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Abstract 

 

This article proposes and tests a convenient, easy to use closed-form solution for the pricing of a 

European Call option where the underlying asset is subject to upward and downward jumps 

displaying separate distributions and probabilities of occurrence. The setup presented in this 

article lays in contrast to the assumption of lognormality in the jump magnitude generally made 

in the option pricing literature and can be used by academics and practitioners alike as it allows 

for a more precise modeling of the implied volatility smile. Through the use of both simulations 

and actual options data on the S&P 500 index it is shown that the asymmetric jump model 

captures deviations from the standard geometric Brownian motion with more precision than 

the lognormal jump setup is able to achieve. 
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It is a well-established fact that when volatility levels are inferred from observed option 

prices using the Black-Scholes option pricing formula and plotted against the exercise price, an 

implied “volatility smile” or “smirk” is ubiquitously observed in both stock and currency 

markets as demonstrated by Ball and Torous [1983, 1985], Jorion [1988], Bakshi, Cao, and Chen 

[1997], Bates [1988, 1991, 1996, 2000], Doffou and Hilliard [2001] or Pan [2002] to only name a 

few. 

The excess kurtosis and skewness causing this smile is present in the implied transition 

density function of most securities’ observed rates of return and can be partially explained 

through the modeling of jumps but also through the use of stochastic volatility (Heston, [1993]) 

or both as shown in Scott [1997], Bakshi et al. [1997], Pan [2002], or Eraker, Johannes, and Polson 

[2003]. Stochastic volatility usually has a larger impact on long term options whereas the 

presence of jumps mostly benefits the pricing of short term near-the-money options. A 

combination of the two features thus generally explains the shape of the smile and the 

distribution of returns better than the simpler jump-diffusion model. However, stochastic 

volatility is not considered here in order to focus on the effects of jumps alone, although a 

solution incorporating this feature could still be obtained in the same fashion. This paper 

concentrates on relaxing the traditional assumption of a common lognormal jump distribution 

spanning both upward and downward jumps by allowing each jump type to possess distinct 

distributional properties.  

Since the seminal work of Merton [1976], the notion that allowing for jumps in a 

security’s rate of return improves the modeling of the so-called “implied volatility smile” has 

been widely accepted by academics and practitioners everywhere. The traditional lognormality 

assumption involves a “generic jump” whose magnitude fluctuates between minus one and 

infinity, thus allowing the generation of both downward and upward jumps. Although the 

lognormal distribution has many useful properties, one drawback of this approach is the 

constraining of upward jumps and downward jumps to both come from the same distribution 

as well as the lack of precise differentiation between the probabilities of occurrence of each type 

of jump. This is in part because in the lognormal setup the Poisson process determining 

whether a jump occurs and the jump magnitude -and therefore type- are assumed to be two 

independent processes. In addition, the jump magnitude expected should a downward jump 

occur could potentially be very different from the magnitude expected should an upward one 



take place instead. It would thus seem natural to wish to allow for that higher level of flexibility 

by allowing the jump magnitude to be conditional on the jump type. 

Ramezani and Zeng [1999] conduct a Maximum Likelihood Estimation on security 

prices allowing for two types of jumps, focusing directly on times series of stock returns. They 

show that allowing for a mixture of distribution for the up-jumps and down-jumps proves to be 

a better fit to the data than having a common distribution spawning both. Securities thus seem 

to behave more in accordance with a dual jump distribution setup than the assumed lognormal 

function. Investigating the implication of this finding in the pricing of options therefore seems 

to be the next logical step. 

 

 

I. THE MODEL 

 

The model used to derive the solution to the European call option pricing problem can 

be found in Ramezani and Zeng [1999], Kou and Wang [2001] and Kou [2002]. Let 

)(tS represent the value of the underlying asset at time t paying a constant continuous dividend 

yield q, and assume that the instantaneous return on the asset is determined by the following 

risk-neutral process: 
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where  

• R and q are the instantaneous interest rate and dividend yield; 

• uλ and dλ are the frequency of upward jumps and downward jumps per year; 

• )(tJu  is the percentage up-jump size conditionally on an upward jump occurring 

defined as: 1)()( −= txtJ uu   with  )(txu  distributed )( urPareto ; 

• )(tJ d  is the percentage down-jump size conditionally on a downward jump occurring 

defined as: 1)()( −= txtJ dd   with  )(txd  distributed )1,( drBeta ;  

• σ  is the diffusion component of the return variance conditional on no jumps occurring; 

• )(tW is a standard Brownian motion; 

• )(tqu and )(tqd are Poisson up and down jump counters with intensities uλ and dλ . 



The Pareto and Beta density functions for the up-jump and down-jump magnitudes are 

assumed to follow: 

 

1
1

)(
+

��
�

�
��
�

�

=
u

u

r

u
uux x

rxf  with 1≥ux  and 
1

)(
−

=
u

u
u r

r
xE  and 

2
2

)1)(2( −−
=

uu

u
x rr

r
u

σ  

 ( ) 1)( −= d

d

r
dddx xrxf  with 10 << dx  and 

1
)(

+
=

d

d
d r

r
xE  and 

2
2

)1)(2( ++
=

dd

d
x rr

r
d

σ  

 

By varying the parameters ur and dr the shapes of the Beta and Pareto probability 

distribution functions can be calibrated for the downward and upward jumps as shown in the 

following Exhibit. 

 

EXHIBIT  1 

Evolution of the Beta and Pareto probability density functions with dr and ur  

  

 

 

II. SOLUTION 

 

With two different types of jumps present, the European call option must satisfy the 

following partial differential equation: 

 
2

2 2
2

1

1 1 2
u d

u d

C C C
R q S S RC

r r S S

λ λ σ
τ

� �
∂ ∂ ∂− + − − + + −

� 	

∂ − + ∂ ∂

 �  

  ( ){ } ( ){ } 0)()1()()1( =−++−++ SCJSCESCJSCE d
Q

du
Q

u λλ   (2) 



Solving equation (2) in the appendix, the price of a European call option on an asset 

displaying the dynamics specified in equation (1) is 
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where explicit solutions to the characteristic functions 1f and 2f  are derived in the appendix. 

 

 

III. SIMULATIONS 

 

To first demonstrate the flexibility of the model, simulations of implied volatility smiles 

are performed. The idea is to examine what shapes the smile is able to take provided that the 

underlying asset abides by the dynamics specified in the section II, for some given parameters. 

The procedure is as follows. First, some model parameters are arbitrarily selected and used as 

inputs in the call option pricing formula derived in the previous section. This step includes 

selecting a volatility level, frequency and magnitude of upward and downward jumps, time to 

maturity and a risk-free rate. Second, various option prices are generated using the formula by 

letting the spot-to-exercise price ratio vary. Third, implied volatility levels are inferred from 

each option price generated in the previous step using this time the Black-Scholes option pricing 

formula instead. This third step creates a series of implied volatility levels corresponding to 

various moneyness levels. The familiar volatility smile is finally obtained by plotting the 

volatility values against moneyness levels. 

Hence this smile is what would be observed in the market if the underlying asset did 

exactly follow the dynamics specified in equation (1). In order to establish the impact of a given 

variable, additional smiles are generated by repeating the process for each variable, with results 

shown in Exhibits 2 and 3. The jump-related parameters selected for the simulation 

are 2.0=uλ , 2.0=dλ , 5=ur , and 5=dr , with a domestic risk-free rate set to 5% and no 

dividend yield, implying a potential downward jump with a mean of -16.67% and a potential 

upward jump with a mean of 25%. 



EXHIBIT  2 

Evolution of the implied volatility smile with dλ and uλ  

  

 
 
 
EXHIBIT  3 

Evolution of the implied volatility smile with ur and dr  

  

 

 

 The simulations show that using the appropriate combination of parameters, the 

asymmetric jump model should be able to easily replicate smiles taking almost any shape. The 

smile can be flattened, made steeper, or steep at one end and flatter at the other. Through these 

simulations at least, the model appears relatively flexible. The next step is thus to evaluate its 

pricing abilities on actual data. In order to demonstrate the benefits of using a more 

sophisticated modeling of jumps in the security’s rates of return, the lognormal and asymmetric 

jumps models are estimated and compared on actual S&P 500 European options data in the next 

section. 

 



IV. ESTIMATION AND COMPARISON PROCEDURE 

 

The data used for the model comparison consist of end-of-the-day European call option 

prices on the S&P 500 index from January 2001 to December 2002. The SPX information is 

obtained from the CBOE exchange, for a total number of 151,991 records. For each day the last 

options quotes of the day and moneyness are collected across maturities along with the 

corresponding value of the index. The LIBOR rate is selected as the risk-free rate proxy with 

maturities matching the maturities of the options. When the LIBOR maturity does not exactly 

coincide with the option expiration date, the appropriate risk-free rate is computed by 

interpolating between the closest two LIBOR rates straddling the desired period. 

Since the models under scrutiny do not incorporate stochastic volatility it is deemed 

more appropriate to compare the lognormal jump model and the asymmetric jump model on a 

specific day as opposed to a week or a month. The implicit assumption is that even if the 

volatility is stochastic, its level is relatively constant during a fraction of a day. In order to 

establish how the models fare in various market conditions, VIX levels are examined to select 

months of high, low, and average levels of volatility in the spirit of Pan [2002]. Within these 

months, days are randomly selected as an attempt to represent fairly various possible states of 

the market. Differences in the models’ performances will be identified by the closeness of a 

given model’s implied volatility smile to the observed prices’ implied volatility smile. A model 

that prices options perfectly would display an implied volatility smile that exactly describes the 

Black-Scholes implied volatility smile obtained from observed prices.  

The estimation and evaluation procedure for each model is as follows. For a given day a 

cross section of closing option prices of a given maturity is recorded. The focus is on options of 

relatively short maturity as these options tend to display the deepest smiles and are the ones for 

which the introduction of jumps makes the largest pricing improvement, as the contribution of 

jumps is known to decline with a longer option maturity. Options of 20 to 30 days to maturity 

are therefore selected and the cross-sectional dataset is used to estimate the model parameters 

using the information embedded in option market prices across the various moneyness levels. 

Let ( , , , , , )n n nC t S R q Kτ  be the observed option price on the thn  option in the sample on dayt , let 

( , , , , , )n n nC t S R q Kτ
�

 be the model-driven option price given a set of parameters Θ and a volatility 



levelσ , let nK and nτ be the exercise price and time-to-maturity of that thn option, let R and q be 

respectively the risk-free rate and dividend yield on day t  and let S be the value of the spot 

index on that same day. For the estimation of the parameters a generalized least square 

procedure is performed where the function to be minimized on day t  is 

2
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Note that the volatility σ is estimated along with the rest of the model parameters Θ and is 

therefore treated as such. 

 

 

EXHIBIT  4 
Monthly VIX levels for 2001 and 2002 

  
Month 

 
2001 

 
2002 

January  24.92  22.22 

February  23.48  22.88 

March  28.50  18.99 

April  28.34  19.90 

May  22.94  20.09 

June  20.94  25.27 

July  22.32  34.05 

August  21.83  33.74 

September  35.07  37.65 

October  32.72 

 

 35.24 

November  26.68  28.10 

December  23.72  28.21 

     

 

 



Once the parameters are estimated they are used to compute one day-ahead out-of-

sample model-predicted option prices for each moneyness level by plugging in the parameters 

and the observed variables – such as the index level, the dividend yield, the LIBOR rate, the 

exercise price and the time to maturity - into the respective models for the following day. 

Finally, implied volatility levels are inferred from the model using the Black Scholes formula on 

the model-predicted prices as well as on the observed option prices for comparison. If the 

model is an exact description of reality, the market observed option prices’ implied volatility 

smile and the model-predicted option prices’ implied volatility smile should be the same. 

Monthly VIX levels for the year 2001 and 2002 are displayed in Exhibit 4. In 2001, June, 

September and November are months of low, high and average volatility respectively. In 2002, 

March, September and November are months of low, high and average volatility respectively. 

In order to account for various possible states of the market, six days are randomly chosen that 

belong to these six months for purposes of testing the performance of the lognormal and 

asymmetric jump option pricing models. 

 

 

 

V. RESULTS 

 

The implied volatility plots comparing the lognormal and asymmetric jump models are 

displayed in Exhibits 5 through 7. The “Black Scholes model” curve represents Black-Scholes 

implied volatility levels inferred from actual (observed) option prices, whereas the curves titled 

“lognormal model” and “asymmetric jump model” represent Black-Scholes implied volatility 

levels inferred from theoretically-computed option prices. The theoretical option prices are 

obtained using the asymmetric jump call option pricing formula derived earlier as well as the 

traditional lognormal jump call option pricing formula, along with the respective corresponding 

parameters estimated on the previous day.  

Overall the results are fairly consistent across periods of different volatility levels. For 

out-of-the-money and at-the-money options the performances of the lognormal jump and the 

asymmetric jump model are nearly identical.  However, in the case of out-of-the-money options 

the asymmetric jump model captures the shape of the smile more accurately as its implied 



volatility smile is visually much closer to the observed option prices’ volatility smile than the 

lognormal jump model. By using the asymmetric jump model instead of the traditional 

lognormal jump model one can therefore better replicate the implied volatility smile for some 

moneyness range.  

 

 

EXHIBIT  5 
Implied Volatility Smiles on days in low-volatility months 

  

 
 
 
 
EXHIBIT  6 
Implied Volatility Smiles on days in medium-volatility months 

  

 
 
 



EXHIBIT  7 
Implied Volatility Smiles on days in high-volatility months 

  

  

 

An explanation for this observation may be that while the lognormal jump model is able 

to capture the smile in the out-of-the-money range, it can only do so by calibrating the model’s 

parameters in a way that implies a non-negligible chance of a positive jump. That same positive 

jump helping the model in the out-of-the-money range can then hurt the model in the in-the-

money range if the setup does not have the ability to offset the positive jump effect with a 

distinct downward jump probability and magnitude. This inability to decrease option prices in 

the in-the-money range creates an implied volatility smile that lays too high in value. The 

asymmetric jump model is on the other hand able to decrease option prices in the in-the-money 

range while maintaining a good fit in the out-of-the money range thanks to the independent 

and precise likelihood of a downward jump. Decreasing model-predicted option values in the 

in-the-money range translates into a lower smile in that range, hence a smile that is closer to the 

observed volatility smile for options whose moneyness is above one. 

Since implied volatility plots are not as important as Dollar amounts we may want to 

ask what some of these results translate into financially. For example, for a European call option 

with an exercise price of $900, a spot index level of 1258, a risk-free rate of 6%, a dividend yield 

of 2% and 30 days to maturity, a 10% difference in volatility levels will roughly translate into a 

$2 per unit price differential, or $200 per contract. Note that this number can be even larger for 

some of the even deeper in-the-money cases observed on the graphs. When holding a large 

quantity of contracts, the impact of the pricing differential can thus become highly significant. 



Finally, note that although this study concentrates on a case of constant volatility in 

order to focus on the contribution of jumps alone, it is also possible to integrate stochastic 

volatility into the dynamics of the process in equation (1).  Incorporating additional features 

such as stochastic volatility is not being considered here as this paper focuses on the marginal 

benefits of modeling jumps in a more flexible manner. Although the constant volatility 

assumption may seem restrictive, the goal of the paper is not to identify the most general model 

possible, but rather to focus on one specific feature dear to option pricing theorists and 

demonstrate through the use of simulations and empirical testing that it can be taken to a new 

level.  

The pricing abilities of a model incorporating stochastic volatility and jumps would 

doubtlessly improve even further as asymmetric jumps are introduced in the setup, as 

demonstrated in this paper for the constant volatility case.  

 

 

VI. CONCLUSION 

 

A new setup improving the modeling of jumps in equity and currency returns is 

presented. Replacing the traditional lognormal distribution for the jump magnitude, the Beta 

and Pareto distributions are convenient to work with as the ranges of their respective random 

variables precisely meet the requirements of upward and downward jump magnitudes. The 

model is fairly easy to use as a closed-form solution is obtained for the pricing of European call 

options despite a more complex description of the security’s rate of return jump dynamics.  

 Out-of-sample tests show that using a combination of Pareto and Beta distributions 

leads to a more accurate modeling of the implied volatility smile than the traditional lognormal 

setup and thus to a more accurate pricing of the options. More generally, this new paradigm can 

benefit any option pricing model that already incorporates jumps in the underlying process but 

uses a lognormality assumption to describe the jump magnitude. 

   



APPENDIX A 
Derivation of European Call Option in Double-Jump Setting 
 

By standard argument, the European call option must satisfy the following pde: 
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Applying the transformation )](ln[)( tStL =  yields: 
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Conjecture that  1 2( , ) ( ) ( , , ) ( , , )q RC t S t e t S Ke t Sτ ττ τ τ− −= Π − Π . Plugging this form into (A-2) 

produces the Fokker-Planck forward equations for the risk-neutral probabilities 1Π and 2Π  also 

satisfied by the respective characteristic functions as shown by Heston [1993]: 
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with boundary conditions )ln(
1

Sief φ=  and )ln(
2

Sief φ=  at expiration. 

Conjecture that the solutions to (A-3) and (A-4) are of the following forms: 

LieStf φταφτ += )(
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Plugging these solutions into (A-3) and (A-4) and making use of the distributional assumptions 

for the magnitude of the up-jumps and down-jumps yields the following solutions: 
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with 1Π  and 2Π recovered from 1f  and 2f  by Fourier inversion. 

Q.E.D. 
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