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Abstract 
The purpose of OLAP (On-Line Analytical Processing) systems is to provide a framework for 
the analysis of multidimensional data.  Many tasks related to analysing multidimensional data 
and making business decisions are still carried out manually by analysts (e.g. financial 
analysts, accountants, or business managers). An important and common task in 
multidimensional analysis is business diagnosis. Diagnosis is defined as finding the “best” 
explanation of observed symptoms. Today’s OLAP systems offer little support for automated 
business diagnosis. This functionality can be provided by extending the conventional OLAP 
system with an explanation formalism, which mimics the work of business decision makers in 
diagnostic processes. The central goal of this paper is the identification of specific knowledge 
structures and reasoning methods required to construct computerized explanations from 
multidimensional data and business models. We propose an algorithm that generates 
explanations for symptoms in multidimensional business data. The algorithm was tested on a 
fictitious case study involving the comparison of financial results of a firm’s business units. 
 
1. Introduction 
 
In this paper, we describe an extension of the OLAP (On-Line Analytical Processing) frame-
work with automated causal diagnosis, offering the possibility to automatically generate 
explanation and diagnostics to support business decision tasks. Today’s OLAP systems have 
no explanation or diagnosis capabilities. Such functionality can be provided by extending the 
conventional OLAP system with an explanation formalism, which mimics the work of human 
decision makers in diagnostic processes. The formalisation of diagnostic problem-solving is a 
sub-area of Operations Research (OR) and Artificial Intelligence (AI). In [3] diagnosis is 
defined as finding the best explanation of observed abnormal behaviour of a system under 
study. Here we combine diagnostic problem solving and OLAP. 

OLAP is defined as “a category of software technology that enables analysts, 
managers and executives to gain insight into data through fast, consistent, interactive access 
to a wide variety of possible views of information that has been transformed from raw data to 
reflect the real dimensionality of the enterprise as understood by the user” [9]. The core 
component of an OLAP system is the data warehouse, which is a decision-support database 
that is periodically updated by extracting, transforming, and loading data from several OLTP 
(On-Line Transaction Processing) databases. An OLAP system or multidimensional model 
organizes data using the dimensional modelling approach, which classifies data into measures 
and dimensions. Measures or facts like, for example, sales figures and costs, are the basic 
units of interest for analysis. Measures represent countable or summable information 
concerning a business process. Dimensions correspond to different perspectives for viewing 
measures. Dimensions are usually organised as dimension hierarchies, which offers the 
possibility to view measures at different dimension levels (e.g. month quarter year≺ ≺ ). The 
hierarchies in a dimension specify the aggregation levels. 

The objective of this paper is to extend the multidimensional model with an 
explanation formalism. For this purpose, the general model and methodology for automated 
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business diagnosis, as developed by Daniels and Feelders [3, 4], is applied to the multi-
dimensional model. The definitions in the explanation model are adapted in order to connect 
them with measures and dimensions. In addition, an algorithm is described for maximal 
explanation of multidimensional data and applied on a case study. 

The remainder of this paper is organized as follows. We first demonstrate the use of 
the explanation formalism in OLAP using an artificial dataset. Section 2 provides a short 
introduction to the OLAP framework and introduces the most important concepts of the 
multidimensional model, followed by an introduction to the causal explanation model in 
section 3. In section 4 the multidimensional model is extended with the explanation model in 
order to generate explanations for symptoms derived from multidimensional data. This 
section is followed by the introduction of an algorithm for maximal explanation in 
multidimensional data in section 5. We discuss some related work in section 6 and in section 
7 the complete method is illustrated in a fictitious case study on business unit performance. 
Finally, conclusions are discussed in section 8. 
 
1.1. Illustration  
 
Here we will consider the dataset of the fictitious ABC-company and present an illustration of 
our OLAP explanation framework. The multidimensional dataset is composed out of the 
following financial measures: profit, revenues, and costs. The measures satisfy the following 
business model relation: profit = revenues – costs (or in shorthand notation 1 2y x x= − ) and 
are associated with the dimensions Time (t), Location (l), and Product (p). Time, Location, 
and Product dimensions follow the hierarchies: Quarter ≺ Year ≺ All-Times, City≺ All-
Locations, and ProdName ≺ All-Products. Suppose an analyst is exploring the cube at the 
Time× Location× Product plane as shown in Table 1. The analyst notices a significant 
increase in profit in the year 2002 compared to the norm year 2001. A significant increase or 
decrease in a variable is called a symptom. 
 
Product (p) P1 
Time (t) Location (l) Profit (y) Revenues (x1) Costs (x2) 
2001 A 15 35 20 
 B 10 50 40 
 Location average 12.5 42.5 40 
 All-Locations  25 85 60 
2002 A 10 40 30 
 B 20 60 40 
 Location average 15 50 35 
 All-Locations  30 100 70 
All-Times A 25 75 50 
 B 30 110 80 
 Location average 27.5 92.5 65 
 All-Locations  55 185 130 
Table 1: Part of the multidimensional financial data for the ABC-company (2-D representation). The two boxes 
(‘All-locations’, year 2001 and 2002) with dark boundaries indicate the two values being compared. 
 
With the existing tools the analysts has to find the reason(s) for this drop by manually drilling 
down the numerous different planes underneath it, inspecting the entries for big drops and 
drilling down further. This process can get rather problematic especially for typically larger 
real- life datasets. We propose to use an explanation model for finding the answer to this 
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question. The user, for example, simply highlights the two cells and invokes the “explanation” 
operator. The results as shown in Table 2 are presented as a list of one-level explanations that 
give the causes for the symptom “increase in profit”. The explanations are one level deep, in 
the sense that they are based on only one relation from the dimension hierarchy (e.g. 
Quarter ≺ Year and City≺ All-Locations or measures (profit = revenues – costs). In the table 
the first two rows show the causes for the symptom based on the Location dimension. For 
Location “A” the influence-value is negative so this results in a counteracting cause, and for 
Location “B” the influence-value is positive so this results in contributing cause. The 
influence-value indicates what the quant itative difference between the actual (e.g. the year 
2002) and norm value (e.g. the year 2001) of a variable (e.g. profit) would have been if only 
one independent variable (e.g. revenues, profit in location “A”, or profit in quarter “q1”) or 
would have deviated from its norm value. Contributing causes increase the probability of the 
effect and counteracting causes decrease the probability of the effect. The next four rows 
account for the difference by explanation in the hierarchy of the Time dimension. These rows 
show that the third and fourth quarter are responsible for the profit increase in the year. The 
influence-value for the second quarter is 0, so this variable does not contribute to the 
explanation of the observed symptom. The last two rows explain the difference following the 
relation between the measures; namely the business relation profit = revenues – costs. The 
increase in the measure profit is due to the increase in the measure revenues despite the fact 
that the costs have risen for All-Locations in the year 2002. Detailed definitions for 
contributing causes, counteracting causes, influence measures will be given in section 4. 
 
Product P1 
Time  Location Measure Cause Influence-value 
All A Profit Counteracting -5 
All B Profit Contributing 10 
2002.q1 All Profit Counteracting -1 
2002.q2 All Profit No 0 
2002.q3 All Profit Contributing 2 
2002.q4 All Profit Contributing 4 
2002 All Revenues Contributing 15 
2002 All Costs Counteracting -10 
Table 2: One-level deep explanations for the increase in the measure Profit marked in Table 1. 
 
Furthermore, explanation generation can be continued automatically into the direction of the 
dimension hierarchy and into direction of the measures for the identified symptom. Based on 
Table 1 we can proceed with explanation generation, for example, for the contributing cause 
the revenues in 2002 for All-Products (row 7). This cause can be considered a lower level 
symptom and is explained further by using the dimension hierarchies for the dimension Time 
and Location or some business model relation like Revenues = Volume · Unit Price. The 
method can filter out insignificant influences by defining so-called parsimonious sets [3, 4].  
 
2. Overview of the multidimensional model  
 
2.1. Multidimensional data 
 
We now shortly review the basic principles of multidimensional data. Each measure im  can 
be analyzed using a set of dimensions 1 2{ , , , }nd d d… . The measures that can be analyzed by 
the same set of dimensions are described by the base cube. A base cube uses level instances 
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of the lowest dimension levels of each of its dimensions to identify a measure value. The 
relationship between a set of measure values and the set of identifying level instances is called 
a cell. Loading data into the OLAP data cube means that new cells will be added to the base 
cubes, whereas also new level instances may be added to dimension levels. If a dimension kd  
is related to a measure im  by means of the base cube, then the dimension hierarchy of d can 
be used to aggregate the measures values of m using operators like SUM, COUNT, and, 
AVG. We assume a many-to-one relationship between the level instances of two dimension 
levels [ ]kd p , [ ]kd q  (if we refer to level p  of dimension kd , we write [ ]kd p ) with dimension 
hierarchy [ ] [ ]k kd p d q≺  to ensure correct aggregation of measure values. Most 
multidimensional data models require that the dimension hierarchy of a dimension is strict [1, 
13, 14]. Aggregating measure values along the hierarchies of different dimensions (i.e. rollup) 
creates a multidimensional view on data, which is known as the data cube or cube. This type 
of organisation provides users with the flexibility to view data from different perspectives. A 
number of OLAP data cube operations exist to materialize these different views, allowing 
interactive querying and analysis of the data. Typical OLAP operations are: rollup 
(aggregation on a data cube), drilldown (reverse of roll-up), slice (selection on one dimension) 
and dice (defines a sub-cube) and pivot (rotates the data axes).  

The dimension hierarchy (or classification structure) has a schema component and an 
instances (values) component. That is the dimension levels and their structure constitute the 
schema, and the dimension level instances constitute the instances (data) for this schema. 
Shoshani et al. [12] developed a graph model that separates the dimension levels and the level 
instances into two representation forms. For example, the dimension hierarchy of the time 
dimension of the last example is represented at the meta-data level (intentional representation) 
as shown in Figure 1 at the left. Underlying this representation the system stores and 
maintains the instance and their relationship, called the extensional representation (the right 
side of the figure). 
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Figure 1: Intensional representation and extensional representation 
 
2.2. Summarizability in the multidimensional model 
 
An important criterion for the quality of OLAP cube design is the correctness of aggregations. 
The summarizability of OLAP databases is an important property because violating this 
condition can lead to erroneous conclusions and decisions. In [8] Lenz and Shoshani have 
studied summarizability in OLAP and statistical databases. We briefly mention the three 
necessary conditions for summarizability: disjointness of dimension levels in dimension 
hierarchies, completeness in dimension hierarchies, and  compatibility of measure attributes 
types (flow, stock, and value-per-unit) with statistical functions. 
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3. Overview of the explanation model 
 
3.1 A causal model of explanation and diagnosis 
 
According to a causal model of explanation, phenomena (events) are explained by giving their 
causes. In this research paper the exposition on diagnostic reasoning and causal explanation is 
largely based on Feelders and Daniels’ notion of explanations [3, 4], which is essentially 
based on Humpreys’ notion of aleatory explanations [7] and the theory of explaining 
differences by Hesslow [6]. Causal influences can appear in two forms: contributing and 
counteracting. Therefore, Humphreys proposes the following canonical form for causal 
explanations: 
  

Event E occurred because of C+ , despite C− , 
 
where E is the event to be explained, C+  is non-empty set of contributing causes, and C−  a 
(possibly empty) set of counteracting causes. The explanation itself consists of the causes to 
which C+  jointly refers. C−  is not part of the explanation of E, but gives a clearer notion of 
how the members of C+ actually brought about E .  

The explanandum introduced by Feelders and Daniels is a three-place relation 
, ,a F R〈 〉  between an object a (e.g. the ABC-company), a property F (e.g. having a low profit) 

and a reference class R (e.g. other companies in the same branch or industry). Here the event 
E is thus replaced by a more detailed explanandum. The task is not to explain why a has 
property F, but rather to explain why a has property F when the members of R do not.  For the 
purpose of explanation, the class R can often be reduced to one member r, which is in some 
sense the average of the class R or the ideal object. The syntax of an explanation reads:  

 
, ,a F r〈 〉  because C+ , despite C− .  

 
3.2. The business model 
 
Feelders states that explanations are usually based on general laws expressing relations 
between events, such as cause effect relations or constraints between variables. These laws are 
represented in a business model M. The model M, which is a form of domain knowledge, can 
be derived from many domains, like finance, accounting, logistics, and so forth. The business 
model M represents quantitative variables by means of mathematical equations of the form:  
 

( )y f= x  where 1( , , )nx x=x … . 
 
In Table 3, an example is given of a business model. The business model M is associated with 
a directed graph E(M), called the explanatory graph. The explanatory graph of the business 
model in Table 3 is depicted in Figure 2. 
 
1. Gross Profit = Revenues - Cost of Goods 
2. Revenues = Volume · Unit Price 
3. Cost of Goods = Variable Cost + Indirect Cost 
4. Variable Cost = Volume · Unit Cost 
5. Indirect Cost = 30% · Variable Cost 
Table 3: Example business model M 
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Figure 2: Explanatory graph for business model M 
 
The form of the business model relations is such that exactly one variable appears on the left 
hand side of the relation. Economists often specify their models in such a way that this 
requirement is met. 
 
3.3. The norm model 
 
The norm model specifies which reference object(s) should be used to compare. It also 
specifies the variables with respect to which the comparison should be made. In [4], the most 
common “reference objects” to diagnose business performance are described: 
 

• Theoretical norm values 
• Historical norm values 
• Industry (or company) averages as norm values 
• Plans and budgets as norm values 

 
Through theoretical norm values, one tries to establish a norm for a particular financial, 
accounting, or operating variable that is applicable to all companies or business units. A 
historical norm value for a particular variable is its value in one or more previous time 
periods. The industry average of companies operating within the same industry, or the 
company average of comparable business units is often used as a norm for the company or 
business unit. For a particular company, the norm values may be the result of an explicit 
planning process. A plan may for example indicate the production to be achieved or it may 
contain budget values for particular expense items. 
 
4. Diagnosis and explanation in OLAP 
 
4.1. Diagnosis and explanation for multidimensional data 
 
In this section we build on the theory and methodology for automated diagnosis as described 
in [3, 4]. The concepts of this methodology are adapted to use them for automated diagnosis 
and explanation on multidimensional data. In order to apply the explanandum on 
multidimensional data we have to link the explanation model with the multidimensional 
model. For this purpose the attributes of multidimensional data -  measures and dimensions -  
have to be connected with the elements of the explanandum. 

To make the connection for the dimension attribute we have to define the actual object 
a and the reference object r as multidimensional objects with, for example, a time, location, or 
product dimension. Therefore, we associate the object a and the reference object r of the 
explanandum with the dimension vector d. The vector 1 2( , , , )nd d d=d …  denotes the n-
component dimension vector. In addition, the property F is related to the measure attribute of 
the multidimensional model. The actual object a corresponds to an aggregate (or subcube) in 
the data cube that needs to be explained. The reference object r expresses the aggregate used 
for reference in the data cube. Both the actual object a and reference object r are formed by 
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aggregating one ore more dimensions. We are interested in explaining the difference between 
aggregate a and r. Consequently we have to explain the following type of events in the data 
cube:  
 
• a = the actual multidimensional object, e.g. sales(2003,All-Products); 
• F = a particular measure deviates from its norm value, e.g. having a decrease in sales; 
• r = the multidimensional reference object, e.g. sales(2002,All-Products).  
 
Because the multidimensional actual and reference objects will be clear by the selection of the 
analysts, we can now simplify the explanation format to: 
 

y q∂ =  occurred because C+ , despite C− . 
 
In this expression, y q∂ =  specifies an event in the data cube, i.e. the occurrence of a 
qualitative difference between the actual and the norm value of y , denoted by ay  and ry , 
respectively. The actual and norm value represent cells for comparison in the data cube. In 
comparison, the actual object a and reference object r denote two subcubes formed by 
expanding the common aggregated dimensions of ay  and ry . The qualitative difference can 
take on one of the values {low, normal, high}.  

A diagnosis is an explanation for observed abnormal behaviour of a variable, 
sometimes called problem identification. Problem identification is a process that computes a 
value ( , )a rg y y  for each variable, where g  is some user-specified function such as 
percentage difference or absolute difference. If this value is below (above) some specified 
threshold, a symptom y low∂ =  (or y high∂ = ) is added to the list of symptoms. The result of 

problem identification is a set of symptoms { }1 1 , , n nS y q y q= ∂ = ∂ =…  where 

{ },iq low high= . The next two paragraphs discuss the knowledge representation structures for 
diagnosis in the multidimensional data. 
 
4.2. Knowledge representation structures in multidimensional data 
 
In multidimensional data there is structure in the dimensions – the dimension hierarchy – and 
in the measures – the business model. Both structures can be used as “explanation directions”.  
Explanation generation in the dimensions is directed towards lower dimension levels of the  
dimension hierarchy; it uses the aggregation relation (drilldown equation) between the parent 
and child dimension level. We investigate the common situation where the aggregation 
relation is the summarization of measures in the dimension hierarchy. Moreover, explanation 
generation in the measures is directed towards the right-hand side of the business model 
equations. Business model equations represent relations between measures. The business 
model (1) and drilldown equations (2) have subsequently the following general forms: 
 
(1) ( )y f= x , and  
(2) [ ] [ ].k kd p d q≺  
 
The measure vector 1 2( , , , )nx x x=x …  specifies the business model variable s, where each 
variable is associated with the dimensions of the multidimensional model. [ ] [ ]k kd p d q≺  is 
some part of the dimension hierarchy with dimension levels p and q. The dimension level p is 
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defined as 1p q= + . The two explanation directions are illustrated by the following instances 
for equations (1) and (2) derived from the multidimensional dataset for the ABC-company: 

 
(ins. 1) profit(All-Periods,B,P1) revenues(All-Periods,B,P1) costs(All-Periods,B,P1)= − , 
(ins. 2) profit(All-Periods,B,P1) profit(2001,B,P1) profit(2002,B,P1)= +  
 
where (ins. 1) is a business model equation, and (ins. 2) is a drilldown equation for the time 
dimension with the dimension hierarchy [Year] [All-Times]t t≺ . 

We elaborate on the common situation where the form of the aggregation function in 
the dimension hierarchy of a dimension is additive. Therefore additive relations exist between 
the dimension levels of a dimension hierarchy. These additive functions are now defined 
formally. If the measure y  is additive the following top-down definition can be derived: 
 
Definition 1 Measure y is additive in dimension kd  with dimension hierarchy [ ].kd p j ≺  

[ ].kd q i , with dimension levels p and q, and instances i and j if: 
 

1
( , [ ]. , ) ( , [ ]. , )

n

k k
j

y d q i y d p j
=

= ∑… … … … . 

 
The dimension kd  is an arbitrary dimension out of the dimension vector d . Where i is the 
parent instance (e.g. the year “2002”) on dimension level q (e.g. t[Year]), and the children in 
vector j are the instances (e.g. the quarters “q1”, “q2”, “q3”, and “q4” of 2002) of dimension 
level p (e.g. t[Quarter]). The number of elements on the right-hand side of the equation is 
equal to n; the number of level instances in dimension level p associated to one level instance 
a of dimension level q. The summarization equation in definition 1 is called a drill-down 
equation.  
 
Definition 2 Measure y is additive if Definition 1 holds for all dimensions in d  and all levels 
of the dimension hierarchies. 
 
For example, profit, revenues and costs are additive measures in Table 1, according to 
Definition 1 and 2. These measures are typical “flow measures”, and can therefore always be 
correctly aggregated. In contract, the measures unit sale price and unit costs in Table 3 are 
non-additive because they are of the type “value-per-unit”. This type of measure does not 
have the summarizability property in the dimens ions and dimension levels. 

The length of the equation in Definition 1 depends on the structure of the level 
instance component of the data. Therefore, the length of the equation has to be determined. 
The number of level instances n, defined as the number of level instances on level p 
associated with one particular level instance of level q, can be determined by using a COUNT 
operator. This operator simply counts the number of instances of a particular dimension level.  
 
4.3. The norm model in multidimensional data 
 
The actual variable for comparison ay , can in theory be compared with every other cell in the 
data cube, the reference variable ry . However, in general only the cells on the same 
aggregation levels  will be used as norm values for obvious reasons (like the measurement 
scale of the variable). For example, in Figure 1 the actual value for comparison is the cell 



 9 

(2002,A,P1)ay  and (2001,A,P1)ry  denotes the reference object. In this example, the two 
cells only differ in only one dimension. We can equally well handle cases where the two cells 
differ in more than one dimension as long as we have common dimensions on which both the 
cells are aggregated. 

In addition, special type of norm values can be added to the data cube, namely norm 
values based on the average ( ry ) of each dimension (level). These type of norm values can 
be calculated for each individual dimension (level) in d .  This idea will be illustrated by 
extending the example of the ABC-company with a larger financial dataset, with data for 
multiple years (1999-2004), locations (A-F), and products (P1-P4). Figure 3, shows the data 
cube for this example with the measure variable profit (y) on the dimensions Time[Year], 
Location [City], and Product[ProdName]. The actual cell (1999,A,P1)ay  can be compared 
with the average profit of: the time dimension ( (All-Periods,A,P1)ry ), the location 
dimension ( (1999,All-Locations,P1)ry ), and the product dimension ( (1999,A,ry  
All-Products). 

t[Year]

l[City]

p[ProdName]

1999
2000
2001
2002
2003
2004P4

P3P2
P1

A
B C D E F

(1999,A,P1)ay
(1999,All,P1)ry

(All,A,P1)ry

(1999,A,All)ry All

All

All

 
Figure 3: Norm values based on average in a cube for the ABC-Company 

 
To be more formal about this idea, we now introduce some notation. If the measure y  is addi-
tive, then the norm values ry  are also additive. Therefore summarization relations exists 
between successive dimension levels in a dimension for all norm values ry . In particular, a 
norm value for a particular dimension kd  can be summarized up to a higher level on the 

dimension hierarchy. A norm value ry  on dimension vector d  with a dimension hierarchy 
[ ] [ ]k kd p d q≺ , with levels p and q and instances i and j has the following summarization 

relation when y is a an additive measure:  
 

1
( , [ ]. , ) ( , [ ]. , )

n
r r

k k
j

y d q i y d p j
=

= ∑… … … … . 

 
The relation between reference objects based on averages in the multidimensional model is 

defined analogously: 
1

( , [ ] . , ) ( ( , [ ]. , ) ) /
n

r r
k k

j
y d q i y d p j n

=
= ∑… … … … . 

 
4.4. Diagnosis and explanation in OLAP 
 
For diagnosis and explanation in the multidimensional model we use the methodology as 
described in [3, 4]. We apply the proposed definitions for the measure of influence, 
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contributing and counteracting causes, and parsimonious sets. First we discuss the situation 
where explanation is sustained by the business model ( )y f= x  first, after that we elaborate 
on the situation where explanation is sustained by drilldown equations.  

To determine the contributing and counteracting causes that explain the difference 
between the actual and the norm value of y , a measure of influence for the business model is 
defined as follows: 
 

inf( , ) ( , )r a r
i i ix y f x y−= −x , 

 
where ( , )r a

i if x−x  denotes the value of ( )f x  with all variables and associated dimensions 

evaluated at their norm values, except ix . And where i is the index of the vector x . In words, 
inf( , )ix y  indicates what the difference between the actual and norm value of y  would have 
been if only ix  would have deviated from its norm value. The correct interpretation of the 
measure of influence depends on the form of the function f; the function f has to satisfy the so-
called conjunctiveness constraint. This constraint captures the intuitive notion that the 
influence of a single variable should not turn around when it is considered in conjunction with 
the influence of other variables. Two types of functions satisfy this constraint, namely 
monotonic and additive functions. For an elaboration on restrictions on the equations we refer 
to [3, 4].  
 For the drilldown equations the measure of influence can be simplified because the 
function f is additive by definition. Therefore, the influence measure can always be correctly 
interpreted. The measure of influence for explanation generation in a dimension hierarchy is 
defined as: 

 
inf( ( , [ ]. , ), ( , [ ]) . , ) ( , [ ]. , ) ( , [ ]. , )a r

k k k ky d p j y d q i y d p j y d p j= −… … … … … … … … . 
 
In the definition kd  is one dimension out of the vector d, the other dimensions (and possible 
associated dimension hierarchies) remain constant in the calculation of the influence measure. 
In words, inf( , ( [ ]. , ), ( , [ ]). , )k ky d p j y d q i… … … …  gives the difference between the actual and 
norm values of the parent i if only the single child j would have deviated from its norm value.  

Contributing and counteracting causes for explanations in the business model follow 
the proposed definitions. The set of contributing (counteracting) causes C+  (C− ) consists of 
components ix  of x  out of the business model with: inf( , ) 0ix y y× ∆ >  ( 0)< . In words, the 
contributing causes are those variables whose influence values have the same sign as y∆ , and 
the counteracting causes are those variables whose influence values have the opposite sign. 
The contributing and counteracting causes for explanations in the dimension hierarchy of a 
dimension can be defined similarly. Now the set of contributing (counteracting) causes C+  

(C− ) consists of the set of instances on dimension level p out of the dimension hierarchy of 
dimension kd  with inf( ( , [ ]. , ), ( , [ ] . , )) 0k ky d p j y d q i y× ∆ >… … … …  ( 0)< .  

Parsimonious sets of causes are used as a filter measure to leave insignificant 
influences out of the explanation to prevent an information overload of the analyst. The same 
filter is applied in explanation generation for multidimensional data. The parsimonious set of 
contributing causes is the smallest subset of the set of contributing causes, such that its 
influence on y exceeds a particular fraction (T + ) of the influence of the complete set. The 
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fraction T +  (T − ) will typically be close to one. In the sequel we use the following format for 
parsimonious one- level explanations: 

 
y q∂ =  occurred because pC+ , despite pC− . 

 
5. Maximal explanation in the multidimensional model 
 
5.1. Introduction and background 
 
In this section we present an explanation generation algorithm for symptoms discovered in 
multidimensional data. The algorithms for maximal explanation in multidimensional data 
clearly built on the idea of a “maximal explanation tree” as described in [3, 4]. However, we 
extend the basic idea of generating explanations in multiple equations of business model 
equations to maximal explanation in the measures and dimens ions of multidimensional data. 
We start by giving some background information about the analyses of multidimensional data. 

In [5], Han remarks that the data mining process at multiple dimension levels may 
proceed in several ways: progressive deepening, progressive generalization, and interactive 
up-and-down. The explanation generation process for multidimensional data is, in this 
respect, quite similar to the knowledge mining process at multiple dimension levels. 
Especially, the idea of progressive deepening seems very “natural” in the explanation 
generation process; find an explanation on a high level in the dimension hierarchy and 
progressively deepen it to find the explanations for events at lower levels of the dimension 
hierarchy.  

The idea of progressive deepening resembles the strategy of analysts in analyzing 
multidimensional data. When an analyst queries the multidimensional data to make a 
decision, he usually follows an incremental top-down approach in creating and analyzing 
cubes [8, 17]. First, the analyst creates a very “coarse-grained” cube that describes the 
variables for which a decision should be made. Second, in carrying out multidimensional 
analyses the analyst compares, aggregates, and transforms, etc. the cells of this cube. Finally, 
the analyst creates a more detailed cube for the level instances for which further analysis is 
necessary.   
 
5.2. Maximal explanation in multidimensional data 
 
The idea of progressive deepening is used in the construction of a maximal explanation 
algorithm for multidimensional data. Such an algorithm is needed to create multi- level 
explanations. Thus far, we have only discussed “one- level” explanations. The explanations 
are one- level deep, in the sense that they are based on a single relation from the business 
model or on a single drilldown relation derived from the dimension hierarchy of a dimension. 
For diagnostic purposes, however, it is useful to continue an explanation of y q∂ =  where 

{ }low,highq = , by explaining the qualitative differences between the actual and norm values 
of its contributing causes. This process can be continued until a parsimonious contributing 
cause is encountered that cannot be explained: 
 
• within the business model, because the business model equations do not contain a relation 

in which this contributing cause appears on the left-hand side, and 
• within the dimensions, because the drilldown equations do not contain a summarization 

relation in which this contributing cause appears on the left-hand side. 
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The result of this process is a maximal explanation tree of causes, where y is the root of the 
tree with two types of children, corresponding to its parsimonious contributing and 
counteracting causes respectively. A node that corresponds to a parsimonious contributing 
cause is a new symptom that can be explained further. And a node that corresponds to a 
parsimonious counteracting cause has no successors. 
 Two special types of explanation trees can be constructed, namely an explanation tree 
based on only business model equations (1), and an explanation tree based on only drilldown 
equations from dimension kd  (2). In (1) explanation generation continuous until a variable 
cannot be explained any further in the business model. Here all derived explanations are on 
the same aggregation level and in each step a new measure will be encountered as a cause. In 
(2) the dimension kd  is associated with a hierarchy [ ] [ 1]k kd z d z −≺ ≺…≺ [0]kd . Where 
dimension level [0]kd  or [All]kd  is the highest dimension level and [ ]kd z  is the lowest 
dimension level. This hierarchy can be translated in the following set of drilldown equations:  
 

1
( , [ ]. , ) ( , [ ]. , )

n

k k
j

y d q i y d p j
=

= ∑… … … … , 

 
where 0,1, , 1q z= −… , and 1p q= + . Explanation generation continues until the lowest level 
of the dimension hierarchy; the level [ ]kd z . In this tree the derived explanations are related to 
one measure, and in each step the aggregation level is lowered by one level. 
 In the maximal tree of causes explanation generation may continue in the direction of 
the business model or in direction of the drilldown equations of the dimensions. In other 
words, in some nodes of the tree on can alternate the use of drilldown and business model 
equations. In this way different explanation paths exist from the root of the explanation tree to 
the endnotes.  

There is a unique canonical way to form reference objects in the next explanation step 
from the previous step. For each derived contributing cause we can construct a reference 
object based on the right hand sides of the business model (1) and drilldown equations (2), if 
there is an equation that sustains further explanation:  
 
(1) ( )r ry f= x , 

(2) 
1

( , [ ]. , ) ( , [ ]. , )
n

r r
k k

j
y d q i y d p j

=
= ∑… … … … . 

 
In this way a chain or tree of reference objects is constructed. In fact this is the total reference 
subcube or aggregate r. As said, a very common reference object is the reference object based 
on some average. Also for this type of reference object the canonical way of forming 
reference objects holds. However the averages have to be computed and added to the subcube 
r by taking:  
 
(1) ( )r ry f= x  for the business model equations, and  

(2) 
1

( , [ ] . , ) ( ( , [ ]. , ) ) /
n

r r
k k

j
y d q i y d p j n

=
= ∑… … … …  for the drilldown equations. 

 
 We now propose an algorithm to produce a maximal explanation tree of causes for 
symptoms in multidimensional data. The algorithm uses all the business model equations and 
drilldown equations together with the canonical reference object. We define a recursive 
procedure for maximal explanation of multidimensional data: 
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Algorithm 1 (Maximal explanation of multidimensional data). A maximal explanation of 
multidimensional data ( )y q∂ =d  is a tree with the following properties: 
1. Construct a business model sub-tree with explanation of the business model equations. 
2. For all nodes of the business model sub-tree construct dimension sub-trees for the 

dimensions in d  with explanation of the drilldown equations.  
3. For each node where one of the dimensions is not on the lowest level of the dimension 

hierarchy, or where one of the measures has a business model equation, do Maximal 
explanation of multidimensional data. (Algorithm 1). 

 
6. Related work 
 
To position this paper we now discuss some related work regarding the explanation of 
differences and the exploration of multidimensional data. We will explain these previous 
initiatives in terms of the general explanation formalism as formulated in paragraph 4.1. 

Sarawagi [10] presented an operator for OLAP data cubes that lets the analyst get 
summarized reasons for drops or increases observed at an aggregated level. This operator 
eliminates the need to manually drill-down for such reasons. Sarawagi developed an 
information theoretic formulation for expressing these reasons and designed a dynamic 
programming algorithm for it. In terms of the explanation model Sarawagi compares the 
actual value in subcube bC  (= object a ) with the expected one according to subcube aC  (= 
reference object r ) and the compact summary of the difference table A (= property F) for 
each elementary cell. A consists of rows not only detailed but also aggregated levels of the 
cube. With each row of A a ratio r  -  /a ry y  -  is associated that indicates to the user that 
everything underneath that row had the same ratio. The ratio of a cell results from the ratio of 
immediate predecessor cell and known ratios of neighbouring cells. The idea is to find A such 
that a user reconstructing bC  from aC  and A will incur the smallest amount of error. This can 
be achieved by listing rows that are significantly different than their parents (parsimonious 
counteracting causes) and aggregating rows that are similar (parsimonious contributing 
causes) such that the error due to summarization is minimized. The error is calculated, based 
on a probability distribution (e.g., the normal distribution, Poisson distribution) around the 
expected value: Pr( , )b aC C A . The goal of the sender is the deviation of A such that the total 
error is minimized. 

Sarawagi et al. [11] developed a discovery-driven exploration paradigm that mines the 
data for exceptions and summarizes the exceptions at appropriate levels in advance. The 
discovery-driven method is guided by pre-computed indicators of exceptions at various levels 
of detail in the cube. The model they use is inspired by the table analysis method used in 
statistical literature. In [11] a value in a cell of a data cube is an exception (or symptom) if it is 
significantly different from the expected value based on a statistical model. This model 
computes the expected value of a cell ŷ  in context of its position in the data cube and 
combines trends along different dimensions that the cell belongs to. The difference between 
the actual value y (= object a ) and the expected value ŷ  (= reference object r )) determines 
the “degree of surprise” a cell. However the deviation of the actual value from the expected  
value must be larger that some threshold after normalization value to call it an exception. The 
property F of the explanation model holds if ˆ /y y σ θ− > . For a value y in a cube, ŷ  is 
defined as a function f of contributions from various higher level group-bys as: 
ˆ ( )aggregationy f γ= . The γ  terms are the coefficients of the model equation. The function f can 

take one an additive and multiplicative forms. The coefficients are estimated from the base 
data by mean-based or median-based (trimmed-mean) estimates. By this method the user is 
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guided by the model to interesting data regions using pre-computed indicators. In comparison 
with the explanation formalism, this model does not generate parsimonious contributing or 
counteracting causes, but is more a model to identify symptoms (outliers) automatically. 
 
7. Case study: sport equipment sales data 
 
We use a demo dataset (called “GOSales”) obtained from the Cognos OLAP product 
PowerPlay [2] as a case study for the algorithm. The dataset has 42.063 records and four 
dimensions (see the star schema in Figure 4). The Vendor dimension is not used for 
explanation generation because of space limitations. The fact table “Financial Facts” present 
the measures of the dataset. The numbers within brackets denote the cardinality of that level.  
 

Profit
Revenues
Costs
UnitSalePrice
UnitCosts
Volume
Variable_Costs
Indirect_Costs

Financial Facts

Month (36)
Quarter (12)
Year (3)

Time (t)

Name (88)
Position (70)
City (28)
Country (20)

Location (l)

Product (115)
ProducType (21)
ProductLine (5)

Product (p)

Vendorname (114)
Vendor Divisions (4)

Vendor (v)

 
Figure 4: Star schema describing the dimensions and measures of the GOSales dataset 

 
The relations between the measures -  the business model -  are shown in Table 3. An 
important condition for summarizability is compatibility of the measures with the statistical 
aggregation function applied. Two types of measures are present, namely: “flow” (Profit, 
Revenues, Costs, Variable Cost, Indirect Cost, and Volume) and “value-per-unit” (Unit Sale 
Price and Unit Cost). The flow measures are summarized, however the summarization of 
value-per-unit measures is not meaningful semantically [5]. Therefore, we apply the weighted 
average on these measures. In calculating the average of the value-per-unit measures we take 
into account the volumes associated with it. Most measures in the business model are additive  
except the measures Unit Sale Price and Unit Cost.  

We now provide an example of a complete diagnosis in the business model and in the 
dimensions of the GoSales dataset. The diagnosis will be performed for the Netherlands 
(“NL”) in the year 2001, which has a decrease in profit compared to the profit in the year 
2000. Problem identification yields the set of symptoms { }profit(2001,NL,All)=" "S low= ∂  
since the relative difference between norm value and actual value, (353,096.80 −  
515,715.03)/515,715.03 0.32= − , is below some specified lowbound of 0.10− . A full 
specification of the event to be explained in the cube is: 
 

<profit (2001,NL,All)a , profit∂ =”low”, profit (2000,NL,All)r >. 
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We want to explain this event in the direction of the business model as well as in the 
direction of the Time, Location, and Product dimension. We want to omit insignificant 
influences from the explanations, therefore we take 0.7T T+ −= = . Firstly, we start with 
explanation in the direction of the business model. Hence the corresponding equation in Table 
3 is: profit( , , ) revenues( , , ) costs( , , )t l p t l p t l p= − . Therefore, aprofit (2001,NL,All) , or in 
short aprofit (2001,.,.) , is the root of the explanation tree. Computation of the influences of the 
individual variables in the business model equation for profit yields the following results and 
calculations : 
 

 

Table 4: Data for explanation of profit(2001,NL,All) " "low∂ =  
 
From the data in Table 4 the following one- level explanation is obtained: profit(∂  

2001,NL,All) " "low= , because { }costs(.,.,.)pC+ = , despite { }revenues(.,.,.)pC− = . Or in words 
the profit has gone down in the Netherlands in the year 2001 because the costs have risen 
despite the fact that the revenues have gone up. Explanation generation continues for the 
contributing cause, therefore, the event to explained is specified as < acosts (2001,.,.) , 

costs∂ =”high”, costs (2000,.,.)r >. Table 5 summarizes the model results for the high costs. 
 

 Norm Actual inf 
costs(.,.,.) 3,572,155.31 3,988,560.78  
variable_costs(.,.,.) 2,747,811.78 3,068,123.68  320,311.90 
indirect_costs(.,.,.) 824,343.53 920,437.10  96,093.57 

Table 5: Data for explanation of costs(2001,NL,All) " "high∂ =  

 
From the data in the table is follows that { }variable_costs(.,.,.)pC+ =  and { }pC− = . The 
model filters out the indirect_costs(.,.,.) from the contributing causes. The reason is that its 
contribution to the overall contributing influence (inf( ,costs(.,.,.)) 416405.47C + =  on total 
costs is negligible. The increase in the variable costs can be explained further in the business 
model. Now the event to be explained is < avar_costs (2001,.,.) , var_costs∂ =”high”, 
var_costs (2000,.,.)r >. The explanation is sustained by equation 4 from Table 3.  
 

 Norm Actual inf 
variable_costs(.,.,.) 2,747,811.78 3,068,123.68  
avg_unit_costs(.,.,.) 56.42092276 58.487224084 100,633.01 
volume(.,.,.) 48702 52458 211,916.99 

Table 6: Data for explanation of variable_costs(2001,NL,All) " "high∂ =  

 
From Table 6 it can be concluded that { }avg_unit_cost(.,.,.),volume(.,.,.)pC+ = , since both  the 
(weighted) average unit costs and the sales volume contributed to the difference between 
norm value and actual value, and both are needed to explain the desired fraction. Obviously, 

{ }pC− = .  

 Norm Actual inf 
profit(.,.,.) 515,715.03 353,096.80  
revenues(.,.,.) 4,087,870.34 4,341,657.58  253,787.24 
costs(.,.,.) 3,572,155.31 3,988,560.78  -416,405.47 
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 The previous examples of one-level diagnosis can be combined to a complete 
diagnosis in the business model. Figure 5, summarizes the results of the maximal diagnosis  in 
the direction of the measures for event profit(2001,NL,All)∂ =  " "low , where dotted lines 
indicate counteracting causes.  
 

profit(2001,NL,All) " "low∂ =

revenues(2001,NL,All) costs(2001,NL,All)

variable_cost(2001,NL,All)

volume(2001,NL,All) avg_unit_cost(2001,NL,All)  
Figure 5: Diagnosis for symptom {profit (2001,NL,All) " "}aS low= =  in the business model 

 
Secondly, we continue with explanation in the direction of the dimensions for this particular 
event. Therefore, the algorithm uses the drilldown equations of the dimensions Time, 
Location, and Product. We start with explanation in the direction of the Time dimension. This 
dimension is associated with the dimension hierarchy Time[Month] ≺ Time[Quarter]≺  
Time[Year]. Because profit is an additive cube function the dimension hierarchy can be 

translated into the following drilldown equation: 
4

1
profit(2001,NL,All) profit([quarter]

i
t

=
= ∑  

. ,NL,All)ia . The norm values for the individual quarters are determined by taking the 
canonical reference object.  
 

 Norm Actual inf 
profit(.,.,.) 515,715.03 353,096.80  
profit(*.q1,.,.) 18,038.73 40,168.30 22,129.57 
profit(*.q2,.,.) 249,197.75 105,965.76 -143,231.99 
profit(*.q3,.,.) 106,681.04 90,982.64 -15,690.40 
profit(*.q4,.,.) 141,797.50 115,980.10 -25,817.40 
Table 7: Data for explanation of (2001,NL,All) " "profit low∂ =  

 
In Table 7 comparison is made between the quarters of the year 2000 (norm) with the quarters 
of the year 2001. From the data in Table 8 it follows that { }profit(2001.q2,.,.)pC+ = , because 

only the second quarter is needed to explain the desired fraction of (inf( ,profit(2001,.,.))C+ . 

Obviously, { }profit(2001.q1,.,.)pC− = . The contributing cause is explained further, because 

the drilldown equation: profit(2001.q2,NL,All) =
3

1
profit([month]. ,NL,All)i

i
t a

=
∑  sustains this 

ex-planation in the dimension hierarchy. Now the event to be explained is 
< aprofit (2001.q2,.,.) , profit∂ =”low”, profit (2000.q2,.,.)r >. Without giving the data and 
calculation we give the causes: {profit(2001.Apr,.,.),profit(2001.May,.,.),pC+ = profit(  

2001.Jun,.,.)}  despite { }pC− = . Now explanation stops in the Time dimension because there 
is no dimension level below the month level in the hierarchy. Figure 6 under the node time, 
summarizes the results of the diagnostic process in the dimension hierarchy of the Time 
dimension. 
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profit(2001,NL,All) " "low∂ =

time

2001.q22001.q1

Apr
May

Jun  
Figure 6: Diagnosis for symptom {profit (2001,NL,All) " "}aS low= =  in the Time dimension 

 
In summary, Figure 5 and 6 present examples of special type of explanation trees where 
explanation is sustained by respectively: only business model equations, and drilldown 
equations. The figures only summarize step 1 and part of step 2 of the algorithm for maximal 
explanation of multidimensional data. Step 2 of the algorithm continues with diagnosis in the 
Location and Product dimensions. In step 3 explanation generation proceeds for contributing 
causes that have an equation that supports further explanation. This final step is omitted in 
this case study. 
 
8. Summary and conclusions 
 
In this paper, we presented a formal framework for explanation and diagnosis in 
multidimensional data. For the construction of explana tions in an OLAP system the elements 
of the explanation formalism are adapted to the structure of multidimensional data. Therefore, 
explanation generation in an OLAP system proceeds in two directions: in the direction of the 
business model equations (the measures) and in the direction of the drilldown equations (the 
dimension hierarchies). The algorithm as proposed uses the concept of a maximal explanation 
tree of causes, where explanation generation is continued until a parsimonious contributing 
cause cannot be explained anymore by a drilldown or business model equation. In addition, 
the algorithm uses a unique canonical way to form reference objects in successive explanation 
steps. The result of the algorithm is a large semantic tree which can be presented to the 
analyst. We demonstrated the algorithm by applying it on a demo multidimensional dataset 
with dimension hierarchies and a financial business model. 

We believe that this framework could assist analysts in generating explanations for 
symptoms in multidimensional data. Moreover, the framework can easily be applied to all 
kinds of financial or accounting models. In general, the novel framework could lead to better 
decisions based on multidimensional business data, especially when the dataset is large.  The 
result of this research can be used to develop an analytical tool as an add- in for OLAP 
systems. 
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