• Specialization to economics of the basic
complex adaptive systems paradigm
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Culture Dish Analogy

• Virtual economic world with both passive
and active agents

• Modeler sets initial conditions of the world

• The world then evolves over time without
further outside intervention

• Driven solely by agent-agent interactions
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Current ACE Research Areas
 (http://www.econ.iastate.edu/tesfatsi/aapplic.htm )

• Embodied cognition
• Network formation
• Evolution of norms
• Specific market case studies
• Industrial organization
• Market Design
• Automated markets and software agents
• Development of computational laboratories

• Parallel experiments with real and computational
agents

• Others...
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Economic Research on Electricity Market Design
(www.econ.iastate.edu/tesfatsi/epres.htm)(www.econ.iastate.edu/tesfatsi/epres.htm)

h Analytical/Empirical:
§ Berkeley (Borenstein, Bushnell, Oren,…);

Cambridge (Green, Newbery,…); EPRI (Chao,
Peck,…); Harvard (Hogan,…); MIT (Joskow,
Tirole,…); U of Oslo (Halseth, von der Fehr,…);
Stanford (Wilson, Wolak,…); ...

h Human-Subject Experiments:
§ Cornell (Mount,…); George Mason U

(Rassenti, Smith, Wilson,…); …
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Potential Contributions of ACE Approach
• Key market participants  (system operator,

generators, buyers…) modeled as autonomous
interacting agents

• Agent learning can be calibrated  to data
(empirical, human-subject experimental)

• Behaviors and interaction networks evolve
over time

• Easier to include and test detailed structural
market features for individual and/or joint
effects
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• ACE Electricity Research:
 ( www.econ.iastate.edu/tesfatsi/aelect.htm )

§ Argonne National Lab (Macal, North,…)
§ CSIRO-Australia (Batten,…)
§ Helsinki Univ. (Hamalainen,…)
§ Iowa State University (Koesrindartoto, Sheble,

Tesfatsion,…)
§ London Business School (Bunn, Day,…)
§ Los Alamos National Lab (Barrett, Marathe,…)
§ Pacific Northwest National Lab (Roop,…)

§ Others (see website above)
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Key Issues for Wholesale Power Markets

•• Short-Run:Short-Run:  Efficient production of electricityEfficient production of electricity
from from existingexisting generation capacity generation capacity

  

•• Short-Run:Short-Run:  Efficient transmission ofEfficient transmission of
electricity to electricity to existingexisting load-serving entities load-serving entities
over over existingexisting transmission lines transmission lines

•• Longer-Run:Longer-Run:  Efficient planning andEfficient planning and
investment for investment for newnew generation and  generation and newnew
transmission capacitytransmission capacity
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Illustrative ACE Study ofIllustrative ACE Study of
a Wholesale Power Marketa Wholesale Power Market

 “Market Power and Efficiency in a
Computational Electricity Market with
Discriminatory Double-Auction Pricing”

 J. Nicolaisen, V. Petrov, and L. Tesfatsion,
IEEE Transactions on Evolutionary Computation
5(5), October 2001, 504-523



11

ACE Wholesale Power Market:
Basic Structure

• N Generators and M Load-Serving Entities (LSE’s)

• Repeated participation in a wholesale power
market operated by an Independent System
Operator (ISO)

• Market run as a discriminatory double auction

• Fully connected transmission grid
(ATC constraints non-binding in this study)
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Wholesale Power Market:
Logical Flow

• Construct and initialize the Independent
System Operator (ISO), the Traders
(Generators and LSEs), and the Market

• Compute competitive equilibrium benchmark

• Enter the auction loop

• ISO runs auction for RMax rounds (trader
bids/asks è price and quantity outcomes)

• Compare results against competitive
equilibrium benchmark
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Flow Diagram
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Key Issues AddressedKey Issues Addressed

•• Sensitivity of market performance to changesSensitivity of market performance to changes
in market structure when wholesale tradersin market structure when wholesale traders
evolve their bid/ask pricing strategies overevolve their bid/ask pricing strategies over
timetime..

•• Is market structure strongly predictive ofIs market structure strongly predictive of
market performance despite learning effects?market performance despite learning effects?
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Two Structural Treatment Factors
  Let “Sellers” = Generators andLet “Sellers” = Generators and

“Buyers” = Load-Serving Entities“Buyers” = Load-Serving Entities

• RCON = Relative Concentration

§ Ratio NS/NB of Number of Sellers
 to Number of Buyers

• RCAP = Relative Capacity

§ Ratio DCAP/SCAP of total buyer demand
capacity to total seller supply capacity
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Experimental Design
•• Two Structural Treatment Factors:  Two Structural Treatment Factors:  

RCAP,  RCONRCAP,  RCON

• Three Tested Treatment Levels:
1/2,  1,  2

• Runs per Treatment:
From 1000 to 10,000

• Data Collected Per Run: 
Market efficiency; Seller market advantage;
Buyer market advantage (aggregate and
individual levels)
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Structural Treatment Factor Values
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Aggregate Demand and Supply
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Trader Learning

• Each trader uses individual
reinforcement learning to determine
their ask or bid price in each market period

• The entire RCON/RCAP experimental
design was implemented three times under
three different specifications for the
reinforcement learning algorithm
parameters
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Trader Learning… Continued

• Results compared against an earlier
electricity study by the same authors using
the same double-auction electricity market
structure

• Difference: Sellers in earlier study used
social mimicry learning (population-level
genetic algorithm), and similarly for buyers,
despite structural heterogeneity -- not a smart
thing to do!
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Market Efficiency

• ActualProfits = Actual total profits earned
by sellers and buyers

• MaxProfits = Maximum possible total
profits that  sellers and buyers could  earn
(i.e., total trader profits in competitive
equilibrium)

• Market Efficiency =  ActualProfits as a
percentage of MaxProfits
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Efficiency FindingsEfficiency Findings
§§ HIGHHIGH  market efficiency obtained when themarket efficiency obtained when the

traders use individual reinforcement learningtraders use individual reinforcement learning

§§ LOWLOW  market efficiency obtained when themarket efficiency obtained when the
traders use not-so-smart social mimicry learningtraders use not-so-smart social mimicry learning

§§ CONCLUSIONCONCLUSION::

Efficiency of double-auction electricity market Efficiency of double-auction electricity market notnot
robust against active exercise of bad judgementrobust against active exercise of bad judgement
(e.g., inappropriate social mimicry)(e.g., inappropriate social mimicry)
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Additional Findings
(Deddy Koesrindartoto,  2001)

§ Even with reinforcement learning (RL),
market efficiency can be low for certain
parameter values

§ Example: Roth-Erev RL Algorithm (1998)

§ Experimentation parameter e (controls how
reward from a chosen strategy affects
probability of choosing other strategies).

§ For some settings of e, market efficiency can
be as low as 20 percent
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Efficiency vs Experimentation Parameter e
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Market Advantage
• Market Advantage:  the ability of traders to

secure higher net profits for themselves than
they would obtain under competitive market
conditions

• Market Power:  “the ability to profitably alter
prices away from competitive levels” (Stoft,
Power System Economics, 2002, p. 318)

• Market advantage is a necessary condition for
the exercise of market power.
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Structural vs. Strategic Market Advantage

• Structural Market Advantage:  The market
advantage conferred on a trader by market
protocols alone, assuming all traders bid/ask
their true reservation prices (no strategic
bid/ask pricing behavior)

• Strategic Market Advantage:  Any
additional market advantage that can be
secured by a trader through strategic bid/ask
pricing behavior
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Market Advantage: Aggregate FindingsMarket Advantage: Aggregate Findings

§§ For given RCONFor given RCON, changes in the aggregate, changes in the aggregate
measure RCAP do measure RCAP do notnot exhibit any meaningful exhibit any meaningful
correlation with aggregate seller and buyercorrelation with aggregate seller and buyer
market advantage outcomesmarket advantage outcomes

§§ For given RCAPFor given RCAP, changes  in the aggregate, changes  in the aggregate
measure RCON have measure RCON have only smallonly small
unsystematic effectsunsystematic effects on aggregate seller and on aggregate seller and
buyer market advantage outcomesbuyer market advantage outcomes..
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§§ RelativeRelative market advantage of sellers and market advantage of sellers and
buyers can be reliably predicted from thebuyers can be reliably predicted from the
market microstructuremarket microstructure..

§§ Sellers and buyers are Sellers and buyers are notnot able to secure able to secure
increases in increases in relativerelative market advantage market advantage
throughthrough  strategic pricingstrategic pricing..

§§ Actual Market Advantage = Structural MarketActual Market Advantage = Structural Market
AdvantageAdvantage

§§ ConjectureConjecture: Lack of : Lack of strategic strategic market advantagemarket advantage
for traders is due to symmetry of double auctionfor traders is due to symmetry of double auction
electricity marketelectricity market

Market Advantage: Micro FindingsMarket Advantage: Micro Findings
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Summary of FindingsSummary of Findings
for NPT (IEEE-TEC 2001)for NPT (IEEE-TEC 2001)

§§ HighHigh market efficiency is obtained when market efficiency is obtained when
traders use individual reinforcement learningtraders use individual reinforcement learning
but but notnot when they use social mimicry learning. when they use social mimicry learning.

§§ The The microstructuremicrostructure of the double auction of the double auction
electricity market is strongly predictive for theelectricity market is strongly predictive for the
relativerelative market advantage of traders. market advantage of traders.

§§ Traders are Traders are notnot able to increase their  able to increase their relativerelative
market advantage through strategic pricingmarket advantage through strategic pricing
((importance of demand-side bidding asimportance of demand-side bidding as
countervailing power to supply-side offerscountervailing power to supply-side offers))
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A More Substantial ApplicationA More Substantial Application

 “Testing the reliability of the Wholesale Power
Market Platform Proposed by the Federal
Energy Regulatory Commission (FERC)”

 Joint research by
 Deddy Koesrindartoto

 and
 Leigh Tesfatsion
 in association with

 Los Alamos National Lab
 

 Work in Progress
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Wholesale Power Market Platform - WPMP
(FERC, White Paper, 4/03)

WPMP Objectives

• Customer-based competitive wholesale power
markets  providing reliable service

• Fair and open access to the transmission grid at
reasonable prices

• Good price signals to encourage appropriate
investment in new generation and new
transmission

• Market power mitigation
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KeyKey  WPMPWPMP  FeaturesFeatures

•• Independent operation of the transmissionIndependent operation of the transmission
system by RTO/ISOsystem by RTO/ISO

•• Day-ahead electricity market (financial)Day-ahead electricity market (financial)
•• Real-time electricity market to supplementReal-time electricity market to supplement

longer-term contractslonger-term contracts
•• Ancillary services to ensure resource adequacyAncillary services to ensure resource adequacy

(e.g., operating reserves,...)(e.g., operating reserves,...)
•• Congestion management, preferably throughCongestion management, preferably through

Locational Marginal Pricing (LMP) and financialLocational Marginal Pricing (LMP) and financial
transmission rightstransmission rights

•• Market monitoring and market power mitigationMarket monitoring and market power mitigation
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FERC’s Basic WPM Proposal Adopted?

§ Mid-Atlantic states (PJM) implement similar plan
(1998)

§ New York (NY-ISO) implements similar plan (1999)
§ New England (NE-ISO) implements similar plan

(2003)
§ California (CAISO) files to adopt similar plan (2003)
§ Midwest (MISO) files to adopt similar plan (7/2003)

and withdraws filing (10/2003)
§ Opposition from states in Southeast and Northwest
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Our ACE WPM Model

• Based on Standard Market Design (SMD)
implemented by New England (ISO-NE) on
March 1, 2003

• SMD meets basic WPMP structural
requirements:
- Independent System Operator (ISO)
- Day-ahead and real-time electricity markets
- Congestion managed via Locational Marginal Pricing
- Financial transmission rights
- Reserve and capacity markets as well as enhanced

demand response (in planning stage)
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Our ACE WPM Model...

• Initial Core Model
§ Independent System Operator (ISO)
§ Day-ahead electricity market
§ Real-time electricity market
§ Congestion managed via LMP
§ AC transmission grid
§ OPF/reliability/settlement handled  by ISO
§ 5-bus demo model

• Planned Model Extensions
§ Auction market for financial transmission rights (FTRs)
§ Bilateral market
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5-Bus Demo Model
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ISO Market Operation (Day D)
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ACE WPM Model: Activity Flow
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Initial Experimental Design:
Treatment Factor Ranges

• Simple reinforcement learning  â Learning to learn

• Passive demand   â Active demand bidding

• No transmission rights  â Point-to-point financial

                                                     transmission rights
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Longer-Run Research PlansLonger-Run Research Plans

• Collaboration with Los Alamos National Lab
energy researchers

 

• Objectives:

§ To scale up ACE wholesale power market
model to more realistic dimensions

§ To incorporate ACE wholesale power market
model into the LANL Marketecture Model for
U.S. Energy Infrastructure


