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ABSTRACT: In this paper, we present a new approach to trend/cycle decomposition. The 
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steady-state level of the series. Given a nonlinear forecasting model, this steady-state 
approach can differ in important ways from the related long-horizon forecast 
decomposition proposed by Beveridge and Nelson (1981). We use generated data from 
nonlinear regime-switching processes to demonstrate the advantages of the steady-state 
approach. We then apply the steady-state approach to estimate the trend and cycle of U.S. 
real GDP implied by a regime-switching forecasting model. Our findings portray a very 
different picture of the business cycle than implied by standard linear forecasting models. 
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1. Introduction 

 Trend/cycle decomposition of integrated economic time series is important for 

both theoretical and statistical reasons. In this paper, we present a new approach and 

compare it with some existing methods in the literature. Unlike traditional methods such 

as the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997) and the Beveridge-

Nelson (BN) decomposition (Beveridge and Nelson, 1981), the approach presented in 

this paper accurately estimates the permanent and transitory components of integrated 

time series even when the dynamic structure of the data involves nonlinearities such as 

regime switching. 

 Our approach to trend/cycle decomposition is based on the premise that the trend 

of a time series is equivalent to its implicit steady-state level. In a dynamic system, steady 

state is the hypothetical equilibrium that would occur following the realization of all 

currently implied transitory dynamics. In practice, the concept of steady state identifies 

the trend since the implied transitory dynamics for a time series can be calculated from a 

forecasting model.  

 By employing a forecasting model to measure transitory dynamics, our steady-

state approach is closely related to the long-horizon forecast decomposition proposed by 

Beveridge and Nelson (1981) and extended to nonlinear processes by Clarida and Taylor 

(2003). Indeed, for linear forecasting models, the two methods produce equivalent 

results. However, that equivalence does not generally hold for nonlinear models with 

regime-switching parameters. We present two examples where the two methods produce 

different results and the steady-state approach is preferable. In the first example, we 

generate data from Hamilton’s (1989) Markov-switching model. The model assumes that 
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the mean growth rate of a time series undergoes discrete regime shifts according to a 

Markov process. For data generated from the model, the steady-state approach is 

preferable because, unlike the long-horizon forecast, it does not include expected future 

regimes in the estimate of the current level of trend. In the second example, we generate 

data from Kim and Nelson’s (1999a) plucking model. According to this model, the level 

of output undergoes negative “plucks” that produce transitory dynamics. Again, the 

steady-state approach is preferable to the long-horizon forecast because it does not 

include expectations of future transitory “plucks” in the estimate of trend. Importantly, 

the steady-state approach allows for a non-zero mean cycle and produces equivalent 

results to the Kalman filter estimates of trend and cycle reported in Kim and Nelson 

(1999a). 

 There are two features of the steady-state approach to trend/cycle decomposition 

that are worth emphasizing. First, it can be applied given a wide variety of forecasting 

models. Thus, while it produces equivalent results to the Kalman filter for Kim and 

Nelson’s (1999a) plucking model, it is more general since it does not require a known 

unobserved components (UC) representation for the time series of interest. This 

generality has the desirable implication that evaluation of different estimates of trend and 

cycle can ultimately be thought of as a matter of model comparison given a set of 

possible forecasting models. Second, the concept of steady state is generally sufficient to 

identify the level of the trend. Thus, there is no need for the arbitrary normalization or 

identification assumptions that are often employed in unobserved components estimation 

of trend and cycle. Also, there is no need to impose theory-based identification 

assumptions that can bias or prejudge subsequent analysis. For example, structural VARs 
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can identify permanent and transitory components through theoretical assumptions about 

long-run relationships (e.g., Blanchard and Quah, 1989). However, it is often these 

theoretical relationships that researchers want to investigate empirically, instead of 

assume a priori. The steady-state approach to trend/cycle decomposition allows such 

investigation without prejudging the results.1 

 The remainder of the paper is organized as follows. Section 2 presents the details 

of our steady-state approach to trend/cycle decomposition. Section 3 demonstrates the 

advantages of the steady-state approach when applied to integrated time series generated 

from known regime-switching processes, namely Hamilton’s (1989) autoregressive 

Markov-switching model of output growth dynamics and Kim and Nelson’s (1999a) 

plucking model. Section 4 presents an application of the approach to estimate the trend 

and cycle of U.S. real GDP implied by a regime-switching forecasting model developed 

by Kim, Morley, and Piger (2003). Section 5 concludes. 

 

2. Method 

 The trend/cycle decomposition method proposed in this paper uses the concept of 

steady state to identify and estimate permanent and transitory components of integrated 

time series that follow nonlinear regime-switching processes. In this section, we present 

the details of the method. First, we introduce the conceptual framework that relates the 

trend of a time series to its implicit steady-state level. Second, we discuss the principles 

underlying the calculation of the conditional expectation of steady state given a 

forecasting model with regime switching parameters. Third, we compare our method to 

the BN decomposition. 

                                                 
1 Clarida and Taylor (2003) make a similar point in arguing for the use of the BN decomposition. 
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2.1 Conceptual Framework 

 An integrated time series { }∞
−∞=tty  can always be thought of as the sum of two 

unobserved components related to permanent and transitory innovations: 

 

  ttt cy += τ . (1)  

 

The permanent component tτ  is the accumulation of permanent ∗
tη  innovations: 

 

  ∑
∞

=

∗
−=

0j
jtt ητ . (2) 

 

The transitory component tc  is a weighted-average of transitory ∗
tω  innovations: 

 

  ∑
∞

=

∗
−=

0
,

j
jtjttc ωψ , (3) 

 

where the random MA coefficients are normalized by 10, =tψ . 

 We give meaning to the labels “permanent” and “transitory” by imposing the 

following restriction that links the permanent component to the concept of steady state: 

 

  0lim , =
∞→

jt
j

ψ . (4) 
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In words, transitory ∗
tω  innovations have no long-run impact on the time series { }ty . 

Thus, in the hypothetical absence of any future innovations after time t, { }ty  would 

converge to tτ . It is in this sense that tτ  is the steady-state level of ty . 

 In this paper, we focus our attention on integrated processes with regime 

switching parameters. In particular, we consider the case where the random MA 

coefficients in (3) and/or the means of the innovations in (2) and (3) can take on different 

values according to an unobservable discrete state variable with known distribution, 

which we denote as tS : 

 

  jSjt t ,, ψψ = , (5) 

  tSt t
ηµη +=∗ , (6) 

  tSt t
ωλω +=∗ , (7) 

 

where ),0(~ 2
ηση Nt , ),0(~ 2

ωσω Nt , and ηωσωη =),( ttCov .2 The dependence of jSt ,ψ , 

tSµ , and 
tSλ  on the state variable tS  need not be linear. However, conditional on tS , the 

process for { }ty  is linear and assumed to be Gaussian. 

 The setup in (1)-(7) is quite general. Specifically, the innovations to the 

permanent and transitory components can be correlated. Also, from (5)-(7), the process 

can be regime switching for a variety of reasons. In particular, the regime switching can 

be in terms of the dynamics, the innovation to the permanent component, the innovation 

                                                 
2 It is also possible to consider the case where the variance-covariance parameters depend on the state 
vector. We ignore this more general case for simplicity of presentation. 
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to the transitory component, or any combination of these. Despite this generality, the 

permanent and transitory components of a regime switching process can often be 

identified and estimated without prior knowledge of either the correlation between 

innovations or the source of regime switching. That is, a UC representation need not be 

known. Instead, as discussed next, the fact that tτ  is the steady-state level of ty  provides 

a possible means for identification and estimation even when only a forecasting model of 

the first difference ty∆  is available. 

 

2.2 Estimating Steady State 

 All of the forecasting models for ty∆  considered in this paper can be cast in the 

following state-space form: 

 

  [ ] tnt Xhhhy L21=∆ , (8) 

  ttSSt eXFcX
tt

++= −1~~ , (9) 

 

where ),0(~ QNet . That is, the observation ty∆  can be represented as a linear 

combination of the elements of the 1×n  vector tX  according to the weights ih , 

ni ,...,1= . Meanwhile, the vector tX  follows a first-order vector autoregressive process, 

where the elements of the intercept vector 
tS

c ~  and the coefficient matrix 
tS

F~  may depend 

on a vector tS
~

 that contains the current and, possibly, lagged values of the unobservable 

discrete state variable tS . The vector white noise error te  is assumed to be Gaussian and 
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uncorrelated with tS . The first-order form of (9) is more general than it may at first 

appear since any higher order process can always be recast in its first-order companion 

form. Also, tX  can include both observables, such as ty∆  and/or its lags, and 

unobservables, such as moving-average error terms. Thus, the representation in (8) and 

(9) encompasses a wide variety of forecasting models including all univariate and 

multivariate Markov-switching ARMA models. 

 Estimation of the permanent and transitory components of ty  involves using the 

model given in (8) and (9) to calculate the conditional expectation of tτ . Note that in the 

absence of regime switching in the underlying time series process and the forecasting 

model, the BN decomposition calculates the conditional expectation of tτ  (see Morley, 

Nelson, and Zivot, 2003). However, the presence of regime switching complicates 

identification and estimation of tτ  and the BN decomposition, including its extension to 

nonlinear models by Clarida and Taylor (2003), does not necessarily provide a 

conditional expectation of tτ . 

 In calculating the conditional expectation of tτ , we start with the premise that 

conditional on observing tX  and the sequence { }tS , it would be possible to identify and 

estimate tτ  from a forecasting model using the fact that it is a steady-state value. That is, 

we can generally calculate { } ],,|[ tttt SXE Ωτ , where tΩ  is information observed at time 

t. First, given (9), solve recursively for the conditional expectation of future values of 

{ }tX : 3 

                                                 
3 Note that, if we had allowed for more complicated nonlinearities in (9) such as dependence of regimes on 
the residuals, we would need to use simulation and numerical integration as in Clarida and Taylor (2003) to 
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  { } { } ],,|[],,|[ 1~~ tttjtSStttjt SXXEFcSXXE
jtjt

Ω+=Ω −++ ++
. (10) 

 

Then, from (8), the conditional expectation of future values of { }ty  is 

 

  { } [ ] { }∑
=

++ Ω+=Ω
j

i
tttitnttttjt SXXEhhhySXyE

1
21 ],,|[],,|[ L . (11) 

 

Suppose that for some ∗= jj , the following steady-state condition holds: 

 

  { } { } ],,|[],,|[
1 tttljttttjt

SXyESXyE Ω∆==Ω∆
++++ ∗∗ L . (12) 

 

That is, the expected change in the series remains constant for l periods. Given (12), 

{ } ],,|[ tttjt
SXyE Ω∗+

 provides a conditional expectation of steady state, and thus of the 

trend. To see why, note that based on (1), the conditional expectation of the series can 

always be decomposed as follows: 

 

  { } { } { } ],,|[],,|[],,|[ tttjttttjttttjt SXcESXESXyE Ω+Ω=Ω +++ τ . (13) 

 

                                                                                                                                                 
calculate this condition expectation. The extension is conceptually straightforward, although 
computationally burdensome. 
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When { } 0],,|[ ≠Ω+ tttjt SXcE , we would expect transitory dynamics to work their way 

out in future periods, meaning that the condition in (12) would not hold. Conversely, the 

steady-state condition in (12) implies { } 0],,|[ =Ω∗+ tttjt
SXcE .4 

 The intuition is that, in using (10) to estimate future values of { }tX , we are setting 

future values of { }te  to their expected value of zero. This is equivalent to setting future 

values of the { }tη  and { }tω  shocks in (6)-(7) to their expected value of zero. As the 

horizon j  gets large enough, the expectation is that future realizations of { }ty  will no 

longer depend on transitory dynamics due to past realizations of { }tω . Thus, at some 

point, any expected transitory dynamics that prevent the condition in (12) from holding 

must be caused by the mean of a future transitory innovation taking on non-zero values: 

i.e., 0≠
+ jtSλ . Meanwhile, if the condition in (12) holds, future transitory innovations due 

to regime changes are equal to zero for a long enough period for the expected impact of 

any previous non-zero transitory innovations to die out. 

 While { } ],,|[ tttjt
SXyE Ω∗+

 is a conditional expectation of a steady state, it is not 

the current steady state tτ . In particular, { } ],,|[ tttjt
SXyE Ω∗+

 will reflect future 

permanent innovations implied by future realizations of { }tS . These innovations must be 

                                                 
4 There is a theoretical possibility that for some set of random MA coefficients in (3) and a particular 
sequence of transitory shocks, the steady-state condition in (12) may hold by mere coincidence and not 
because the impact of past transitory innovations has died out. To minimize this possibility, the number of 
consecutive periods l that the steady-state condition is required to hold can be set to an arbitrarily large 
number. By the long-run restriction in (4), a constant, but non-zero impact of a past transitory innovation 
must eventually change. Thus, a large enough l will prevent an erroneous estimate of steady state, although 
at the cost of increasing the number of periods before the steady-state condition holds. Depending on the 
nature of the process, it is possible that the condition in (12) never holds for l consecutive periods and we 
cannot identify trend using the steady-state approach. However, these problems do not arise in the 
applications considered in this paper, where we set l=2 and find that results are robust to higher values of l. 
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removed from { } ],,|[ tttjt
SXyE Ω∗+

 in order to measure { } ],,|[ tttt SXE Ωτ . We measure 

the long-run impact implied by each specific future realization jtS +  as 

 

  { } ]|[ jtttS SSyE
jt +=∆≡

+
µ . (14) 

 

In particular, the conditional expectation in (14) calculates the long-run growth rate 

within each regime. Then, the conditional estimate of the current steady state level is 

 

  { } { } ∑
∗

∗

=
++

−Ω=Ω
j

j
jttttjttttt SXyESXE

1

],,|[],,|[ µτ . (15) 

 

 In practice, tX  and the sequence { }tS  are not observed. We only assumed that 

they were available conditioning information because it allowed us to use the concept of 

steady state to identify the trend.5 Given the conceptual framework above, we would be 

unable to identify trend without that specific conditioning information. However, once 

we have identified the trend in theory, we can use Monte Carlo simulation methods to 

integrate out the unknown conditioning variables in order to calculate the expectation of 

the trend conditional only on observed data. 

 In simulating tX  and the sequence { }tS , we follow the multi-move Gibbs-

sampling procedure employed by Carter and Kohn (1994) and Kim and Nelson (1998, 

                                                 
5 The choice of the conditioning set is fundamental to identifying steady state. It also turns out to be 
important to condition only on information up to time t, rather than the whole sample. If we condition on 
future data, our inferences about the future steady state will reflect future permanent shocks, but these 
shocks are not observed, so we cannot easily identify and remove them to estimate the current steady state. 
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1999b).6 The details of the procedure are somewhat involved and are presented in an 

appendix. However, we sketch out the main features here.  

 Given an arbitrary initial sequence { } Jt
S

+

=1
)0(

ττ , where J  is sufficiently large to 

always include ∗j , and 1=m , iterate through the following steps: 

 1. Draw { }tmX 1
)(

=ττ  from the conditional distribution { } { } t
tmSX Ω=

− ,| 1
)1(

τττ . 

 2. Draw { } JtmS
+

=1
)(

ττ  from the conditional distribution { } { } t
tmXS Ω= ,| 1

)(
τττ . 

 3. Update 1+= mm  and return to step 1 until Mm > .7 

For each draw of )(m
tX  and the sequence { })(m

tS , we can estimate steady state using the 

condition in (12) to solve for the expectation in (15). Then, denoting the simulated 

steady-state estimate as { } ],,|[ˆ )()()(
t

m
t

m
tt

m
t SXE Ω= ττ , our estimate of steady state is  

 

  ∑
=

=
M

m

m
tt M 1

)(ˆ
1

ˆ ττ , (16) 

 

which should converge to the conditional expectation ]|[ ttE Ωτ  as the number of 

simulations M goes to infinity. Specifically, 

 

  { }[ ] ]|[],,|[ˆ1
lim )()(

1

)(
tttt

m
t

m
tt

M

m

m
tM

ESXEE
M

Ω=ΩΩ=






 ∑

=
∞→

τττ , (17) 

                                                 
6 For simplicity of presentation, we assume known parameters. In practice, estimation of parameters can be 
done using either classical or Bayesian methods. Bayesian estimation simply involves the additional step in 
the Gibbs-sampling procedure of drawing model parameters from their conditional posterior distributions.   
7 In practice, we only keep track of draws after an initial “burn in” period in order to ensure draws are no 
longer impacted by our initial arbitrary sequence for the Markov-switching state variable. 
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where the second equality follows from the law of iterated expectations. The estimated 

transitory component, denoted tĉ , is simply the difference between the level of the series 

and the estimated trend: ttt yc τ̂ˆ −= . 

 

2.3 Comparison with BN Decomposition 

 Given a linear forecasting model, the steady-state estimate of trend is always 

equivalent to the long-horizon forecast (minus any deterministic growth) estimate 

developed by Beveridge and Nelson (1981): 

 

  { }][lim µ⋅−= +
∞→

jyEBN jtt
j

t . (18) 

 

A linear model is a model that can be cast as a special case of (8) and (9) in which the 

intercept vector c  and the coefficient matrix F  do not depend on tS . For such a model, 

we can calculate ]|[ˆ ttt E Ω= ττ  using a simplified version of the steady-state approach 

outlined in (10)-(16).  

 A simple example may help illustrate the equivalence of the steady-state approach 

and the BN decomposition for linear models. Consider an integrated time series that can 

be forecast by a stationary AR(1) model in first differences: 

 

  ttt yy εµφµ +−∆=−∆ − )( 1 , (19) 

  



13   

where 1<φ  and ),0(~ 2
εσε Nt . For this model, the state-space representation is simply 

the intercept form of the AR(1) model, where the intercept parameter )1( φµ −=c . Then, 

the expectation in (11) simplifies to { } ],,|[]|[ tttjttjt SXyEyE Ω=Ω ++  since tX  is 

observed ( tt yX ∆= ) and the process does not depend on { }tS . For this model, it is 

straightforward to solve for this expectation using (11) and the expected change in the 

series implied by (19): 

 

  )(]|[ µφµ −∆+=Ω∆ + t
j

tjt yyE , (20) 

 

Since 0lim =
∞→

j

j
φ , there will be a ∗j  that satisfies the steady-state condition in (12) as 

∞→j : 

 

  µ=Ω∆==Ω∆
++++ ∗∗ ]|[]|[

1 tljttjt
yEyE L . (21) 

 

The deterministic growth µ  reflects the expectation of future permanent innovations. 

Thus, in order to calculate the conditional expectation of the current steady state, we must 

remove the impact of expected future permanent innovations on ]|[ tjt
yE Ω∗+

, as is done 

in (15): 

 

  µτ ⋅−Ω=Ω ∗
+ ∗ jyEE tjttt ]|[]|[ . (22) 
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Given the forecasting equation in (20) and ∞→j , it is straightforward to show that (22) 

is equivalent to 

 

  )(
1

ˆ µ
φ

φ
τ −∆

−
+= ttt yy , (23) 

 

which is the same as the BN trend for an AR(1) forecasting model (see Morley, 2002).  

 By contrast, the steady-state approach and the BN decomposition are generally 

not the same for nonlinear forecasting models with regime-switching parameters as in (8) 

and (9). The reason is that the BN estimate of trend in (18) implicitly includes the 

expectation of future innovations that are not part of the actual current trend. In the next 

section, we demonstrate this difference for two well-known regime-switching processes. 

 

3. Examples 

 In this section, we present two examples of the steady-state approach to 

trend/cycle decomposition applied to integrated time series generated from regime-

switching processes. In both cases, we generate data from unobserved components 

models, allowing us to compare estimates of the trend and cycle with their true values. 

We also use the generated data to illustrate how the steady-state approach identifies the 

level of trend and the mean of the cycle. 

 

3.1 Hamilton’s (1989) Markov-Switching Model 

 The first data generating process we consider is based on Hamilton’s (1989) 

regime-switching model of U.S. real GNP. The original specification is a forecasting 
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model of the first differences, ty∆ . However, in order to observe the actual permanent 

and transitory components for the generated data, we consider the following unobserved-

components representation for ty : 

 

  

tt

tttt

ttt

cL
S

cy

ωφ
ητµµτ

τ

=
+++=

+=

−

)(
110  (24) 

 

where ),0(~ 2
ηση Nt , ),0(~ 2

ωσω Nt , 0),cov( =tt ωη , ∑
=

−=
k

i

i
iLL

1

1)( φφ  is a thk −  

order lag polynomial will all roots outside the unit circle, and }1,0{=tS  is a Markov-

switching state variable with transition probabilities qSS tt === − ]0|0Pr[ 1  and 

pSS tt === − ]1|1Pr[ 1 . The permanent component of real output, tτ , follows a random 

walk with a regime-switching drift component. The transitory component, tc , follows a 

linear stationary autoregressive process. In the example, we set lag length 2=k , so that 

tc  is an AR(2) process.   

 We generate a sample of 200 observations from the data generating process in 

(24) using the following parameter calibration: 8.00 =µ , 3.11 −=µ , 25.0=ησ , 

25.0=ωσ , 2.01 =φ , 1.02 =φ , 96.0=q  and 8.0=p .  In practice, given this UC model 

and parameters, the trend and cycle can be estimated using the filtering techniques in 

Lam (1990) and Kim (1994). However, we consider the steady-state approach here in 

order to evaluate its performance. Of course, it should be emphasized that, unlike the 

filtering techniques, the steady-state approach does not require knowledge of the UC 

representation or any arbitrary normalization or identification assumptions that often 
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accompany UC models. It can be applied given a forecasting model for the first 

differences only. 

 For the steady-state approach to trend/cycle decomposition, we cast a forecasting 

model into the state-space form given by (8) and (9).  One way to do so for the UC model 

in (24) is to solve for corresponding reduced-form representation for ty∆ ,8 which in this 

case is a regime-switching ARMA(2,2) process: 

 

  ttt LLSyLL εθθµµφφ )1())(1( 2
2110

2
21 ++=−−∆−− , (25) 

 

where ),0(~ 2
εσε Nt  and 1θ  and 2θ  are complicated nonlinear functions of the 

parameters in (24).9  In terms of the state-space form given by (8) and (9), the variable 

vectors are [ ] tt Xy 0100=∆ , [ ]′∆∆= −− 11 ttttt yyX εε , and 

[ ]′= 00 ttte εε . The intercept vector is [ ]000 ~~
tt SS

c α= , where 

))(1( 10
2

21~ tS
SLL

t
µµφφα +−−≡ , which means that [ ]′= −− 21

~
tttt SSSS . Finally, the 

companion matrix, which does not depend on tS
~

 for the model in (25), is 

 

                                                 
8 It should be noted that we could have directly cast the UC model in (24) into the state-space form given 
by (8) and (9). However, the point of the example is to show that trend and cycle can be estimated even if 
only a reduced-form representation were known. 
9 We calculate values for the moving-average parameters by solving the system of nonlinear equations that 
relates the reduced-form parameters to the autocovariances implied by (24). Of the multiple solutions 
available, we use the one that corresponds to real numbers for the parameters and an invertible 
representation for the moving-average component.   
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
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
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


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=

0100

0001
0000
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Given the model in this state-space form, ]|[ˆ ttt E Ω= ττ  can be calculated using the 

steady-state approach outlined in (10)-(16).  We perform M = 500 simulations to 

integrate tX  and the sequence { }tS  out of the conditional distribution { } ],,|[ tttt SXE Ωτ  

after an initial 1000 simulations to ensure convergence of the Gibbs sampler. 

 Figure 1 displays the generated time series, its true trend, and some estimates of 

the trend. In addition to the steady-state estimate of trend, we consider the HP filter 

estimate, with the smoothing parameter set to 1600, and an estimate based on the long-

horizon forecast (i.e., the BN decomposition) calculated using the method presented in 

Clarida and Taylor (2003).10 The first panel of Figure 1 shows that most of the variation 

in the generated series reflects the regime switching in the trend. The second panel shows 

that the steady-state approach is able to capture this form of nonlinearity. Indeed, the 

steady-state estimate of trend is virtually indistinguishable from the true trend. 

Meanwhile, the third panel shows that the HP filter estimate of trend misses the 

nonlinearity in the data. Instead, it essentially traces out a smooth line through the series. 

Finally, the fourth panel shows that the long-run forecast estimate of trend is much more 

variable than the true trend. In particular, whenever there is a change in regime, the 

                                                 
10 Briefly, Clarida and Taylor’s (2003) method involves generating a large number of simulated future 
realizations of the time series from the conditional distribution implied by a forecasting model and the 
observed data at each point of time.  Then, the conditional expectation of the series at any future horizon is 
calculated by averaging the simulated future realizations at that horizon. As with Beveridge and Nelson 
(1981), the estimate of trend is the long-horizon conditional expectation of the series minus any 
deterministic growth, which is defined as the unconditional expectation of the change in the time series.  
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estimated trend adjusts by more than the series itself due to the persistence of the 

regimes. For example, the persistence of recessionary regimes means that a transition 

from an expansionary regime to a recessionary regime will greatly increase the 

probability that future regimes are also recessionary. Thus, the long-run conditional 

expectation of the series will be dramatically lowered by the regime shift. 

 

3.2 Kim and Nelson’s (1999a) “Plucking” Model 

 The second data generating process we consider is based on the plucking model 

of U.S. real GDP proposed by Kim and Nelson (1999a).11  Instead of allowing for regime 

switching in the permanent component, Kim and Nelson assume that the regime 

switching is in the transitory component.  In particular, the model is 

 

  

ttt

ttt

ttt

ScL

cy

ωλφ
ητµτ

τ

+=
++=

+=

−
)(

1  (26) 

 

where, tη , tω , )(Lφ  and tS  are the same as in (24).  The permanent component of real 

output, tτ , follows a random walk with constant drift.  The transitory component, tc , 

follows a stationary autoregressive process that depends on the value of tS .  For 

example, if 0<λ , tc  is “plucked” downward by the amount λ  when 1=tS .  However, 

the effects of this pluck are transitory, as they are worked off through the dynamics of tc .  

Importantly, note that this model implies that the transitory component, tc , has a non-

                                                 
11 The “plucking” terminology is due to Milton Friedman (1964, 1993).  
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zero mean given by 
)1(

]1Pr[
)(

φ
λ =⋅

= t
t

S
cE , where 

qp
q

S t −−
−

==
2

1
]1Pr[ . As before, we 

set lag length 2=k . 

 We generate a sample of size 200 from the data generating process in (26) using 

the following calibration: 8.0=µ , ,25.0=ησ  02.0=ωσ , 2−=λ , 2.11 =φ , 4.02 −=φ  

96.0=p  and 80.0=q .  Consistent with the parameter estimates of Kim and Nelson 

(1999a), ωσ  is very small relative to λ , meaning most variation in tc  is due to “plucks”. 

The reduced-form representation for ty∆  implied by the UC model in (26) is again a 

regime-switching ARMA (2,2) process: 

 

  ttt LLSyLL εθθλµφφ )1())(1( 2
21

2
21 +++∆⋅=−∆−− , (27) 

 

where tε , 1θ , and 2θ  are the same as in (25). The model in (27) can be cast in the state-

space form given by (8) and (9) in much the same way as the Hamilton model above. The 

only difference is in the 
tS

~α  element of the intercept vector 
tS

c ~ . Specifically, for the 

model in (27), tS
S

t
∆+−−≡ λµφφα )1( 21~  which means that [ ]′= −1

~
ttt SSS .     

 Again, ]|[ˆ ttt E Ω= ττ  can be calculated using the steady-state approach outlined 

in (10)-(16).  As before, we perform M = 500 simulations to integrate tX  and the 

sequence { }tS  out of the conditional distribution { } ],,|[ tttt SXE Ωτ  after an initial 1000 

simulations to ensure convergence of the Gibbs Sampler. 

 Figure 2 displays the series, the true trend, and some estimates of the trend. 

Again, in addition to the steady-state estimate, we display the HP filter estimate and the 
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long-horizon forecast estimate calculated using the method presented in Clarida and 

Taylor (2003). The first panel of Figure 2 shows the “plucking” nature of the generated 

series. It remains very close to trend except when it is plucked in the downward direction.  

As with the previous example, the second panel shows that the steady-state estimate of 

trend is able to capture the true trend. The third panel shows that the HP filter estimate of 

trend misses the nonlinear aspects of the data and essentially traces out a smooth line 

through the series, labeling some of the transitory variation in the series as variation in 

the trend. Finally, the fourth panel shows that the long-run forecast estimate of trend 

moves with the true trend, but is shifted downward. That is, the long-run forecast method 

fails to identify the level of the trend or, equivalently, the mean of the cycle.   

 This can be seen more clearly in Figure 3, which displays the true generated cycle 

for the plucking model along with the steady-state, H-P filter and long-run forecast 

estimates of the cycle. The ability of the steady-state estimate to capture the negative 

mean of the true cycle is apparent.  Meanwhile, the H-P filter and long-run forecast 

technique produce estimates of the cycle that are shifted upward from the true cycle.  

Indeed, the ability of the steady-state approach to identify the level of the trend or, 

equivalently, the mean of the cycle, is a key advantage over other methods.  We turn to 

this issue in more detail next. 

 

3.3 Identifying the Level of Trend 

 It may appear at first that the idea of cycle with a non-zero mean is merely a 

matter of normalization. That is, the initial level of the trend could always be set to make 

the resulting cycle have a mean of zero. However, the resulting re-normalized trend may 
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not correspond to steady state. Put another way, the concept of steady state uniquely 

identifies the level of the trend or, equivalently, the mean of the cycle. Kim and Nelson’s 

(1999a) plucking model allows for a straightforward demonstration of this point. 

 Figure 4 displays the level and the first-difference of the cycle generated from the 

plucking model. While it would be possible to shift the level of the cycle upwards to have 

a mean of zero, it should be noted that doing so would have no impact on the first-

difference of the cycle. Meanwhile, it is the first-difference of the cycle that identifies 

when the series is in steady state. In particular, the series can only be thought to be in 

steady state when the first-difference of the cycle is constant and equal to zero. 

Otherwise, the cycle must be changing, which from (3) means that past transitory 

innovations are still affecting the cycle and the series is not in steady state. Thus, we can 

use the first-difference of the cycle and the concept of steady state to identify the mean of 

the cycle or, equivalently, the level of the trend. Specifically, steady state implies that the 

cycle is equal to zero and the trend is equal to the actual level of the series only when the 

first-difference of the cycle is equal to zero. This relationship holds for the cycle 

displayed in Figure 4, but would not hold for a re-normalized cycle with a mean of zero. 

 

4. Application 

 Separating transitory or cyclical variation in time series of macroeconomic 

activity from permanent or trend variation has a rich history in macroeconomics. A 

primary reason for the attention this enterprise has drawn is that the “business cycle” is 

typically measured using the cyclical component of an output series such as real Gross 

Domestic Product (GDP), while the trend component is used to measure long-run 
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growth. 12 In order to test macroeconomic theories of the business cycle or long-run 

growth, we need accurate estimates of these components. 

 There are many alternative techniques that have been used to extract trend and 

cycle from real GDP. A popular early technique was to assume that the trend is a 

deterministic polynomial. More recent ly, the focus has shifted to stochastic trends, in 

which the permanent component is not merely a deterministic function of time, but 

contains random elements. Popular techniques to extract stochastic trends from real GDP 

include the Hodrick-Prescott (1997) filter, the linear unobserved components models of 

Clark (1987) and Watson (1986), and the Beveridge-Nelson (1981) decomposition. 

 Much of this work is based on the assumption that the data generating process for 

real GDP is linear.  Indeed, the UC models referenced above and the BN decomposition 

are based on ARIMA forecasting models for real GDP and are, therefore, explicitly 

linear.  At the same time, there is growing evidence that the time-series properties of real 

GDP are well described by models containing departures from linear ARIMA models, 

including threshold models and regime-switching models.  However, the implications of 

these nonlinear dynamics for measuring trend and cycle have been largely ignored.  

Exceptions are generally within the UC framework, where nonlinearities are explicitly 

entered into the processes for the trend and cycle (see, for example, Kim and Nelson, 

1999a). 

 In this section, we apply the steady-state approach to extract the trend and cycle 

from U.S. real GDP under the assumption of a nonlinear data generating process.  We 

                                                 
12 This statistical definition of trend and cycle is not without problems.  For example, Blanchard and Quah 
(1989) point out that the structural trend of output may also experience transitory fluctuations and thus 
trend need not correspond to the permanent component of output. 
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note that the steady-state approach requires a forecasting model.  One advantage of the 

steady state approach is that it can be applied given any forecasting model, which reduces 

the problem of evaluating a particular decomposition to a matter of model selection. 

However, performing model selection across an appropriately large set of forecasting 

models is beyond the scope of this paper.  Thus, we focus here on a particular nonlinear 

forecasting model of U.S. real GDP developed by Kim, Morley, and Piger (KMP) (2003) 

and leave model selection to future research.  

 The KMP model is a regime-switching ARIMA model for U.S. real GDP: 

 

  t

m

j
jttt SSyL ελµµφ =







−−−∆ ∑

=
−

1
10)( , (28) 

 

where ),0(~ 2
εσε Nt , the lag operator )(Lφ  is k-th order with roots outside the unit 

circle, ty∆  is the first difference of the logarithm of real GDP, and tS  is an unobserved 

Markov-switching state variable that takes on discrete values of 0 or 1 according to 

transition probabilities qSS tt === − ]0|0Pr[ 1  and pSS tt === − ]1|1Pr[ 1 .  The states 

are normalized by restricting 01 <µ . That is, 1=tS  corresponds to a “lower growth” 

regime or, if 010 <+ µµ , a “contractionary” regime.  

 The model in (28) admits a three-phase representation of GDP growth dynamics.  

When 0=tS , output grows at the rate 0µ , with deviations from this growth rate caused 

by tε  which are propagated by the autoregressive dynamics )(Lφ .  When 1=tS , output 

enters a low growth or contractionary regime and grows at the average rate 10 µµ + .  
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However, as the recession progresses and ultimately ends, the term ∑
=

−

m

j
jtS

1

λ  augments 

the growth rate of the forecasting equation.  This additional term is best described as a 

pressure variable, obtaining larger values as the recession is longer and more severe.  It 

then implies a “bounce-back” effect from the recession if 0>λ .  That is, output growth 

will be above-average for the first m  periods of an “expansionary” regime.  Using this 

model, KMP are able to reject both linearity and the absence of a “bounce-back” effect in 

U.S. real GDP. Also, in a formal model comparison exercise, KMP find that this three-

phase model outperforms linear ARIMA models and alternative regime-switching models 

in mimicking a number of key features in the data. 

 We estimate the KMP model using the first difference of log U.S. real GDP from 

1949:Q1 to 2003:Q1. The series is multiplied by 400 in order to correspond to annualized 

growth rates. We set the lag order k = 2 and, following the findings in KMP, 6=m  

quarters.  The model is estimated via maximum likelihood using the filter given in 

Hamilton (1989).  Table 1 reports the estimated parameters, while Figure 5 plots the 

smoothed probability ]|1Pr[ TtS Ω= , along with the log real GDP series. As in KMP, 

010 <+ µµ , which suggests that 1=tS  corresponds to a “contractionary” regime. 

Indeed, the smoothed probability ]|1Pr[ TtS Ω=  suggests that the contractionary regime 

corresponds fairly closely to most NBER recession dates.  Meanwhile, 0>λ  suggests 

that the quarters following the end of a contractionary regime correspond to above-

average economic growth.  

 To obtain the steady-state estimate of trend, we cast the model in (28) into state-

space form.  In terms of the state-space form given by (8) and (9), the variable vectors are 
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[ ] tt Xy 0   1=∆ , [ ]′∆∆= −1   ttt yyX , and [ ]′= 0   tte ε . The intercept vector is 

[ ]′= 0~~
tt SS

c α , where ))(1(
1

10
2

21~ ∑
=

−++−−≡
m

j
jttS

SSLL
t

λµµφφα , which means that 

[ ]′= −−−−−−−− 87654321                    
~

tttttttttt SSSSSSSSSS . Finally, the companion 

matrix is: 

 

  



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


=

0      1
   21 φφ

F  

 

We set each parameter to its maximum likelihood point estimate listed in Table 1.  

Finally, we calculate ]|[ˆ ttt E Ω= ττ  using the steady-state approach outlined in (10)-

(16).  We perform M = 500 simulations to integrate tX  and the sequence { }tS  out of the 

conditional distribution { } ],,|[ tttt SXE Ωτ  after an initial 1000 simulations to ensure 

convergence of the Gibbs sampler. 

 Figure 6 displays the steady-state estimates of the trend and cycle for log U.S. real 

GDP. The estimated cycle has several noticeable features. First, it clearly has a negative 

mean, suggesting that it is more typical for the economy to operate below trend than 

above it. Second, it turns strongly negative during most NBER dated recessions, while it 

is near zero during expansions.  This finding is consistent with Milton Friedman’s (1964, 

1993) plucking model, in which output is generally close to trend, and is occasionally 

“plucked” below trend. We note, however, that for the three recessions of 1970, 1990-91, 

and 2001 most of the movement in real GDP is in the trend component. That is, 

according to the model, these recessions had largely permanent effects on real GDP. 
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5. Conclusion 

 The steady-state approach to trend/cycle decomposition has many advantages 

over competing methods. It is able to deal with nonlinearities in the data and it identifies 

the level of the trend or, equivalently, the mean of the cycle. The application to U.S. real 

GDP reveals these advantages and portrays a picture of the business cycle that is very 

different than what is implied by standard linear models. 

 We conclude by noting that our approach, by allowing for nonlinear dynamics, 

provides a possible reconciliation of the NBER notion of the business cycle with the 

concept of an output gap. In particular, according to the forecasting model employed in 

our application, the transitory component of real GDP is very small in expansions and 

large and negative only during NBER recessions. Meanwhile, the fact that some NBER 

recessions correspond only to movements in the permanent component suggests that 

these episodes may reflect fundamentally different economic conditions than the other 

recessions. Of course, even within the trend/cycle decomposition framework developed 

in this paper, a more complete investigation of the business cycle must involve some 

consideration of alternative forecasting models. We leave the model selection issue and a 

full resolution of what the business cycle actually looks like to future research. 
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Appendix:  Sampling the Unobserved { }τX  and { }τS  

The steady-state approach to trend-cycle decomposition outlined in Section 2 

requires a step to draw simulated values of { }tX 1=ττ  and { } JtS +
=1ττ  from their conditional 

distributions { } { } t
t

SX Ω= ,| 1τττ  and { } { } t
t

XS Ω= ,| 1τττ .  In the following we describe 

algorithms for this data generation.  The presentation will closely follow that in Kim and 

Nelson (1999b).  

 

A.1 Sampling { }τX  

 To draw from { } { } t
tt SX Ω== ,| 11 ττττ  we use the multimove algorithm detailed in 

Carter and Kohn (1994).  To begin, the state space form of the forecasting model is 

written so that the first R  x R  block of Q , denoted  *Q , is positive definite, whereas the 

remaining elements of Q  are zero.  Denote the first R  elements of tX  as *
tX  and the 

first R  rows of 
tS

F~  as *
~

tS
F .  As an example, consider the ARMA(2,2) model in (25): 

 

ttt LLSyLL εθθµµφφ )1())(1( 2
2110

2
21 ++=−−∆−−  

 

This forecasting model has a state-space form that meets the requirements for the Q  

matrix given above: 

 

[ ] ttt XSyLL 2110
2

21 1))(1( θθµµφφ =−−∆−−  
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Q .  Here, 1=R ,  so 2*

εσ=Q  ,  *
tX  is tε  and [ ]000*
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 The distribution of interest, { } { } t
tt SX Ω== ,| 11 ττττ , is then factored as:   

 

{ } { } { }( ) { }( )C
1

1
1

*
1111 ,,|,|,|

−

=
=+=== Ω⋅Ω=Ω

t

i
i

t
iit

t
tt

tt SXXSXSX ττττττττ  

 

This factorization is established by the Markov structure of iX .  In particular, conditional 

on 1+iX  and iΩ , there is no additional information regarding iX  in 2+iX  and 1+Ωi .  Also, 

note that iX  is conditioned on *
1+iX   rather than on 1+iX .  This is because the remaining 

terms in 1+iX  beyond those in *
1+iX  determine elements of iX  with certainty, which 

creates a singularity that makes generating iX  impossible. 

 Given this factorization, a draw from { } { } t
tt SX Ω== ,| 11 ττττ  can proceed by first 

drawing a realization of tX  from { }( )t
t

t SX Ω= ,| 1ττ , denoted )(g
tX  and then drawing 

recursively from { }( )i
tg

ii SXX Ω=+ ,,| 1
)(*

1 ττ .  Operationally, this is performed by first running 

the Kalman Filter on the state-space model to compute and save { }tX
1| =τττ  and { }tP

1| =τττ , 
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where ττ |X  and ττ |P  are the filtered estimate of tX  and its variance-covariance matrix 

respectively.  The Gaussian structure of the state-space model implies 

{ }( ) ( )ttttt

t

t PXNSX ||1 ,~,| Ω=ττ , which can be used to generate )(g
tX .  We then simply need 

{ }( )i
tm

ii SXX Ω=+ ,,| 1
)(*

1 ττ  to complete the algorithm.  Carter and Kohn (1994) show that this 

is given by: 

 

{ }( ) ( )*
1

*
1 ,|,|1

)(*
1 ,~,,|

++
Ω=+

ii XiiXiii
tg

ii PXNSXX ττ , 

 

where: 

 

{ } )()(),,|( |
*
~

*
~

)*(
1

1**'
~|

*
~

*'
~||1

)*(
1,| *

1
iiSS

g
iSiiSSiiiii

tg
iiXii

XFcXQFPFFPXSXXEX
ttttti

−−++=Ω= +
−

=+
+ ττ  

 

{ } iiSSiiSSiiiii
t

iiXii
PFQFPFFPPSXXCovP

tttti
|

*
~

1**'
~|

*
~

*'
~||1

*
1,|

)(),,|(*
1

−
=+ +−=Ω=

+ ττ  

 

 Note that for many forecasting models, such as the regime-switching 

autoregressive model in (28), { }tX  is observed.  In this case, we simply condition on the 

observed { }tX , rather than sample values of { }tX  from its conditional distribution.   
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A.2 Sampling { }τS  

 To draw from { } { } t
tJt XS Ω=

+
= ,| 11 ττττ  we use the multimove algorithm detailed in 

Kim and Nelson (1998).  To begin, note that { } { } t
tt XS Ω== ,| 11 ττττ  can be factored as:  
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Again, this factorization is established by the Markov nature of iS .  In particular, 

conditional on 1+iS  and iΩ , there is no additional information regarding iS  in 2+iS  and 

1+Ωi .  Given this, a draw from { } { } t
tt XS Ω== ,| 11 ττττ  can proceed by first drawing a 

realization of tS  from { }( )t
t

t XS Ω= ,| 1ττ , denoted )(g
tS  and then drawing recursively from 

{ }( )i
tg

ii XSS Ω=+ ,,| 1
)(

1 ττ .   

 Operationally, this is performed by first running the Hamilton (1989) filter on the  

forecasting model, conditional on { }tX .  For example, conditional on { }tX , and thus on 

{ }tε , the forecasting model in (25) is an ARMA (2,2) for which the moving average 

component, 2211 −− + tt εθεθ  is observed.  The Hamilton (1989) filter produces the filtered 

probabilities: 

 

{ }[ ]{ }tt
XwS 11,|Pr == Ω= τττττ  
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The final filtered probability, { }[ ]t
t

t XwS Ω= = ,|Pr 1ττ , gives us { }( )t
t

t XS Ω= ,| 1ττ , from 

which we can generate )(g
tS .  We then draw recursively from { }( )i
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)(
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which is given by: 
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where [ ]wSS i
g

i =+ |Pr )(
1  are simple functions of the transition probabilities, p  and q .  

 Finally, given )( g
tS , { }[ ] [ ])(

11
)(

1 |Pr,,|Pr g
ttt

tg
tt SwSXSwS ==Ω= +=+ ττ   

is again a simple function of the transition probabilities, p  and q , and can be used to 

generate )(
1
g

tS + . In turn, [ ])(
12 |Pr g

tt SwS ++ =  is then used to generate )(
2

g
tS + .  This is repeated 

to generated { } Jt
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ττ . 
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Table 1  
Maximum Likelihood Estimates for KMP Model of U.S. Real GDP  

Parameter Estimate Standard Error 

0µ  0.831 0.080 

1µ  -2.005 0.242 

λ  0.319 0.059 

q  0.956 0.018 

p  0.679 0.111 

1φ  0.138 0.082 

2φ  0.076 0.082 

εσ  0.764 0.044 
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Fig. 1 
Generated series, true trend, and estimates of trend for the Hamilton model 
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Fig. 1 (Continued) 
Generated series, true trend, and estimates of trend for the Hamilton model 
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Fig. 2 
Generated series, true trend, and estimates of trend for the plucking model 
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Fig. 2 (Continued) 
Generated series, true trend, and estimates of trend for the plucking model 
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Fig. 3 
True cycle and estimates of cycle for the plucking model 
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Fig. 3 (Continued) 
True cycle and estimates of cycle for the plucking model 
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Fig. 4 
The level and the first difference of the true cyc le for the plucking model 
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Fig. 5 
U.S. real GDP and smoothed probability of a “contractionary” regime  
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Fig. 6 
Steady-state estimates of trend and cycle for U.S. real GDP implied by the KMP model 
(NBER recessions shaded) 


