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1 Introduction

The seminal work of Blanchard and Quah (1989) has stimulated widespread interest in using

vector autoregressions (VARs) that impose long-run restrictions to identify the effects of shocks.

This methodology has proved appealing because it does not require a fully-articulated structural

model or numerous model-specific assumptions.

One important recent application of this approach, introduced by Gaĺı (1999), involves

using long-run restrictions to identify the effects of a technology shock. The key identifying

assumption in this approach is that only technology innovations can affect labor productivity in

the long-run. As discussed in Gaĺı (1999), this assumption holds in a broad class of models under

relatively weak assumptions about the form of the production function. Numerous researchers

have used this approach to assess how technology shocks affect macroeconomic variables, and

to quantify the importance of technology shocks in accounting for output and employment

fluctuations.1

While the simplicity of Gaĺı’s methodology has contributed to its broad appeal, the recent

literature has suggested reasons to question whether it is likely to yield reliable inferences about

the effects of technology shocks. One reason is that it is difficult to estimate precisely the long-

run effects of shocks using a short data sample. Accordingly, as emphasized by Faust and

Leeper (1997), structural VARs that achieve identification through long-run restrictions may

perform poorly when estimated over the sample periods typically utilized. A second reason is

that certain non-technology shocks, such as changes in the capital tax rate, may have permanent

effects on labor productivity, thus violating Gaĺı’s key identifying assumption.2

In this paper, we critique the reliability of the Gaĺı methodology by using Monte Carlo

simulations of reasonably-calibrated dynamic general equilibrium models. In particular, we

1See, for example, Gaĺı (1999), Francis and Ramey (2003), Christiano, Eichenbaum, and Vigfusson (2003),

and Altig, Christiano, Eichenbaum, and Lindé (2003).
2See Altig, Christiano, Eichenbaum, and Lindé (2003). However, Francis and Ramey (2003) found that the

effects of technology shocks inferred from their VAR were little affected by permanent capital tax rate changes.

We also find that changes in capital tax rates play a minor role in our analysis.
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compare the response of macroeconomic variables to a technology innovation derived from

applying Gaĺı’s identifying scheme with the “true” response implied by our models. We utilize

two alternative models of the business cycle as the data generating process. The first is a

standard real business cycle (RBC) model with endogenous capital accumulation, and includes

shocks to productivity, capital and labor income tax rates, government spending, and labor

supply. We consider two variants of the RBC model, one of which assumes that capacity

utilization is fixed, while the other allows capacity utilization to be chosen endogenously. The

second model incorporates staggered wage and price setting into the analysis. We generate

Monte Carlo simulations using 45 years of quarterly data, since this sample length is similar to

that used recently by most researchers.

Broadly speaking, the shocks derived from application of the Gaĺı methodology to the

simulated data “look like” true technology shocks in each of the models we consider. In particu-

lar, the point-wise mean impulse response functions (IRFs) of output, investment, consumption,

and hours worked derived from the Monte Carlo simulations uniformly have the same sign and

qualitative pattern as the true responses. Moreover, we find that the probability of inferring a

response of output, consumption, or investment that has the qualitatively incorrect sign (even

for only a few quarters) is generally low.

However, we find that the small-sample bias emphasized by Faust and Leeper (1997)

poses quantitative problems for this identifying scheme. Our analysis allows us to highlight two

related channels through which this bias arises. First, the slow adjustment of capital makes it

hard to gauge the long-run impact of a technology shock on labor productivity, contributing to

downward bias in the estimated impulse responses.3 Second, the identification procedure has

difficulty disentangling technology shocks from other shocks that have highly persistent, even

3The fact that slow adjustment of capital creates problems for the identification scheme may seem surprising

given the well-known problem emphasized by Cogley and Nason (1995) that standard real business cycle models

fail to generate enough endogenous persistence. However, Cogley and Nason (1995) focus on the inability of

these models to generate enough positive autocorrelation in output growth, while our emphasis is on the level

of labor productivity.
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if not permanent, effects on labor productivity (such as labor supply or tax rate shocks).4 As a

result, even in the absence of shocks that would violate Gaĺı’s long-run identifying assumption,

the estimated technology shock may incorporate a sizeable non-technology component. Ac-

cordingly, the bias in the estimated response of a given variable to a technology shock depends

on the relative magnitude of technology and non-technology shocks, and on its response to

non-technology shocks.

The slow adjustment of capital mainly accounts for the sizeable downward bias in the

mean response of output derived from the Monte Carlo simulations in each of the models

considered. Moreover, given substantial spread in the distribution of the impulse responses,

we find that the probability that a researcher would estimate an output impulse response that

lies uniformly more than 33 percent away from the true response (for the first four quarters

following the shock) exceeds 40 percent in two of the three model variants. This bias and

spread in estimating the impulse responses also implies that the structural VAR may produce

poor estimates of the contribution of technology shocks to business cycle fluctuations. In the

model with nominal rigidities, we find there is almost a 50 percent chance of underpredicting

the volatility of HP-filtered output due to technology shocks by 50 percent or more.

The inability of the structural VAR to disentangle technology shocks from non-technology

shocks accounts for the surprising result that the bias in the response of hours and investment

varies substantially across the models considered. For example, the mean response of investment

overstates the true response by nearly 70 percent (on average over the first 12 quarters) in the

RBC model with variable capacity utilization, reflecting that expansionary labor supply and

tax rate shocks generate a sharp initial rise in investment spending. By contrast, the mean

response of investment understates the true response by 45 percent in the model with nominal

rigidities, reflecting that the monetary rule induces investment to contract initially in response

to the same labor supply/tax shocks. Thus, the bias may differ substantially across models,

because the way in which a variable responds to non-technology shocks is model-dependent.

4In this respect, our paper is similar to an earlier literature emphasizing that the measured Solow residual

is contaminated by aggregate demand disturbances. See, for example, Evans (1992) and references therein.
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Overall, Gaĺı’s methodology appears to offer a fruitful approach to uncovering the effects

of technology shocks, but our analysis suggests important caveats in interpreting the results.

While the key long-run identifying assumption employed by Gaĺı may hold across a broad class

of models, the ability of the SVAR to identify technology shocks may be sensitive to specific

features of the data-generating process. Accordingly, our analysis suggests that empirical esti-

mates of the effects of technology shocks should not be regarded as model-independent stylized

facts. In particular, a researcher should not simply compare the impulse responses to a technol-

ogy shock from a theoretical model to those obtained from applying Gaĺı’s identifying scheme

to actual data. Rather, it is important to adjust for small-sample bias, the size and direction

of which depends on the model under consideration.

This paper is organized as follows. Section 2 outlines our baseline RBC model and

describes the calibration. Section 3 reviews the Gaĺı identification scheme. Section 4 reports

our results for both versions of the RBC model. Section 5 discusses the results for the model with

nominal rigidities, and Section 6 examines the coverage of conventional bootstrap confidence

intervals. Section 7 concludes.

2 The RBC Model

We begin by outlining a relatively standard real business cycle model that includes variable

capacity utilization as in Burnside and Eichenbaum (1996). The “textbook” RBC model with

fixed capacity utilization emerges as a special case.

2.1 Household Behavior

The utility function of the representative household is

Et

∞∑
j=0

βj{log (Ct+j) + χ0t+j
(1−Nt+j)

1−χ

1− χ
}, (1)

where the discount factor β satisfies 0 < β < 1 and Et is the expectation operator conditional

on information available at time t. The period utility function depends on consumption, Ct,
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leisure, 1 − Nt, and a stochastic shock, χ0t, that may be regarded as a shock to labor supply.

We assume that this labor supply shock evolves according to:

log(χ0t) = (1− ρχ) log(χ0) + ρχ log(χ0t−1) + σχεχt, (2)

where χ0 denotes the steady state value of χ0t and εχt ∼ N(0, 1).

The representative household’s budget constraint in period t states that its expenditure

on consumption and investment goods (It) and net purchases of bonds Bt+1 must equal its

after-tax disposable income:

Ct + It + 1
1+rt

Bt+1 −Bt =

(1− τNt)WtNt + Γt + Tt + (1− τKt)RKtυtKt + τKtδKt − 0.5φKKt(
It

Kt
− δ̂)2.

(3)

The household earns after-tax labor income of (1 − τNt)WtNt, where τNt is a stochastic tax

on labor income, and also receives an aliquot share of firm profits Γt and a lump-sum govern-

ment transfer of Tt. The household leases capital services to firms at an after-tax rental rate

of (1− τKt)RKt, where τKt is a stochastic tax on capital income. Capital services depend mul-

tiplicatively on the size of the household’s capital stock Kt, and on the household’s choice of

a utilization rate υt. The household receives a depreciation writeoff of τKtδ per unit of capital

(where δ is the steady state depreciation rate of capital). The household also faces adjustment

costs for changing the ratio of its investment to its capital stock relative to the steady-state

level of δ̂ = δeµz , where µz denotes the steady-state logarithmic growth rate of technology.

Purchases of investment goods augment the household’s capital stock according to the

transition law:

Kt+1 = (1− δ(υt))Kt + It. (4)

The depreciation rate of capital is assumed to depend positively on the household’s choice of a

utilization rate5, and we assume that this function is of the isoelastic form:

δ(υt) = δυφ
t , (5)

5See Greenwood, Hercowitz, and Huffman (1988) or Burnside and Eichenbaum (1996).
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where φ > 1. In every period t, the household maximizes utility (1) with respect to its con-

sumption, labor supply, investment, (end-of-period) capital stock, capital utilization rate, and

real bond holdings, subject to its budget constraint (3), and the transition equation for capital

(4).

2.2 Firms

The representative firm uses capital services (υtKt) and labor to produce a final output good

that can either be consumed or invested. This firm has a constant returns-to-scale Cobb-Douglas

production function of the form:

Yt = (υtKt)
θ(ZtNt)

1−θ, (6)

Here, Zt is the exogenous process for technology whose law of motion is governed by:

log(Zt)− log(Zt−1) = µz + σzεzt, (7)

where εzt ∼ N(0, 1).

The firm purchases capital services and labor in perfectly competitive factor markets,

so that it takes as given the rental price of capital services RKt and the aggregate wage Wt.
6

Since the firm behaves as a price taker in the output market as well as in factor markets, the

following efficiency conditions hold for the choice of capital services and labor:

MCt

Pt

=
Wt

MPLt

=
RKt

MPKt

= 1. (8)

2.3 Government

Some of the final output good is purchased by the government, so that the market-clearing

condition is:

Yt = Ct + It + Gt. (9)

6Note that in our model, households determine the aggregate of capital services by their choice of the

utilization rate of capital and level of the capital stock. Correspondingly, firms are indifferent as to whether

households produce more capital services by increasing the stock of capital, or by increasing the utilization rate

of a fixed stock of capital.
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Government purchases are assumed to have no direct effect on the utility function of the rep-

resentative household. We also assume that government purchases are exogenous and share a

common trend with the level of technology. Therefore, we define gt = Gt/Zt, which evolves

according to:

log(gt) = (1− ρg) log(g) + ρg log(gt−1) + σgεgt, (10)

where g denotes the steady state value of gt and εgt ∼ N(0, 1).

The government’s budget is balanced every period, so that total taxes – which include

both distortionary taxes on labor and capital income – equal the sum of government purchases

of the final output good and net lump-sum transfers to households.7 Hence, the government’s

budget constraint at date t is:

Tt + Gt = τNtWtNt + τKt(RKt − δ)Kt. (11)

The tax rates on capital and labor are assumed to be exogenous and evolve according to:

τit = (1− ρτi
)τi + ρτi

τit−1 + στi
ετit, (12)

where τi is the steady state tax rate and ετit ∼ N(0, 1) for i = K, N .

2.4 Solution and Calibration

To analyze the behavior of the model, we first apply a stationary-inducing transformation

to those real variables that share a common trend with the level of technology. This entails

detrending real GDP, the GDP expenditure components, and the real wage by Zt and the

capital stock, Kt, by Zt−1. We then compute the solution of the model using the numerical

algorithm of Anderson and Moore (1985), which provides an efficient implementation of the

solution method proposed by Blanchard and Kahn (1980).

We calibrate two versions of the RBC model: in one case, capacity utilization is simply

fixed (the FCU version) so that δ(υt) = δ ∀t, while in the alternative case it is allowed to

7The assumption of a balanced budget is not restrictive given the availability of lump-sum taxes or transfers.
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vary (the VCU version). Both versions are calibrated at a quarterly frequency. We begin by

discussing the FCU calibration. As reported in Table 1, we assume β = 1.03−0.25, consistent

with a steady-state annualized real interest rate of 3 percent. The utility function parameter

χ0 is set so that steady-state employment (N) comprises one-third of the household’s time

endowment. The parameter χ is set to 3, which implies a Frisch elasticity of labor supply

of 2/3. Such an elasticity is lower than if preferences were logarithmic in leisure, but within

the range of most empirical estimates.8 The capital share parameter θ is set to 0.35, while

δ = 0.02, consistent with an annual depreciation rate of 8 percent. Because the model without

variable capacity utilization tends to underpredict investment volatility even when there are no

adjustment costs, we set φK = 0 in this case.

For the parameters governing the two tax rate series, we estimated equation (12) using

OLS after constructing these tax rates series based on U.S. data from 1958-2002 following the

methodology described in Jones (2002).9 Our estimates implied τK = 0.38, ρτK
= 0.97, and

στK
= 0.008 for the capital tax rate, and τN = 0.22, ρτN

= 0.98, and στN
= 0.0052 for the labor

tax rate.

We constructed a quarterly measure of the capital stock by using data on investment, an

initial value for the capital stock, and the capital accumulation equation (4).10 Defining the

Solow residual as:

St =
Yt

Kθ
t N

1−θ
t

, (13)

and noting that Zt = S
1

1−θ

t , we obtained a time series for Zt. Accordingly, we equated µz with

the sample mean of the logarithmic growth rate of technology, and σz with the sample standard

deviation. This yields µz = 0.0037 and σz = 0.0148.

Using government spending data and our derived Zt series, we estimated a first order

autoregression for the scaled government spending shock gt (allowing for a linear time trend),

8See, for example, Pencavel (1986), Killingsworth and Heckman (1986), and Pencavel (2002).
9Following Appendix B in Jones (2002), we used quarterly data collected by the Bureau of Economic Analysis.

10We used quarterly NIPA data from 1958-2002 on real gross private domestic investment and assumed an

initial value of capital three times larger than annualized output in the nonfarm business sector.
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and found ρg = 0.95 and σg = 0.016.11 We set g so that the ratio of government spending to

output is 20%, a value consistent with the share of government consumption to GDP for the

United States based on NIPA data.

In the absence of labor-supply shocks, our calibrated RBC model would significantly

underestimate the volatility in hours worked – a familiar problem in the real business cycle

literature. To see this, Table 2 compares the second moments of several key variables that are

implied by our model with their sample counterparts based on U.S. data. As shown in the

column labelled “σχ = 0”, the model significantly understates the ratio of the standard devia-

tion of HP-filtered hours to the standard deviation of HP-filtered output. For our benchmark

calibration, we address this issue by incorporating labor supply shocks.12 However, we also

consider the alternative approach following Hansen (1985) and Rogerson (1988) of specifying

that utility is linear in leisure (i.e., χ = 0). In this case, which we call “High LSE” calibration,

we do not incorporate labor supply shocks.

In our benchmark calibration, we add a labor-supply shock χ0t with an innovation vari-

ance σχ that is estimated by the method of moments. In particular, we estimate σχ so that

it allows the model to exactly match the observed ratios of the standard deviation of hours

worked relative to output, where both the hours and output data have been HP-filtered. We

set the persistence parameter of the labor-supply shock ρχ = 0.98, identical to that of the

labor-tax rate. Given that the labor-supply shock operates exactly like a labor-tax rate shock,

the inclusion of the former is tantamount to scaling up the magnitude of the labor tax rate

shock. One reason we chose such a high value for ρχ is that it helps the model generate more

persistence in output growth.13 Moreover, it seems plausible that empirically relevant labor

supply shocks, including those driven by demographic change and participation decisions have

persistent effects.

11For this regression, we used quarterly NIPA data on real government consumption and investment expen-

ditures from 1958-2002. Our estimates for ρg and σg are close to Burnside and Eichenbaum (1996).
12Others who have followed this approach include Hall (1997), Shapiro and Watson (1988), and Parkin (1988).
13Even with ρχ = 0.98, the model was unable to match the persistence of output growth in U.S. data. For a

discussion of this well-known problem with RBC models, see Cogley and Nason (1995).
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Table 2 shows the selected moments for the benchmark FCU and the High LSE cali-

brations. A comparison of the model’s implications for the volatility of output, investment,

and consumption to the corresponding sample moments suggests that these calibrated models

perform quite well on these dimensions, even though they were not calibrated specifically to

match these moments.

Next, we consider the calibration of the VCU version of the model. Upon normalizing φ

so that capacity utilization equals unity (υ = 1) in the non-stochastic steady state, the first-

order condition for choosing capacity may be expressed as (1− τK)RK = φδ. This allows us to

solve for φ as a function of other model parameters as follows:

φ =
µz/β − 1

δ
+ (1− τK) = 1.18. (14)

In the VCU version, variation in the Solow residual reflects both changes in technology

and movements in the unobserved level of capacity utilization in response to all of the underlying

shocks. We used the method of moments to infer the technology and labor supply innovations

that allow the model to match exactly the empirical volatility of the Solow residual growth

rate and the HP-filtered ratio of hours worked relative to output (the same moments as in the

benchmark FCU calibration). In addition, we chose φK so that the model matches the observed

ratio of the standard deviation of HP-filtered investment to the standard deviation of HP-filtered

output. In the column labelled “VCU Benchmark”, Table 2 shows the values of σz, σχ, φK

from this calibration exercise. With the exception of these parameters, our procedure assumes

that the other calibrated parameters are the same as in the benchmark FCU calibration.14

3 The SVAR Specification

In this section, we outline the estimation procedure that a researcher is presumed to follow

given a single realization of data. The structural VAR (SVAR) a researcher would estimate

14We recomputed the Solow residual to take account of time-varying depreciation on the estimated capital

stock using a recursive procedure similar to that of Burnside and Eichenbaum (1996). However, we found that

the volatility of the Solow residual was the same as in the case in which depreciation was fixed.
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takes the form:

A(L)Xt = A0et, (15)

where A(L) = I − A1L − ... − ApL
p, and Ai for i = 1, 2, ..., p is a square matrix of reduced-

form parameters; L is the lag operator, and Xt and et are vectors of endogenous variables and

disturbances, respectively. Xt contains the log difference of average labor productivity, the log

of hours worked, the log of consumption-to-output ratio, and the log of investment-to-output

ratio. All variables are expressed as a deviation from the model’s nonstochastic steady state,

and average labor productivity is defined as Yt/Nt.
15 The lag length, p, is chosen by using the

information criterion in Schwarz (1978), where p ∈ {1, 2, ..., 10}.
The inclusion of average labor productivity growth in Xt is standard in the empirical

literature using VARs to identify technology shocks. While the empirical literature is divided

on whether hours worked are best included in levels or differences, the former specification is

selected, because the DGE model implies that hours are stationary in levels. The ratios of in-

vestment and consumption to output are included in the VAR, because Christiano, Eichenbaum,

and Vigfusson (2003) have found these variables to be important in controlling for omitted-

variable bias when using U.S. data. Including these variables also allows us to investigate the

ability of the VAR to adequately capture their dynamic responses.

The identification of the technology shock is achieved in the following way. First, it is

assumed that the innovations are orthogonal and have been normalized to unity so that

Eete
′
t = I. (16)

Denote the first element of et as ezt, the technology shock identified by the VAR. Following

Gaĺı (1999), a researcher would then impose that the technology shock is the only shock that

15In the appendix, we show that, for the benchmark FCU and VCU calibrations, the model’s log-linear decision

rules imply that the variables in Xt can be represented as a VARMA(4,5). As discussed in the appendix, we

verify numerically that this VARMA(4,5) process is invertible and is a fundamental representation for Xt.

Consequently, the VAR that we study is not subject to the criticism of Lippi and Reichlin (1993).
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can affect the level of productivity in the long run, an assumption that is consistent with the

models we consider. Thus, letting R(L) = A(L)−1, it follows that

[R(1)A0]1j = 0 for j = {2, 3, 4}. (17)

Here, R(L) is the reduced-form moving average representation of the VAR given by

R(L) =
∞∑
i=0

RiL
i, (18)

where Ri is a 4X4 matrix of parameter estimates and R0 = I. The restrictions associated with

equation (17) are imposed through a Cholesky decomposition after estimating A(L) using least

squares. This decomposition is used to solve for the first row of A0 given that R(1) = A(1)−1.

No attempt is made to identify the non-technology shocks.

In our Monte Carlo study, we generate 5000 data samples from the relevant DGE model,

and apply the estimation strategy discussed above to each sample. Every data sample consists

of 180 quarterly observations.

4 Estimation results

In this section, we first discuss estimation results for the version of the RBC model in which

capacity utilization is fixed, and then consider the version with variable capacity utilization.

4.1 Results for the FCU Calibration

Figure 1 reports the response of labor productivity, hours worked, consumption, investment,

and output to a technology shock for the benchmark FCU calibration. In each panel, the solid

lines show the true responses from the DGE model. The innovation occurs at date 1 and has

been scaled so that the level of labor productivity rises by one percent in the long run.

The dashed lines show the point-wise mean of the impulse responses derived from apply-

ing the SVAR estimation strategy to the 5000 artificial data samples (the point-wise median
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response is nearly identical).16 The dotted lines show the 90 percent point-wise confidence

interval of the SVAR’s impulse responses.

As shown in Figure 1, the mean responses of labor productivity, consumption, investment,

and output have the same sign and qualitative pattern as the true responses. As indicated by the

point-wise confidence intervals, the SVAR is likely to give the appropriate sign of the response

for these variables. For hours worked, the mean estimate is also qualitatively in line with the

true response; however, the confidence interval is very wide, indicating that negative estimates

are almost as likely as positive ones.

Quantitatively, the SVAR does not perform as well. As seen in Figure 1, the mean

responses of the SVAR systematically underestimate labor productivity, consumption, invest-

ment, and output, while overestimating hours worked. To gauge the size of the bias, the top

row of Table 3 reports the average absolute percent difference between the mean response and

the true response over the first twelve quarters for each of the variables.17 As reported in the

first row of Table 3, labor productivity is underestimated by the SVAR by 32% on average

over the first 12 quarters after the innovation to technology, while output is underestimated by

22%.18 We defer our explanation of these results to the next subsection.

While useful for illustrating the bias associated with the SVAR’s estimates, the relative

distance measure does not capture the uncertainty that a researcher confined to a single draw

of the data would confront. After all, the impulse response derived using a single realization

of the data may diverge substantially from the mean. Accordingly, we consider an alternative

measure of how well the SVAR’s point estimates of the impulse responses match the truth. For

16We scale up the technology innovation derived from the SVAR by the same constant factor as applied to

the true innovation.
17For variable i, this measure is defined as rdm

i = 1
12

∑12
l=1 |rdm

l,i| where rdm
l,i = d̂m

l,i−d∗l,i
d∗l,i

, and d∗l,i and d̂m
l,i

denote the DGE model’s impulse response and the SVAR’s point-wise mean response to a technology shock for

the ith variable in Xt at lag l, respectively.
18Given the model structure, it is appropriate to include hours in log-levels in the VAR. However, we also

examined a specification with hours in log-difference and found that small-sample biases remained substantial.

These results are shown in Table 3 for the FCU calibration.
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variable i, this measure is defined as

P̂i(
1

3
) = P (|rdl,i| ≥ 1

3
) ∀l ∈ {1, 2..., N}, (19)

where rdl,i =
d̂l,i−d∗l,i

d∗l,i
and d̂l,i denotes the estimated impulse response for the ith variable at lag l

for a given draw of data, and d∗l,i denotes the response from the DGE model. In words, P̂i(
1
3
) is

the probability that the SVAR produces an impulse response that lies at least 33 percent above

or below the true response for all lags between 1 and N, which we call a “large” error. Tables 4,

5, and 6 show these probabilities for N equal to four, eight, and twelve, respectively (as noted

below, we define the measure of a large error for hours worked differently). As shown in the top

row of Table 4, the probability of a large error over the first year is 34% for labor productivity

and 22% for output. Furthermore, we found that nearly all of the large misses of the SVAR’s

impulse responses for output and labor productivity were the result of underpredicting the true

response. Given the very strict criterion that only counts impulse response functions that lie

uniformly outside the 33 percent band, our results suggest considerable estimation uncertainty

about the quantitative effects of a technology shock.19,20

While the probability of underestimating labor productivity, consumption, output, and

investment is substantial, the probability of inferring a qualitatively incorrect sign for several

quarters is very low (not reported). However, it is interesting to assess the probability of

inferring a response of hours worked that is qualitatively incorrect over an extended period,

particularly in light of the significant attention recent research has devoted to this question.21

19We also considered

P̄ (
1
3
) =

1
N

N∑

l=1

P (|r̂dl,i| ≥ 1
3
). (20)

This measure is the average probability that the SVAR produces an error at least a third as large as the true

response for variable i. Given the weaker nature of this condition, relative to (19), the probability of a large

error for a given N was considerably higher.
20In the appendix, we show that our results are not substantially influenced by using a fixed lag length instead

of the Schwarz criterion.
21Gaĺı (1999) found that hours worked declined after a technology shock, and argued that this was problematic

for the real business cycle paradigm, in which an expansion of hours plays a key role. But this result has been
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Accordingly, for hours worked, Tables 4, 5, and 6 report the probability that the estimated

response of hours worked is uniformly negative over the first 4, 8, and 12 quarters, respectively.

As shown in Figure 1, the true response of hours is positive, and there is upward bias in the

mean estimated response. Nevertheless, there is a 23% chance a researcher would conclude that

hours worked fell in the first year after a technology shock.

Another interesting question is whether the SVAR produces reliable estimates of the

contribution of technology shocks to output fluctuations over the business cycle. Table 7 shows

the relative contribution of technology shocks to HP-filtered output defined as RCz = σ2
y|z/σ

2
y

where σ2
y denotes the unconditional variance of HP-filtered output in the model and σ2

y|z is

the variance of HP-filtered output conditional on only technology shocks. As shown in the

first row of Table 7, technology shocks account for roughly three quarters of the variance of

output at business cycle frequencies in the benchmark FCU version of the model. However,

the SVAR’s median estimated contribution of technology shocks is only about two-thirds as

large. Moreover, there is a 30 percent chance that the SVAR underreports the importance of

technology shocks by 50 percent or more.22

4.2 Interpreting the Bias

Here we begin by providing a statistical interpretation of the bias in the point-wise mean of

the impulse responses that indicates it is largely attributable to limited sample size. We then

provide an economic interpretation.

The bias in the mean response of a variable can be decomposed into two sources. The first

source reflects that the finite-ordered VAR used in estimation is an imperfect approximation

to the infinite-ordered VAR representation implied by the true model.23 This source of bias

the subject of considerable contention. Francis and Ramey (2003) corroborate Gaĺı’s result, while Christiano,

Eichenbaum, and Vigfusson (2003) conclude that hours worked rise following a technology innovation.
22Most research has found that technology shocks play a small role in driving output fluctuations over the

business cycle. A notable exception is Fisher (2002), who attempts to discriminate between multi-factor pro-

ductivity and investment-specific technology shocks.
23In the appendix, we show that the linear dynamics of the DGE model can be expressed as an invertible
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persists asymptotically and was discussed by Cooley and Dwyer (1998) in a similar context.24

The second source of bias is attributable to limited sample size.

We illustrate this decomposition for the response of labor productivity in the lower right

panel of Figure 1. The mean bias in labor productivity is represented by the solid line, labelled

“total error”. The component of the bias that persists asymptotically is represented by the

dotted line, labelled “ζ error”, while the residual between the total error and ζ error is the

small sample bias. As seen in the figure, the asymptotic bias only comprises a tiny fraction of

the overall bias in the mean response. Similarly, we found that the asymptotic bias is a small

component of the total bias in the responses of the other variables considered in our analysis

(not shown).

The magnitude of the small sample bias is largely attributable to the difficulty in precisely

estimating the long-run response of variables to the innovations in the VAR. To understand

this, we followed Faust and Leeper (1997) by decomposing the small-sample bias into two parts.

Noticing that equation (15) can be expressed as:

Xt = A(L)−1A0et = R(L)A0et, (21)

it is evident that the response of Xt to the underlying innovations, et, is influenced both

by the reduced-form moving average terms and by the identifying restrictions as reflected in

A0. Therefore, we can think of one part of the bias as reflecting the small-sample error in

estimating the reduced-form moving average terms, R(L). The second part emphasizes the

error associated with estimating the long-run response of Xt to shocks, which translates into

error in the estimation of A0. This occurs because A0 is implicitly a function of the long-run

responses as can be seen from equation (17). A more detailed description of the decomposition

is given in the appendix.

Returning to the lower right panel of Figure 1, the dashed line, labelled “R error”, depicts

the first type of small sample error, while the dashed-dot line labelled “α error” shows the second

type of error. It is clear that most of the small-sample bias in labor productivity is initially

VARMA(4,5). This process also has an infinite-ordered VAR representation.
24Cooley and Dwyer (1998) also emphasize other aspects of misspecification in structural VARs.
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attributable to error in estimating the long-run restriction. Eventually, however, imprecision in

estimating the long-run responses has a roughly commensurate effect on each component.

We now proceed to give an economic interpretation of the bias in the impulse responses.

This bias reflects two related factors. First, the slow adjustment of capital makes it hard

to estimate the long-run impact of a technology shock on labor productivity, contributing to

downward bias in the estimated impulse responses. Second, the SVAR has difficulty disentan-

gling technology shocks from highly persistent non-technology shocks, so that the estimated

technology shock may incorporate a sizable non-technology component. The second source of

bias has more pronounced effects on the estimated responses to a technology shock as the rela-

tive magnitude of non-technology shocks rises, and as the non-technology shocks become more

persistent.

To demonstrate the role that the slow adjustment of capital plays in our analysis, Table

3 shows the effect of increasing the capital adjustment cost parameter by setting φK = 100

(leaving other parameters unchanged). This modification induces capital and labor productivity

to converge much more slowly to their new long-run level following a technology shock. The

downward bias in the mean response of labor productivity, output, consumption, and investment

is markedly accentuated in this case. Moreover, as shown in Tables 4 to 6, the increase in the

bias translates into a greater probability of making a large miss in estimating the true response

of each of these variables.

We illustrate the second source of bias through three experiments. In our first experiment,

we reduce the innovation variance of the technology shock to one-third of its value in the

benchmark FCU calibration, so σz = 0.0049 (again, leaving other parameters unchanged).

As shown in Figure 2, the downward-bias in the response of labor productivity is larger in

this case than in the benchmark FCU calibration. By contrast, the upward bias in hours

worked is more pronounced, while the mean response of investment now exhibits substantial

upward bias (see also Table 3). These changes across calibrations reflect that the estimated

technology innovation inherits a larger non-technology shock component as the relative variance

of the technology shock declines. Figure 3 plots the true impulse responses to a (stimulative)
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labor supply innovation, εχ, a (negative) innovation in the capital-tax rate, ετK
, and to the

technology innovation used in this calibration (σz = 0.0049). The non-technology shocks have

a persistent effect on labor productivity, but the size of their effect is much smaller than that

of a technology shock. Relative to their effect on labor productivity, the non-technology shocks

exert a proportionately larger influence on hours worked and investment than a true technology

shock. Accordingly, the estimated responses to a technology innovation shown in Figure 2 look

more like responses to a labor supply shock (or labor-tax rate shock), which is the dominant

non-technology shock.

A second way to demonstrate the important influence that the non-technology shocks

have on the SVAR’s estimated technology shock is to lower their persistence. In the rows of

Tables 3 to 6 labelled “with lower persistence”, we show the effects of halving all of the AR(1)

parameters that govern the persistence of the non-technology shocks from their benchmark

values. As seen in Table 3, the (percentage) distance between the mean and the true response

narrows for all variables. The frequency of large misses also declines, though it is important

to caution that the decline in the frequency of large misses reported in the tables is only

partly attributable to improved estimation performance. In particular, because the estimated

responses tend to be more “bouncy” as the persistence of the non-technology shocks declines,

it becomes less likely that responses will lie uniformly outside of the 33 percent band.

Finally, we analyze the alternative calibration of the FCU model that assumes that the

Frisch elasticity of labor supply is infinite (χ = 0). The solid lines in Figure 4 plot the response

of labor productivity, hours worked, consumption, investment, and output to a technology

shock in this case. There is a slight downward bias in the response of hours worked, rather

than the pronounced upward bias in the benchmark FCU calibration. This disparity mainly

reflects that labor supply shocks are not included in this alternative case, so that the estimated

technology shock incorporates a smaller non-technology shock component.

18



4.3 Additional Sensitivity Analysis

Our consideration of alternative parameterizations of the FCU model demonstrates one of our

key results: namely, even if the long-run identifying assumption used by Gaĺı holds exactly in our

model, the estimated responses to a technology innovation will be biased in small samples due

to persistent non-technology shocks. Moreover, as highlighted in our investigation of alternative

models below, because the relative magnitude and the effects of non-technology shocks depend

on the particular model structure, the bias in the estimated response to a technology shock

is also model-dependent. Before proceeding to this investigation of alternative models, it is

interesting to consider two more experiments. First, we assess the importance of changes in

capital tax rates. Second, we examine the role of sample length in influencing our results.

Permanent changes in capital tax rates have been recognized as a potential problem for

the Gaĺı identification scheme, as they would have permanent effects on labor productivity

(thus violating the long-run identifying assumption). However, in the models we consider, the

volatility of changes in the capital tax rate is too small for this to be an empirically relevant

issue. As shown in the rows of Tables 3-6 labelled “with ρτK
≈ 1”, we find little difference

in results when the persistence of the capital tax rate shock is set arbitrarily close to unity.25

Moreover, our results would also change very little if we essentially “zeroed-out” the capital

tax rate shock by setting its innovation variance equal to 1/10 of its baseline value. The results

from this latter case are shown under the label “with στK
≈ 0” in the tables.

Table 8 documents the performance of the SVAR using data samples of different lengths,

generated under the benchmark FCU calibration. In practice, researchers might be limited to

samples shorter than 180 quarterly observations, or might choose to discard part of the sample

available because of structural breaks. In the row labelled “120”, which corresponds to 30

years of quarterly data, we report the probabilities of large misses over the first four quarters

following the shock. Not surprisingly, our results suggest that the problems documented above

are compounded by reducing the length of the estimation sample. Interestingly, the table

25Our solution procedure linearizes around a unique steady state, and thus presumes all non-technology shocks

are stationary. Accordingly, we set ρτK = 0.9999.
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shows that there would be a sizeable chance of making large errors even with 100 years of

data. For instance, the probability that the response of labor productivity would be estimated

uniformly outside a 33% band around the true response remains as high as 19%. Only when

the estimation sample includes 1000 quarterly observations do most of the probabilities of large

misses drop below 10%.

4.4 Results for the VCU Calibration

Figure 5 shows the effects of a technology shock for the VCU calibration, which allows utilization

to vary. While the mean estimated response of labor productivity is still below the true response,

there is now a large overestimation of the responses of hours worked and investment. These

large misses are confirmed in Table 3, whose row labelled “Benchmark VCU” shows that the

mean estimated response of investment is nearly 70% above the DGE model’s response on

average over the first twelve periods, while the mean estimated response of hours is over five

times the true response.

This large overestimation of the response of hours worked and investment derives from

the lower variance of the technology shock in the VCU calibration. As discussed earlier, this

causes the estimated technology shock to embody a larger non-technological component. As a

result, the estimated responses of hours worked and investment to a technology shock begin to

resemble their responses to a tax cut or positive labor-supply shock.26

Table 4 shows that the chance of a researcher falsely concluding that hours worked falls

after a technology shock is still a non-negligible 13%, despite the upward bias of the response

of hours worked shown in Figure 5. However, in this case, it is more likely that a researcher

actually overestimates the response of hours. Accordingly, we computed the probability that the

26Using data generated from the VCU calibration, we substituted the growth rate of the Solow residual in the

SVAR in place of the growth rate of labor productivity. We found some reduction in the degree of upward bias

in hours worked, though confidence bands around that variable widened somewhat. The slow adjustment of

capacity utilization to both technology and non-technology shocks translates into slow adjustment of the Solow

residual. Thus, the qualitative problems that contribute to bias that we have identified using labor productivity

would appear to be relevant for this alternative approach.
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estimated response of hours is at least 0.5 percentage point above the true response uniformly

in the first year. In the VCU model, there is a 44% percent chance of such an occurrence.

This result is interesting, since it highlights there is a high probability that a researcher might

falsely conclude that hours worked rise markedly after a technology shock, when in fact they do

not respond much. Similarly, the 75% probability of a large error in estimating the investment

response reported in Table 4 mainly reflects the high probability of over-estimating investment.

The row of Table 7 labelled “Benchmark VCU” shows that the contribution of technology

shocks to the variance of HP-filtered output is 28 percent for the VCU calibration. Unlike the

benchmark FCU calibration, the SVAR’s median estimate of this contribution of 46 percent

overestimates the importance of technology shocks. This overestimate reflects that the SVAR’s

under-prediction for the response of labor productivity is more than offset by its over-prediction

for the response of hours worked. Overall, the SVAR still yields an imprecise estimate of this

contribution, but one that is more likely to be overstated than understated.

In the benchmark VCU calibration ρχ, the parameter governing the persistence of the

labor-supply shock, was set at the same value as our estimate for the persistence of the labor-

tax shock. We also recalibrated the model with ρχ = 0.5. Table 2 shows the selected moments

for this calibrated version of the model, labelled “VCU with ρχ = 0.5”. Tables 3-6 report

the relative distances and probability measures for this version of the model. As shown by the

relative distance measure, the upward bias of the response of hours worked virtually disappears,

and the probability of a large miss for labor productivity and output is slightly smaller. In

addition, because the upward bias of hours worked is smaller in this case than in the benchmark

VCU calibration, the SVAR tends to underestimate the importance of technology shocks to

output volatility (see Table 7).

5 Incorporating Nominal Rigidities

In this section, we incorporate nominal wage and price rigidities into the FCU variant of the

real business cycle model analyzed above. In particular, we assume that nominal wages and
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prices are set in Calvo-style staggered contracts in a framework similar to that discussed in

Erceg, Henderson, and Levin (2000), and utilized in a large related literature. Our comparison

of this model to those considered above reinforces our finding that the bias in the estimated

responses to a technology shock is model-dependent.

The inclusion of nominal rigidities into the model requires us to specify a monetary

policy rule, and to calibrate several new parameters that are associated with the monopolistic

competition-sticky price framework.27 We assume that the central bank adjusts the short-term

nominal interest rate in response to the four-quarter average inflation rate and to the current

and lagged output gaps:

it = γiit−1 + γππ
(4)
t + γy,1qt + γy,2qt−1 + εit (22)

where the four-quarter average inflation rate π
(4)
t is defined as π

(4)
t = 1

4

∑3
j=0 πt−j; qt is the

output gap; and εit is a monetary policy innovation (note that constant terms involving the

inflation target and steady-state real interest rate are suppressed for simplicity). This form

of the interest rate reaction function was estimated by Orphanides and Wieland (1998), who

found that it provided a good in-sample fit over their 1980:1-1996:4 estimation period. Using

the estimated parameter values found by Orphanides and Wieland (1998), we set γi = 0.795,

γπ = 0.625, γy,1 = 1.17, γy,2 = −0.97, and the standard deviation of εit is 0.0032.

The output gap qt is the difference between the log of actual output, yt, and the log

of potential output, y∗t . We assume that the central bank’s potential output measure only

responds to the level of technology and the capital stock so that

y∗t = (1− α)zt + αkt + (1− α)n, (23)

where zt = log(Zt), kt = log(Kt), and n denotes the steady state value of nt = log(Nt).
28

27As is typical in this literature, we assume that money is separable in the utility function. Thus, with

monetary policy specified by an interest rate rule, the equilibrium dynamics of our model can be determined

independently of the quantity of money.
28An alternative measure of potential output commonly used is the level of output that would prevail if prices

and wages were flexible. Relative to the results for our measure of potential output, this alternative measure

would lead to results that are more similar to the RBC model already discussed.
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Thus, the policy rule responds to the deviation of hours worked from its steady state level since

qt = (1− α)(nt − n).

The wage and price contracts have a mean duration of four quarters, and the wage and

price markups both equal 1/3. Given that all of the variation in the Solow residual reflects

variation in technology, we set µz = 0.0037 and σz = 0.0148, as in the RBC model with FCU.

Following the calibration methodology described earlier, we set the innovation variance of the

labor supply shock, σχ = 0.041, so that it allows the model to match exactly the observed

ratio of the standard deviation of (HP-filtered) hours worked relative to output. The capital

adjustment cost parameter, φK = 5.05, and is set to match observed investment volatility.

Finally, all other parameters are set identically to the values reported in Table 1.

The solid lines of Figure 6 show the true response of labor productivity, hours worked,

consumption, and investment to a technology innovation in the model with nominal rigidities,

while the dashed line shows the mean response from the SVAR. As in the benchmark FCU

calibration, the mean responses of labor productivity, consumption, and investment understate

the true response, and this downward bias in part reflects the slow adjustment of capital.

Another reason for the bias is that the estimated technology shock is contaminated by

other shocks and in particular by the labor supply shock. This compositional bias is most

apparent in the “near-term” response of investment. The true response of investment to a

positive labor supply shock is initially negative in the model with nominal rigidities, because

monetary policy is tightened in response to a such a shock. This tightening occurs because a

positive labor supply shock puts upward pressure on hours worked and the output gap. Because

the SVAR confounds positive labor supply shocks with technology improvements, the median

estimated response of investment to a technology shock turns out to be seriously downward

biased (see Table 3).

Thus, while labor-supply shocks contribute to pronounced upward bias in the estimated

response of investment to a technology shock in the VCU model, they induce marked down-

ward bias in the model with nominal rigidities. This comparison corroborates how bias in the

estimated responses to a technology shock is model-dependent, and may be quite sensitive to
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the responses of a variable to non-technology shocks.

The dotted lines in Figure 6 show the 90 percent confidence intervals of the impulse

responses from the SVAR. It is clear that there is a wide band of uncertainty around the

estimated responses of labor productivity, consumption, and investment. This is also confirmed

in Tables 4-6, which report the probability that the estimated IRF is uniformly far from the

true response for four, eight, and twelve quarters.

In Figure 6, there is a small initial decline in hours worked following a positive technology

shock. There is a substantial likelihood that a researcher would fail to detect this initial decline

based on estimates from the SVAR, since there is a 24% chance that the estimated initial

response of hours is positive. However, in the model with nominal rigidities, the reliability of

the SVAR’s estimated response of hours is sensitive to the monetary policy rule. As pointed

out in Gaĺı, López-Salido, and Vallés (2003), if the monetary policy rule responds aggressively

to stabilize output, hours worked can fall sharply in response to a positive technology shock.

In this case, the structural VAR’s estimated response of hours worked may be reliable enough

to identify the initial fall in hours worked.

6 Evaluating confidence intervals

The confidence intervals reported in Figures 1 to 6 are constructed by generating 5000 data

samples from the DGE model. In practice, researchers only observe one sample from the data-

generating process, and therefore, it is interesting to assess the confidence bands produced by

a researcher limited in this way. We estimated such confidence intervals following the non-

parametric bootstrap method discussed in Runkle (1987). More specifically, for a given data

sample generated from the DGE model, we bootstrapped 1000 new artificial samples using the

point estimates of the VAR parameters as pseudo-true values. We applied our identification

procedure to each of these new artificial samples, which allowed us to calculate point-wise con-

fidence bands with a 90% probability content. This exercise was repeated for 1000 replications

of data from the DGE model, and we tallied whether the bootstrap confidence bands covered
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a variable’s true response in each period after the shock between 1 and 12. This exercise gave

us 12 effective coverage rates for each variable in the VAR.

Table 9 reports the average coverage rates over the first 12 periods for labor productivity,

output, hours worked, consumption, and investment. As shown in the row labelled “Bench-

mark FCU”, for labor productivity the bootstrap 90% confidence interval includes the true

response only 35% of the time on average between lag 1 and 12. This poor coverage is partly

attributable to the downward-bias of the estimated impulse responses. The coverage of these

confidence intervals improves markedly for consumption and investment, as the bootstrap con-

fidence intervals include the true response on average over 70% of the time. For hours worked,

the coverage of the bootstrap confidence intervals exceeds 90%.

The effective coverage rates generally improve for the benchmark VCU calibration. How-

ever, this reflects that conventional confidence bands are generally extremely wide relative to

the FCU model. Thus, while there is substantial bias in hours worked and investment, cov-

erage rates are still quite high. By contrast, in the model with nominal rigidities, there is an

overall deterioration in the coverage rates relative to the VCU version of the RBC model. The

conventional confidence bands are narrower, and hence bias in the estimated responses tends

to translate into poor effective coverage rates.

Kilian (1998) suggested a way to correct the bootstrap procedure for bias in the VAR

estimates, which he called the “bootstrap-after-bootstrap” method. Before bootstrapping to

determine the confidence intervals, this method performs an initial bootstrap to determine the

bias.29 As Table 9 shows, this correction procedure yields some improvement in the coverage

of the confidence intervals.

In general, our results show that the effective coverage of confidence intervals for a given

probability content is model- dependent. In models for which small-sample bias is large, hy-

pothesis testing based on standard confidence bands may lead to more frequent rejections of

29For a given replication of the data from the DGE model, we used 1000 artificial datasets generated from

the point estimates of the VAR parameters to determine their bias, the first step of Kilian’s procedure. Then

2000 new samples were bootstrapped, taking the bias-corrected point estimates as the pseudo-true values. As

in Sims and Zha (1998), this bootstrap procedure was conditional on the initial observations.
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a true null hypothesis than desired. As an alternative, a researcher could check whether the

impulse response obtained from applying the Gaĺı identifying scheme on actual data is included

in the model-consistent confidence intervals (such as shown in Figure 1). This comparison is

valid under the null hypothesis that the model at hand is the data generating process. The

advantage of this approach is that it explicitly recognizes and adjusts for model-dependent

small-sample bias.

7 Conclusion

While identifying technology shocks and their effects is a difficult task, our analysis suggests

that Gaĺı’s methodology is a useful tool. In particular, responses derived from Monte Carlo

simulations of alternative models are qualitatively similar to the true responses. Quantitatively,

however, we found considerable bias and spread in the estimated impulse responses. These

deficiencies reflect small-sample problems associated with the long-run identifying scheme. We

showed that the magnitude of the bias and spread depend on various characteristics of the true

model, including the speed of capital adjustment, the persistence of non-technology shocks,

and their size relative to technology shocks. We conjecture that a model that allowed for

relatively smaller technology shocks or more endogenous persistence might pose more difficulty

for the long-run identifying scheme than the models considered in this paper. However, such

an investigation is a task for future research.30

Our analysis has two lessons for a researcher interested in comparing the responses to a

technology shock derived from a theoretical model to those from applying Gaĺı’s identification

scheme to actual data. First, it is important to adjust for the small-sample bias rather than

simply comparing the model’s impulse response to the estimates from the structural VAR.

Second, given that the effective coverage rates of confidence intervals constructed by standard

methods may be low, we suggest that researchers check whether the estimated response lies

within the confidence bands generated by their model.

30Moreover, it would be interesting to compare the performance of the Gaĺı identification scheme with that

of the intrinsically model-dependent approach of Basu, Fernald, and Kimball (1998).
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Aggregate Fluctuations. Mimeo, Northwestern University.

Anderson, G. and G. Moore (1985). A Linear Algebraic Procedure for Solving Linear Perfect

Foresight Models. Economic Letters 17, 247–52.

Basu, S., J. Fernald, and M. Kimball (1998). Are Technology Improvements Contractionary?

Federal Reserve Board, International Finance Discussion Papers No. 625.

Blanchard, O. J. and C. M. Kahn (1980). The Solution of Linear Difference Models under

Rational Expectations. Econometrica 48 (5), 1305–1312.

Blanchard, O. J. and D. Quah (1989). The Dynamic Effects of Aggregated Demand and

Supply Disturbances. American Economic Review 79 (4), 655–673.

Burnside, C. and M. Eichenbaum (1996). Factor Hoarding and the Propagation of Business

Cycle Shocks. The American Economic Review 86 (5), 1154–1174.

Christiano, L. J., M. Eichenbaum, and R. Vigfusson (2003). What Happens after a Technol-

ogy Shock. NBER Working Paper No.w9819.

Christiano, L. J. and J. D. Fisher (1995). Tobin’s q and Asset Returns: Implications for

Business Cycle Analysis. NBER Working Paper No.5292.

Cogley, T. and J. M. Nason (1995). Output Dynamics in Real-Business-Cycle Models. Amer-

ican Economic Review 85 (3), 492–462.

Cooley, T. and M. Dwyer (1998). Business Cycle Analysis without much Theory: A Look at

Structural VARs. Journal of Econometrics 83, 57–88.

Erceg, C. J., D. W. Henderson, and A. T. Levin (2000). Optimal Monetary Policy with

Staggered Wage and Price Contracts. Journal of Monetary Economics 46, 281–313.

Evans, C. L. (1992). Productivity Shocks and Real Business Cycles. Journal of Monetary

Economics 29, 191–208.

27



Faust, J. and E. M. Leeper (1997). When Do Long-Run Identifying Restrictions Give Reliable

Results? Journal of Business and Economic Statistics 15 (3), 345–353.

Fisher, J. D. M. (2002). Technology Shocks Matter. Mimeo, Federal Reserve Bank of Chicago.

Francis, N. and V. A. Ramey (2003). Is the Technology-Driven Real Business Cycle Hypothe-

sis Dead? Shocks and Aggregate Fluctuations Revisited. Mimeo, University of California

at San Diego.
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8 Appendix

This appendix is divided into three sections. In the first, we discuss how the log-linear solution of

our RBC model can be written as a VARMA(4,5) for the benchmark FCU and VCU calibrations.

We also describe how we verified that this VARMA process is invertible. In the second section,

we show results for different fixed lag-lengths of the VAR. In the third section, we discuss our

error decomposition.

8.1 Writing the RBC Model as a VARMA(4,5)

The first step involves log-linearizing and solving the RBC model around its nonstochastic

steady state. This allows us to express the log-linear decision rule for the economy’s scaled

capital stock, k̂t+1 = Kt+1/Zt, as a function of lagged capital, k̂t, and the five exogenous

shocks, µ̃zt, τ̃Kt, τ̃Nt, g̃t, χ̃0t in the RBC model, (where the tilde denotes that the variable is

expressed in log deviation from its steady state value). Also, for convenience, we have defined

µzt = log(Zt)− log(Zt−1) and rewritten equation (7) more generally as

µzt = (1− ρz)µz + ρzµzt−1 + σzεzt, (24)

even though ρz = 0.

In our benchmark FCU and VCU calibrations, ρτK
= ρχ0 so that the labor supply shock

is observationally equivalent to the labor tax shock up to a scaling factor. Therefore, we can

combine these two shocks into a composite shock,

τ̃xt = τ̃Nt + fχ̃0t, (25)

where f is a scaling factor determined from the linear approximation to the model’s solution.

Using these four shocks, we can define St = (µ̃zt, τ̃Kt, τ̃xt, g̃t)
′.

The log-linear decision rule for the scaled capital stock can then be expressed as:

k̃t+1 = akkk̃t + bksSt, (26)

where akk is a scalar and bks is a 4x1 vector of coefficients. We can also write hours worked, the

consumption-to-output ratio, and investment-to-output ratio as a function of k̃t and St, while
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the growth rate of labor productivity is a function of k̃t, k̃t−1, St, and St−1. Therefore, the

model’s dynamics for Xt, the vector containing the variables in our VAR, can be expressed as:

X̃t = C1k̃t + C2k̃t−1 + D1St + D2St−1, (27)

where C1 and C2 are 4x1 vectors and D1 and D2 are 4x4 matrices.

Using the log-linear decision rule for kt+1 to substitute the scaled capital stock out of the

linear decision rules for labor productivity growth, hours, and the ratios of consumption and

investment to output, we can express the linear dynamics of Xt as:

Xt = akkXt−1 + (B0 + B1L + B2L
2)St (28)

St = ρSt−1 + σεt

where B0 = D1, B1 = C1Bks, and B2 = C2Bks−akkD2; ρ and σ are diagonal 4x4 matrices whose

respective elements contain the AR(1) coefficients and standard deviations of the innovations.

Finally, εt = (εzt, ετK ,t, ετx,t, εgt)
′.

It is convenient to rewrite the first equation in (28) as:

(I − akkL)Xt =
4∑

j=1

(B0,c(j) + B1,c(j)L + B2,c(j)L
2)Sjt, (29)

where B0,c(j) denotes the jth column of B0, and Sjt is the jth shock in St. Because ρ and σ are

diagonal matrices, we denote the jth element along the diagonal of these matrices as ρj and

σj, respectively. Using these diagonal matrices, we can substitute out St from equation (29) to

write

4∑
i=2

(1− ρiL)(I − akkL)Xt =

4∑

i=2,i6=j

4∑
j=1

(1− ρi)(B0,c(j) + B1,c(j)L + B2,c(j)L
2)εjt,

or

a(L)Xt = b(L)εt, (30)
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with a(L) =
∑4

i=0 aiL
i and b(L) =

∑5
i=0 biL

i. In the above, a0 = I4 and ai for i = 1, 2, 3, 4 are

4x4 matrices that depend on akk and ρj for j = 2, 3, 4. Also, b0 = B0 and bi for i = 1, 2, 3, 4, 5

are 4x4 matrices that depend on the elements of B0, B1, and B2 and ρj for j = 2, 3, 4. Note

that a(L) and b(L) do not depend on ρ1 since ρz = ρ1 = 0.

Lippi and Reichlin (1993) make the point that researchers fitting a VAR to the data

would not be able to recover the underlying shocks, if the data generating process had a

non-fundamental representation. Therefore, for our benchmark calibrations, we checked that

our model implied a fundamental representation by verifying numerically that the polynomial

det(b0 + b1z + ... + b5z
5) has all roots strictly outside the unit circle. This condition ensures

that the VARMA process in equation (30) is invertible and is a fundamental representation for

Xt (see page 222 and page 456 of Lutkepohl (1991)).

8.2 Estimation with fixed lag length

Table A shows the probability of a large error over the first four quarters for different lag lengths,

p. There is some modest improvement in the fit of the SVAR, as indicated by our probability

measure, for smaller values of p. Still, the probability of a large miss for labor productivity is

above 30 percent, and there is over a 20 percent chance of concluding that hours worked falls

when in truth it rises.

8.3 Error Decomposition

We can decompose the error in estimating the response to a technology shock into two sources:

d̂l,i − d∗l,i = (dl,i − d∗l,i) + (d̂l,i − dl,i), (31)

where d̂l,i denotes the estimated impulse response for ith variable, at lag l for a given draw of

data. Also, d∗l,i denotes the impulse response from the DGE model, and dl,i is the population

estimate of the SVAR’s impulse response. We compute dl,i by using the log-linear solution of

the DGE model to find the population estimates of Ai, i = 1, 2, ..., p, and use those estimates

along with equation (17) to determine A0.
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Table A. Varying the VAR Lag Structure for the Benchmark FCU Calibration: Probability

that Estimated Response is Uniformly Far From True Response Over First Four Quartersa

Experiment Labor Productivity Output Hours Consumption Investment

Lag Length = 1 0.31 0.18 0.23 0.17 0.24

Lag Length = 2 0.31 0.19 0.22 0.18 0.24

Lag Length = 3 0.32 0.21 0.22 0.19 0.24

Lag Length = 4 0.34 0.23 0.23 0.21 0.25

Lag Length = 5 0.36 0.25 0.23 0.22 0.26

Lag Length = 6 0.38 0.27 0.23 0.24 0.27

Lag Length = 7 0.39 0.29 0.23 0.26 0.29

Lag Length = 8 0.42 0.32 0.24 0.28 0.30

Lag Length = 9 0.45 0.34 0.25 0.30 0.32

Lag Length = 10 0.47 0.37 0.26 0.32 0.34

BIC 0.34 0.22 0.23 0.20 0.26

aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first four quarters. For hours worked, the probability that the estimated
response is uniformly negative in the first four quarters.
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This first source of error (dl,i − d∗l,i) arises because the VAR we estimate is an imperfect

approximation of the VARMA process implied by our models. The second source (d̂l,i − dl,i)

reflects small-sample bias. As discussed in Faust and Leeper (1997), small imprecision in

estimating A(L) can result in large errors in R(1), the long-run response of Xt to unidentified

innovations. The error in estimating R(1) then affects all the parameter estimates of the SVAR

through the long-run identifying scheme.

To separate out the small-sample error that occurs from imposing the long-run restriction

from the error of estimating Rl, note that

d̂l,i = R̂l,r(i)α̂, (32)

where α̂ denotes the finite-sample estimate of the first column of A0, R̂l is the finite-sample

estimate of Rl, and the subscript r(i) denotes the ith row of this matrix. It is important to

recognize that α̂ is implicitly a function of R̂(1) through equation (17). We follow Faust and

Leeper (1997) and decompose the small sample error of estimating the impulse response of

variable i at lag l as

d̂l,i − dl,i = (R̂l,r(i) −Rl,r(i))α̃ + R̃l,r(i)(α̂− α). (33)

The matrices, α̃ = 1
2
(α̂ + α) and R̃l,r(i) = 1

2
(R̂l,r(i) + Rl,r(i)) are defined to lie halfway between

the finite-sample estimates and the population estimates of the SVAR. In equation (33), the

small sample error, d̂l,i − dl,i, has been decomposed into two parts: the first emphasizing the

error in estimating the reduced-form moving average term, Rl,r(i), and the second emphasizing

the error in estimating R(1) through the α term.
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Table 1: Parameters Values Common Across Calibrated Versions of Model∗

β = 1.03−0.25 ρg = 0.95

N = 1/3 σg = 0.016

χ = 3 ρτK
= 0.97

δ = 0.02 στK
= 0.008

θ = 0.35 ρτN
= 0.98

µz = 0.0037 στN
= 0.0052

g/y = 0.20 ρχ = 0.98

τK = 0.38

τN = 0.22

∗N and g/y denote the steady state values of labor and the ratio of government consumption to output.

Table 2: Selected Moments and Parameter Values of Calibrated Versions of Modela

FCU VCU

Moment U.S. Datab σχ = 0 Benchmark High LSEc Sticky Prices Benchmark ρχ = 0.5

and Wages

σy 2.17 1.40 1.59 1.90 1.54 1.82 1.67

σh/σy 0.80 0.34 0.80 0.80 0.80 0.80 0.80

σc/σy 0.47 0.65 0.54 0.59 0.56 0.62 0.63

σi/σy 2.91 1.96 2.69 2.31 2.91 2.91 2.91

σ∆S 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Parameter Values

φK 0 0 0 5.05 0.46 2.86

σz 0.0148 0.0148 0.0148 0.0148 0.0076 0.0084

σχ 0 0.021 0 0.041 0.022 0.023

aAll moments except σ∆S were computed by first transforming the data using the HP-filter (with λ = 1600).
σ∆S refers to the standard deviation of the growth rate of the Solow residual.
bσy and σh were computed using BLS data on nonfarm business sector output and hours from 1958-2002.
σc/σy and σi/σy were taken from Christiano and Fisher (1995) who used DRI data from 1947-1995.
cRefers to model with χ = 0 and σχ = 0.
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Table 3: Percent Distance Between Mean Estimates and True Impulse Responsesa

Experiment Labor Productivity Output Hours Consumption Investment

Benchmark FCU 32 22 48 17 17

with φk = 100 39 30 78 24 20

with σz = 0.0049 (1/3X) 44 8 360 10 43

with Lower Persistenceb 16 14 14 14 13

with ρτk
≈ 1 31 23 31 20 17

with στk
≈ 0 36 22 74 18 15

with hours differenced 17 29 110 25 24

High LSE 29 23 12 22 21

Benchmark VCU 31 12 550 2 67

with ρχ = 0.5 28 27 26 21 23

Sticky Prices and Wagesc 43 38 NA 31 45

aAbsolute value of percent difference between mean estimated response and true response averaged over first
twelve periods.
bLower persistence refers to the case where AR(1) parameters of non-technology shocks set to half the
benchmark values.
cWith sticky prices and wages, the true response of hours is close to zero in the second period.
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Table 4: Probability that Estimated Response is Uniformly Far From True Response Over First

Four Quartersa

Experiment Labor Productivity Output Hours Consumption Investment

Benchmark FCU 0.34 0.22 0.23 0.20 0.26

with φk = 100 0.48 0.35 0.34 0.34 0.27

with σz = 0.0049 (1/3X) 0.56 0.52 0.21 0.65 0.72

with Lower Persistenceb 0.03 0.02 0.01 0.02 0.04

with ρτk
≈ 1 0.34 0.26 0.25 0.25 0.33

with στk
≈ 0 0.37 0.20 0.21 0.20 0.22

with hours differenced 0.12 0.30 0.26 0.25 0.29

High LSE 0.30 0.23 0.10 0.21 0.24

Benchmark VCU 0.35 0.42 0.13 0.18 0.75

VCU with ρχ = 0.5 0.33 0.28 0.20 0.23 0.36

Sticky prices and wages 0.38 0.42 0.15 0.31 0.45

aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first four quarters. For hours worked, the probability that the estimated
response is uniformly negative in the first four quarters.
bLower persistence refers to the case where AR(1) parameters of non-technology shocks set to half the
benchmark values.
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Table 5: Probability that Estimated Response is Uniformly Far From True Response Over First

Eight Quartersa

Experiment Labor Productivity Output Hours Consumption Investment

Benchmark FCU 0.30 0.19 0.20 0.17 0.21

with φk = 100 0.44 0.31 0.28 0.28 0.21

with σz = 0.0049 (1/3X) 0.47 0.44 0.18 0.57 0.62

with Lower Persistenceb 0.02 0.008 0.001 0.01 0.01

with ρτk
≈ 1 0.29 0.22 0.22 0.21 0.27

with στk
≈ 0 0.34 0.17 0.18 0.17 0.17

with hours differenced 0.09 0.27 0.21 0.22 0.24

High LSE 0.25 0.19 0.08 0.17 0.20

Benchmark VCU 0.32 0.33 0.11 0.14 0.66

VCU with ρχ = 0.5 0.29 0.23 0.13 0.19 0.25

Sticky prices and wages 0.33 0.32 0.10 0.26 0.28

aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first eight quarters. For hours worked, the probability that the estimated
response is uniformly negative in the first eight quarters.
bLower persistence refers to the case where AR(1) parameters of non-technology shocks set to half the
benchmark values.
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Table 6: Probability that Estimated Response is Uniformly Far From True Response Over First

Twelve Quartersa

Experiment Labor Productivity Output Hours Consumption Investment

Benchmark FCU 0.29 0.18 0.18 0.16 0.18

with φk = 100 0.42 0.29 0.26 0.26 0.19

with σz = 0.0049 (1/3X) 0.39 0.36 0.17 0.49 0.55

with lower Persistenceb 0.03 0.01 0.002 0.02 0.01

with ρτk
≈ 1 0.25 0.19 0.19 0.18 0.24

with στk
≈ 0 0.31 0.15 0.16 0.15 0.14

with hours differenced 0.07 0.26 0.18 0.20 0.24

High LSE 0.22 0.16 0.07 0.15 0.17

Benchmark VCU 0.31 0.27 0.10 0.14 0.58

VCU with ρχ = 0.5 0.28 0.21 0.11 0.18 0.22

Sticky prices and wages 0.32 0.27 0.09 0.23 0.20

aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first twelve quarters. For hours worked, the probability that the estimated
response is uniformly negative in the first twelve quarters.
bLower persistence refers to the case where AR(1) parameters of non-technology shocks set to half the
benchmark values.

Table 7: Contribution of Technology Shocks to Output Volatilitya,b

Experiment RCz R̂C
m
z P (R̂Cz < 0.5RCz)

Benchmark FCU 0.74 0.52 0.30

High LSE 0.81 0.58 0.34

Benchmark VCU 0.28 0.46 0.14

VCU with ρχ = 0.5 0.38 0.28 0.37

Sticky prices and wages 0.77 0.40 0.49

aRCz = σ2
y|z/σ2

y where σy denotes the unconditional standard deviation of HP-Filtered output
and σy|z denotes the HP-Filtered standard deviation of output conditional only on technology shocks.

b ˆRCz denotes estimated relative contribution from the SVAR and R̂C
m

z denotes the median estimate.
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Table 8: Varying the Sample Size for the Benchmark FCU Calibration: Probability that Esti-

mated Response is Uniformly Far From True Response Over First Four Quartersa

Number of Quarters Labor Productivity Output Hours Consumption Investment

120 (10 years less) 0.62 0.51 0.25 0.42 0.45

180 (benchmark length) 0.34 0.22 0.23 0.20 0.26

200 (5 years more) 0.32 0.20 0.23 0.20 0.25

220 (10 years more) 0.30 0.18 0.23 0.18 0.24

260 (20 years more) 0.26 0.15 0.22 0.16 0.22

400 (100 years) 0.19 0.11 0.22 0.14 0.20

1000 (250 years) 0.08 0.05 0.17 0.09 0.10

aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first four quarters. For hours worked, the probability that the estimated
response is uniformly negative in the first four quarters.

Table 9: Effective Coverage Rates of 90% Confidence Intervalsa

Model Labor Productivity Output Hours Worked Consumption Investment

Standard Bootstrapb

Benchmark FCU 0.35 0.55 0.92 0.74 0.73

Benchmark VCU 0.61 0.92 0.81 0.88 0.92

Sticky prices and wages 0.34 0.36 0.98 0.55 0.64

Bias Correction: Bootstrap after Bootstrapc

Benchmark FCU 0.43 0.63 0.97 0.76 0.80

Benchmark VCU 0.70 0.95 0.92 0.90 0.95

Sticky prices and wages 0.40 0.48 0.89 0.65 0.72

aAverage of point-wise coverage rates from lag 1 to 12.
bSee Runkle (1987).
cSee Kilian (1998).
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Figure 1: The Effects of Technology Shocks in the Benchmark FCU Calibration
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Figure 2: The Effects of Technology Shocks in the Benchmark FCU Calibration with σz =

0.0049 (1/3X)
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Figure 3: The Effects of One Standard Deviation Shocks in the Benchmark FCU Calibration

with σz = 0.0049 (1/3X)
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Figure 4: The Effects of Technology Shocks in High LSE Calibration
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Figure 5: The Effects of Technology Shocks in the Benchmark VCU Calibration
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Figure 6: The Effects of Technology Shocks in Model with Sticky Prices and Wages
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