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Abstract

This paper investigates a financial market in which heterogeneous investors with

linear mean-variance preferences and multiperiod planning horizons of arbitrary

finite length interact. Given subjective beliefs, market clearing prices are calculated

explicitly. The classical capital market line result of CAPM theory is extended to

the case with multiperiod planning horizons by proving that portfolios of investors

with homogeneous beliefs and identical planning horizons contain equal proportions

of risky assets. The existence of a perfect forecasting rule which generates rational

expectations is established, the properties of the induced processes of prices and

portfolios are analyzed. Numerical evidence is provided that different planning

horizons provide a natural source of clustered volatility, empirically observed in

financial data.
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1 Introduction

A typical feature of financial markets is that traders will generally have different planning

horizons when investing their wealth in assets. It is intuitively clear that the length of

the planning horizon will affect investors’ risk taking behavior and thus their portfolio

decisions. Investors with a long planning horizon are likely to invest more wealth into

risky assets than those with short horizons. In particular, institutional investors will

pursue long-term strategies rather than trying to follow a momentary trend. An open

issue is how multiperiod planning horizons affect the individual portfolio decisions, if

investors are allowed to revise their portfolio plans through the course of time. Moreover,

it is unclear what the impact of different planning horizons on the dynamics of asset

prices, asset returns, and portfolio holdings is. In view of institutional investors, it would

be interesting to have a tractable model which allows to study the effects of planning

horizons of arbitrary but finite length.

Starting with the work of Markowitz (1952) and Tobin (1958), economists have inves-

tigated portfolio decisions which, given a certain expected return, minimize the risk

of future wealth fluctuations. Based on this portfolio theory, Sharpe (1964), Lintner

(1965) and Mossin (1966) developed the famous Capital Asset Pricing Model (CAPM).

The CAPM has been extended by Stapleton & Subrahmanyam (1978) to the case in

which investors face a multiperiod rather than a single-period planning horizon. These

models, however, remain inherently static and the results depend crucially on the as-

sumption that beliefs of all investors be homogeneous and rational. All investors face

the same multiperiod planning horizon. These assumptions preclude an analysis of how

distinct planning horizons with possibly heterogeneous beliefs affect individual portfolio

decisions and how the trading behavior of investors with different planning horizons af-

fects asset prices. Furthermore, most studies of multiperiod portfolio decisions consider

an essentially static one-shot optimization, e.g., see Chen, Jen & Zionts (1971), Hakans-

son (1970, 1983), Ingersoll (1987) or Pliska (1997). Hence no analysis of asset prices

and portfolios can be conducted when portfolios may be re-optimized over time. Con-

sidering situations in which portfolio decisions are permanently revised are particularily

important for scenarios in which investors update subjective beliefs as to incorporate

new information.

The present paper addresses the above issues and is based on work of Böhm, Deutscher

& Wenzelburger (2000), Böhm & Chiarella (2000), Wenzelburger (2004), and Hillebrand

(2003). The key feature of these models is that asset prices are endogenously determined

by the demand behavior of traders. This allows for a fully explicit dynamic analysis of a

financial market where investors may be arbitrarily heterogeneous with respect to their

individual beliefs as well as their usual microeconomic characteristics like preferences,

endowments, etc. The trading behavior of all agents is described by asset demand

functions which derived from individual optimization problems. From these demand

functions an explicit temporary equilibrium map is derived determining market clearing

prices in each period. By employing the concept of a forecasting rule, the expectations

formation of all investors is made explicit. Combined with these forecasting rules, this
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yields an explicit time-one map of a so-called random dynamical system (Arnold 1998)

in which expectations feed back into the actual evolution of asset prices, portfolios, and

expectations.

In this spirit our analysis proceeds in three steps: First, we consider the individual

portfolio choice problem of a single investor with a planning horizon of arbitrary finite

length given subjective beliefs. Assuming linear mean-variance preferences, we compute

an explicit asset demand function depending on beliefs. This provides a first insight

how planning horizons of different length affect the demand behavior of investors. In a

second step, a temporary equilibrium map determining market-clearing prices is derived

from the aggregate excess demand function. The classical capital market line result of

CAPM theory is extended to the case with multiperiod planning horizons by showing

that portfolios of investors with homogeneous beliefs and identical planning horizons

contain equal proportions of risky assets while different planning horizons will generally

lead to structurally different portfolios. In a third step, the individual demand functions

and the price law are embedded into a sequential model, taking proper account of how

the individual demand behavior changes with new information and observations. By

allowing for re-optimization of portfolio decisions, we thus obtain a dynamic description

of how prices and portfolios evolve over time. Within this framework, a fully explicit

dynamic analysis of the influence of multiperiod planning horizons on portfolios and

the dynamics of asset prices and portfolios can be carried out. We show that different

planning horizons provide a natural source of clustered volatility, empirically observed

in financial data.

The remainder of this paper is organized as follows. Section 2 is concerned with the

multiperiod portfolio choice problem of investors with linear mean-variance preferences.

An explicit temporary equilibrium map describing market-clearing prices is computed.

Section 3 treats the case with homogeneous expectations. Section 4 are concerned with

the existence of forecasting rules which generate rational expectations, the dynamics of

prices and portfolios under rational expectations is studied in Section 5. Conclusions

are found in Section 6, the mathematical proof of the main theorem is placed in the

appendix.
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2 The Model

2.1 Overlapping generations of investors

Consider a financial market in which a population of overlapping generations (OLG) of

investors trades in discrete time trading periods. The set of investors in each period is

composed of J + 1 different generations. In each trading period t ∈ N, a new young

generation enters the market and trades for J+1 consecutive periods before its members

exit the market to consume terminal wealth in period t + J . Each generation will be

identified by the index j = 0, 1, . . . , J describing lifetime, i.e., the number of periods

they remain in the market until their members exit. In particular, j = J refers to the

young and j = 0 to the old generation. Each generation j consists of I types of investors

characterized by risk preferences and subjective beliefs regarding the future evolution

of the market. More precisely, a single investor in an arbitrary period is identified by

the pair (i, j) describing his type i ∈ {1, . . . , I} and his generation j ∈ {0, 1, . . . , J}.

Excluding the old generation j = 0, the set of investors trading in the market in each

period is given by I := {1, . . . , I}×{1, . . . , J}. The population structure in an arbitrary

trading period t ∈ N is depicted in Figure 1.
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Figure 1: The investors in an arbitrary trading period t.

There is a single consumption good in the economy which serves as numeraire for all

prices and payments. At the beginning of each period, any young investor (i, J) ∈ I

of type i receives an initial endowment of e(i) > 0 units of the consumption good.

These endowments may depend on the type i but are constant over time. Investors

(i, j) with j < J do not receive endowments. Assuming that the consumption good
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cannot be stored by consumers directly, each investor faces the problem of transferring

wealth from the first to the last period of life in which they consume the proceeds of

their investments. There exist K + 1 retradeable assets in the economy, indexed by

k = 0, 1, . . . ,K. The first asset k = 0 is a riskless bond which pays a constant return

R > 0 per unit invested in the previous period. The assets k = 1, . . . ,K correspond to

risky shares of firms which are traded at prices pt = (p
(1)
t , . . . , p

(K)
t )⊤ ∈ R

K of period t.

For simplicity, we abstract from dividend payments.

2.2 Decision Problem

Consider first the portfolio choice problem faced by an investor (i, j) ∈ I in an arbitrary

period t with planning horizon t + j. At the beginning of period t any investor forms

beliefs regarding future prices pt+1, . . . , pt+j which are relevant for her portfolio choices.

These beliefs are given by a subjective joint probability distribution for the random

variables pt+1, . . . , pt+j .
1 Given her beliefs, the investor’s portfolio decision will depend

on current prices as well on her wealth position in period t. We assume that the portfolio

problem in period t is solved prior to trading, i.e., before the actual price pt is observed.

Current prices will therefore enter the decision problem as a parameter p ∈ R
K . To

determine the investors initial wealth position at time t we need to distinguish between

young and non-young investors. Each young investor’s wealth is equal to his initial

endowment e(i). The wealth of any non-young investor (i, j) ∈ I, j < J at time t

corresponds to the value of his portfolio (x
(i,j+1)
t−1 , y

(i,j+1)
t−1 ) from the previous period at

prices at prices of period t. We therefore set

w
(ij)
t =

{

e(i) j = J

Ry
(i,j+1)
t−1 + p⊤t x

(i,j+1)
t−1 j = 1, . . . , J − 1

(1)

for initial wealth in period t. Note that the wealth of a non-young investor (i, j), j < J ,

depends on prices.

In order to obtain explicit demand schedules, we make specific assumptions regarding

investors’ preferences and beliefs. Investors beliefs in any period t are assumed to be

given by multivariate a normal distribution for future prices pt+1, . . . , pt+j ∈ R
K . Let

MKj, denote the set of all symmetric, positive definite (Kj) × (Kj) matrices. Recall

that a (multivariate) normal distribution with parameters (µ,Σ) ∈ R
Kj ×MKj is given

by the density function

fKj(q;µ,Σ) := (2π)−
N
2 [det Σ]−

1
2 exp

{

−
1

2
(q − µ)⊤Σ−1(q − µ)

}

, q ∈ R
Kj, (2)

cf. Tong (1990). As a further technical restriction, let M⋆
Kj ⊂ MKj denote the class of

all symmetric, positive definite Kj × Kj matrices which satisfy a certain invertibility

condition which will be made explicit in Assumption 3, Appendix A. We are now ready

to specify the assumptions on investors who maximize utility of terminal wealth.

1 For notational simplicity we use the same notation for random variables and their realizations.
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Assumption 1

Preferences and beliefs of investor (i, j) ∈ I are characterized by the following:

1. Preferences of an investors of type i are described by an exponential utility function

u(w; a(i)) := − exp
{

−a(i)w
}

, w ∈ R, (3)

where a(i) > 0 denotes risk-aversion.

2. The subjective beliefs of investor (i, j) ∈ I at time t regarding prices pt+1, . . . , pt+j

are given by a normal distribution on R
Kj with density function of the form (2)

described by the first two moments

µ
(ij)
t :=







µ
(i)
t,t+1
...

µ
(i)
t,t+j







∈ R
Kj, Σ

(ij)
t :=







Σ
(i)
t,11 . . . Σ

(i)
t,1j

...
. . .

...

Σ
(i)
t,j1 . . . Σ

(i)
t,jj






∈ M⋆

Kj. (4)

Here, µ
(ij)
t,t+s := E

(ij)
t [pt+s] denotes investor (i, j)’s subjective mean value for prices

pt+s, s = 1, . . . , j conditional on information available at time t corresponding to

the density fKj(·, µ
(ij)
t ,Σ

(ij)
t ). The matrix

Σ
(ij)
t,ss′

:= E
(ij)
t

[(

pt+s − E
(ij)
t [pt+s]

)(

pt+s′ − E
(ij)
t [pt+s′ ]

)⊤
]

denotes investor (i, j)’s subjective conditional variance-covariance matrix between

the prices pt+s, pt+s′ , s, s
′ = 1, . . . , j corresponding to fKj(·, µ

(ij)
t ,Σ

(ij)
t ).

Assumption 1 states that all investors of the same type are characterized by the same

risk aversion. The subjective beliefs of investor (i, j) ∈ I at time t are parameterized by

subjective means µ
(ij)
t ∈ R

Kj and subjective variance-covariance-matrices Σ
(ij)
t ∈ M⋆

Kj

for future prices. Assumption 3, Appendix A shows that the restriction to M⋆
Kj is

trivially satisfied if Σ
(i)
ss′

= 0 for s 6= s′ and hence if correlations between prices of different

periods are sufficiently small. For simplicity, we have assumed in Assumption 1 that any

non-young investor (i, j) ∈ I with a planning horizon j < J holds the same expectations

for prices pt+1, . . . , pt+j as the young investor (i, J). Formally, this means that her

beliefs are given by the marginal distributions2 of the respective young investor (i, J).

Economically, this assumption can be justified by the presumption that all investors

of type i employ the same financial mediator. As a consequence, expectations of all

investors at time t are completely described by the moments of the respective young

generations.

2 Mathematically, the subjective probability distribution of a non-young investor (i, j) is the projection

of the the probability distribution of the corresponding young investor (i, J). By the properties of

the multivariate normal distribution (e.g., see Tong 1990) this distribution is again normal with

corresponding projected moments.
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Consider the portfolio choice problem faced by an arbitrary investor (i, j) ∈ I in an

arbitrary but fixed period, say t = 0. For simplicity of notation, we set

µ :=






µ1
...

µj




 ∈ R

Kj Σ :=






Σ11 . . . Σ1j

...
. . .

...

Σj1 . . . Σjj




 ∈ M⋆

Kj (5)

and suppress indices referring to the decision period t = 0 for a moment. Given para-

metric prices p and initial wealth w defined by (1) assume that the investor chooses a

self-financing trading strategy

H = (x0, y0, . . . , xj , yj)

consisting of a list of portfolios (x0, y0) ∈ R
K × R and planned portfolios

xs = xs(p1, . . . , ps) ∈ R
K , ys = ys(p1, . . . , ps) ∈ R, s = 1, . . . , j − 1,

such w = y0 + p⊤x0 and for s = 1, . . . , j − 1 and each possible realization of prices

p1, . . . , ps

ys + p⊤s xs = Rys−1 + p⊤s xs−1, s = 1, . . . , j − 1,

Wj = Ryj−1 + p⊤j xj−1.
(6)

Observe that for each s = 1, · · · , j − 1, planned portfolios (xs, ys) are mappings that

depend on prices p1, . . . , ps.
3

Let H (p,w) denote the set of all self-financing strategies satisfying (6) with parametric

prices p and initial wealth w at time t = 0. Setting ps
1 := (p1, . . . , ps), the choice of a

particular strategy H ∈ H (p,w) induces a random variable Wj(H, p
j
1) := Ryj−1(p

j−1
1 )+

p⊤j xj−1(p
j−1
1 ) which describes terminal wealth attained at the end of period j. Assuming

that given his beliefs (µ,Σ) ∈ R
Kj ×M⋆

Kj, parametric prices p ∈ R
K and wealth w ∈ R

the investor maximizes the expected utility of terminal wealth his optimization problem

at t = 0 reads

max

{∫

RKj

u
(
Wj(H, p

j
1); a

(i)
)
fKj(p

j
1, µ,Σ) dpj

1 s.t. H ∈ H (p,w)

}

. (7)

Note that the investor is allowed to update beliefs and reoptimize planned portfolio

decisions in any subsequent period. A solution to the optimization problem (7) will

determine the investors’ individual asset demand functions at time t = 0 as a function

of prices, wealth and beliefs. Using a dynamic programming approach we show in

Appendix A that the restriction of the subjective covariance-variance matrices Σ to the

set M⋆
Kj ⊂ MKj suffices to obtain well-defined asset demand functions. These demand

functions are given in the following Theorem.

3 This definition of a self-financing trading strategy is consistent with Pliska (1997) who defines a

trading strategy as an adapted stochastic process.
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Theorem 1

Let Assumption 1 be satisfied. Then for each planning horizon j = 1, . . . , J the investor’s

asset demand function derived from (7) given her beliefs (µ,Σ) ∈ R
Kj ×M⋆

Kj and risk

aversion risk aversion a(i) takes the form:

ϕ(ij)(p, µ,Σ) :=
1

Rj−1a(i)
Π⊤

j Σ−1
(
µ− ΠjRp

)
, p ∈ R

K . (8)

where Πj :=
[
IK , . . . , R

j−1IK
]⊤

∈ R
Kj×K, j = 1, . . . , J .

The proof of Theorem 1 is given in Appendix A. Observe that the demand for risky

assets (8) is independent of the investor’s initial wealth. For j = 1 and (µ,Σ) ∈ R
K×MK

we obtain from (8)

ϕ(i1)(p, µ,Σ) =
1

a(i)
Σ−1 (µ−Rp) . (9)

Hence, for a 1-period planning-horizon, we obtain the classical demand function of an

investor with linear mean-variance preferences (e.g., see Böhm & Chiarella 2000).

For j = 2 and moments (µ,Σ) ∈ R
2K ×M⋆

2K given by (5) the demand function (8) can

be written as

ϕ(i2)(p, µ,Σ) =
1

Ra(i)

[

IK RIK

]
[

Σ11 Σ12

Σ21 Σ22

]−1(

µ1 −Rp

µ2 −R2p

)

. (10)

The restriction Σ ∈ M⋆
2K ⊂ M2K is in this case equivalent to the condition that the

matrix A1 := RIK − Σ21Σ
−1
11 be invertible (see Assumption 3 in Appendix A). In

particular, this holds if investors assume future prices to be uncorrelated, i.e. Σ12 =

Σ⊤
21 = 0. In this special case the demand function (10) takes the form

ϕ(i2)(p, µ,Σ) =
1

Ra(i)

(

Σ−1
11 (µ1 −Rp) +

[
1

R2
Σ22

]−1( 1

R
µ2 −Rp

))

.

In this case the the asset demand function is the sum of two asset demand functions

of the form (9) with adjusted risk aversion a(i)R, moments (µ1,Σ11), and discounted

moments
(

1
R
µ2,

1
R2 Σ22

)
.

In the sequel we assume that in each period t ∈ N each investor (i, j) ∈ I, j > 0, solves

an optimization problem of the form (7) given her beliefs (µ
(ij)
t ,Σ

(ij)
t ) ∈ R

(Kj) ×M⋆
Kj,

her wealth defined by (1) and risk aversion a(i) > 0. Utilizing Theorem 1 her asset

demand function at time t can be written as

ϕ(ij)(p, µ
(ij)
t ,Σ

(ij)
t ) :=

1

a(ij)
Θ

(ij)−1
t

[
θ
(ij)
t −Rp

]
, p ∈ R

K , (11)

where we use the abbreviations

Θ
(ij)
t :=

[

Π⊤
j Σ

(ij)−1
t Πj

]−1
(12)

θ
(ij)
t := Θ

(ij)
t Π⊤

j Σ
(ij)−1
t µ

(ij)
t

a(ij) := Rj−1a(i).

Observe that each Θ
(ij)
t is symmetric and positive definite.
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Corollary 1

Under the hypothesis of Theorem 1, the asset demand function (11) takes the form

ϕ(ij)(p, µ
(ij)
t ,Σ

(ij)
t ) =

j
∑

s=1

D
(ij)
t,s µ

(ij)
t,t+s − RΘ

(ij)−1
t p, p ∈ R

K , (13)

where D
(ij)
t,s ∈ R

K×K and D
(ij)
t =

[

D
(ij)
t,1 , . . . ,D

(ij)
t,j

]

:= Π⊤
j Σ

(ij)−1
t ∈ R

K×Kj.

The consequences of Theorem 1 seem quite remarkable. It establishes a structural equiv-

alence between the demand functions of investors with a one period planning horizon

and investors with a multiperiod planning horizon of arbitrary finite length. In prin-

ciple, subjective expectations of an investor with a multiperiod planning horizon can

always be transformed in such a way that his demand behavior is indistinguishable from

the behavior of an investor with a one-period planning horizon. Despite this fact, it

turns out that many interesting implications arise due to the intrinsic heterogeneity of

different planning horizons some of which are addressed in the present paper.

2.3 Price formation

In order to determine market clearing prices, let x̄ ∈ R
K
+ denote the total stock of

risky assets. Assume that in each trading period t there is another group of so-called

noise-traders who purchase or sell the random quantity ξt ∈ R
K in the market.4

Assumption 2

The portfolios of noise traders are given by an R
K-valued stationary ergodic stochastic

process {ξt}t∈N on a the probability space (Ω,F ,P), which is adapted to the filtration

{Ft}t∈N such that each ξt is Ft measurable.

Market clearing in period t requires the existence of a price vector pt ∈ R
K such that

aggregate demand including noise traders equals the total stock of risky assets. Given

the individual demand functions (11) for risky assets and the quantity of noise traders

ξt, the market-clearing condition of period t reads

∑

(i,j)∈I

1

a(ij)
Θ

(ij)−1
t

[
θ
(ij)
t −Rpt

]
+ ξt

!
= x̄. (14)

Solving for pt, given any list of subjective beliefs
(

µ
(ij)
t ,Σ

(ij)
t

)

(i,j)∈I

and ξt, the market

clearing prices are defined by a map

pt = S
(

(µ
(ij)
t ,Σ

(ij)
t )(i,j)∈I, ξt

)

:=
∑

(i,j)∈I

Γ
(ij)
t θ

(ij)
t − Γt[x̄− ξt], (15)

4 Noise traders will be thought of as traders whose portfolio decisions are not captured by a standard

microeconomic decision model. Alternative interpretations as given in (De Long, Shleifer, Summers

& Waldmann 1990), p. 709 apply as well.
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where5

Γt :=
1

R

[
∑

(i,j)∈I

1

a(ij)
Θ

(ij)−1
t

]−1

, Γ
(ij)
t :=

1

a(ij)
Γt Θ

(ij)−1
t . (16)

The temporary equilibrium map (15) defines the economic law S for our multiperiod

version of the CAPM which determines market-clearing prices in each trading period as a

function of agents’ expectations for future prices. The mapping S is of Cobweb-type since

it contains essentially expectations for prices as arguments. Since these expectations

refer to future periods t+ 1, . . . , t+ J , the law contains an expectational lead of length

J . Apart from these expectational leads, the structure (15) is the same as in the case

of investors with heterogeneous expectations and a one-period planning horizon studied

in Wenzelburger (2004). In the present setup, heterogeneity may enter through possibly

diverse beliefs as well as through the different planning horizons of investors belonging

to different generations.

Realized portfolios of investors (i, j) ∈ I after trading in period t are given by

x
(ij)
t = ϕ(ij)(pt, µ

(ij)
t ,Σ(ij))

y
(ij)
t =

{

e(i) − p⊤t x
(ij)
t , if j = J

Ry
(i,j+1)
t−1 + p⊤t [x

(i,j+1)
t−1 − x

(ij)
t ], if j = 1, · · · , J − 1.

(17)

3 Homogeneous expectations

In the following section we will show that the heterogeneous structure of the price law

(15) is maintained even if expectations of investors are homogeneous. To study the

impact of different planning horizons on portfolios and prices, the section focuses on

the case of homogeneous expectations. This means that the beliefs of investor (i, j) ∈ I

are independent of her type i and may depend only on the length j of his planning

horizon. This implies in particular that all investors within one generation hold identical

expectations. In the sequel we will therefore write (µ
(j)
t ,Σ

(j)
t ) ∈ R

Kj × M⋆
Kj, for the

beliefs of generation j, j = 1, . . . , J in period t instead of (µ
(ij)
t ,Σ

(ij)
t ). As a consequence,

the parameters (12) of the individual demand function (11) of investor (i, j) ∈ I in period

t may be rewritten as

Θ
(j)
t :=

[

Π⊤
j Σ

(j)−1
t Πj

]−1
, and θ

(j)
t := Θ

(j)
t Π⊤

j Σ
(j)−1
t µ

(j)
t , i = 1, . . . , I. (18)

More precisely, the demand functions of any two investors (i, j), (i′, j) ∈ I with homo-

geneous expectations satisfy the relation

ϕ(ij)(p, µ
(j)
t ,Σ

(j)
t ) =

1

a(i)Rj−1
Θ

(j)−1
t [θ

(j)
t −Rp] =

a(i′)

a(i)Rj−1
ϕ(i′j)(p, µ

(j)
t ,Σ

(j)
t ).

The demand functions for risky shares of investors belonging to the same generation are

thus collinear by a factor determined by the possibly different risk aversions a(i) and

5 Note that by (12), all matrices Θ
(ij)
t are positive-definite and hence invertible. Since the sum of

positive definite matrices is again positive definite, Γt and the Γ
(ij)
t are well-defined.
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a(i′). This implies that the proportions of shares held by investors of the same generation

are identical. Let α :=
(

1
a(1) + · · · + 1

a(I)

)

> 0 denote the aggregate risk tolerance, pt be

the market-clearing price in period t, and

x
(j)
t :=

I∑

i=1

ϕ(ij)(pt, µ
(j)
t ,Σ

(j)
t ) =

α

Rj−1
Θ

(j)−1
t [θ

(j)
t −Rpt] (19)

denote the aggregate generational portfolio held by generation j after trading in period

t. Then we have proven the following result.

Theorem 2

Under homogeneous expectations, the risky portfolio x
(ij)
t held by an investor (i, j) ∈ I

after trading in period t ∈ N is given by a constant share of the aggregate generational

portfolio (19) of generation j, such that

x
(ij)
t =

1
a(i)

α
x

(j)
t .

This share is determined by the individual risk tolerance 1
a(i) relative to the aggregate

risk tolerance α.

Theorem 2 is a generalization of the famous capital market line result from classical

CAPM theory to the case with multiperiod planning horizons. Under homogeneous

expectations, investors will hold a multiple of a generational portfolio rather than the

market portfolio x̄. In view of (19), generational portfolios corresponding to differ-

ent planning horizons will, in general, not be collinear. Therefore, under homogeneous

expectations, planning horizons of distinct lengths will lead to structurally distinct port-

folio holdings.

4 Unbiased forecasting rules

The price law (15) determines market clearing prices in each period given the beliefs

of all investors and the demand of noise traders. To obtain a complete description of

the dynamic evolution of prices and portfolios we need to specify how investors form

their expectations based on the available information. In this regard, the existence of

forecasting rules generating expectations which are rational in some sense is of particular

importance which will be studies in this section.

Following Wenzelburger (2004), we develop an unbiased forecasting rule that generates

rational expectations for investors of type I. The notion of rational expectations used

here requires that forecast must be unbiased in the sense that in each trading period the

subjective expected values for future prices coincide with the respective true conditional

expectations.

Multiperiod CAPM, Version: July 6, 2004, Page: 10



4.1 The general case

Assume that investors use a no-updating forecasting rule of the following form. The

idea of such a forecasting rule is that in any period t, the first J − 1 forecasts will not

be updated (see Wenzelburger (2001)) such that

µ
(I)
t,t+j = µ

(I)
t−1,t+j , j = 1, . . . , J − 1. (20)

Using the price law (15), then µ
(I)
t,t+J will be chosen such that

Et−1[pt] =
∑

(i,j)∈I

Γ
(ij)
t θ

(ij)
t − Γt

[
x̄− Et−1[ξt]

] !
= µ

(I)
t−1,t. (21)

Suppose for a moment that the forecasts µ
(I)
t,t+J can be chosen such that (21) holds.

Then Et−1[pt − µ
(I)
t−1,t] = 0 and the no-updating condition implies that the conditional

forecast errors of all forecasts µ
(I)
t−j,t, j = 1, . . . , J for pt vanish, that is,

Et−1[pt − µ
(I)
t−j,t] = 0, j = 1, . . . , J.

Moreover, by the law of iterated expectations

Et−j [pt − µ
(I)
t−j,t] = Et−j

[
Et−1[pt − µ

(I)
t−j,t]

]
= 0, j = 1, . . . , J.

The problem of obtaining unbiased forecasts is therefore reduced to solving (21). This

can be achieved as follows. Taking conditional expectations of the market-clearing con-

dition (14), we have

ϕ(IJ)
(
Et−1[pt], µ

(I)
t ,Σ

(I)
t

)
+

∑

(i,j)6=(I,J)

1

a(ij)
Θ

(ij)−1
t

[
θ
(ij)
t −REt−1[pt]

]
+ Et−1[ξt] − x̄ = 0.

Therefore, Condition (21) is equivalent to

ϕ(IJ)(µ
(I)
t−1,t, µ

(I)
t ,Σ

(I)
t ) +

∑

(i,j)6=(I,J)

1

a(ij)
Θ

(ij)−1
t

[
θ
(ij)
t −Rµ

(I)
t−1,t

]
+ Et−1[ξt]− x̄ = 0. (22)

In view of the individual demand functions (11), let

ζt :=
∑

(i,j)6=(I,J)

1

a(ij)
Θ

(ij)−1
t

[
θ
(ij)
t −Rµ

(I)
t−1,t

]
+ Et−1[ξt] (23)

denote the expected aggregate portfolio of all investors (i, j) ∈ I except investor (I, J).

Replacing (23) in Condition (22), we see that the condition

ϕ(IJ)(µ
(I)
t−1,t, µ

(I)
t ,Σ

(I)
t ) + ζt − x̄ = 0 (24)

is equivalent to the original Condition (21). Using Corollary 1 we may solve (24) for

µ
(I)
t,t+J to get

µ
(I)
t,t+J = D

(IJ)−1
t,J

[

x̄ − ζt −

J−1∑

s=1

D
(IJ)
t,s µ

(I)
t,t+s + RΘ

(IJ)−1
t µ

(I)
t−1,t

]

.
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An unbiased forecasting rule von investors of type I are thus given by







µ
(I)
t,t+j = µ

(I)
t−1,t+j , j = 1, . . . , J − 1.

µ
(I)
t,t+J = ψ

(I)
∗

(

µ
(I)
t−1,Σ

(IJ)
t , ζt

)

:= D
(IJ)−1
t,J

[

x̄ − ζt −
∑J−1

s=1 D
(IJ)
t,s µ

(I)
t−1,t+s + RΘ

(IJ)−1
t µ

(I)
t−1,t

]

.

(25)

Inserting the unbiased forecasting rule into the price law (15), we obtain the system of

equations







pt = µ
(IJ)
t−1,t + Γt

[
ξt − Et−1[ξt]

]

ζt =
∑

(i,j)6=(I,J)

1

a(ij)
Θ

(ij)−1
t

[
θ
(ij)
t −Rµ

(I)
t−1,t

]
+ Et−1[ξt]

µ
(I)
t,t+j = µ

(I)
t−1,t+1, j = 1, . . . , J − 1

µt,t+J = D
(IJ)−1
t,J

[

x̄ − ζt −
∑J−1

s=1 D
(IJ)
t,s µ

(I)
t−1,t+s + RΘ

(IJ)−1
t µ

(I)
t−1,t

]

(26)

that determine the asset prices of period t under rational expectations for investors of

type I, given the beliefs of all investors (i, j) ∈ I
′.

4.2 The case J = 2

For simplicity of exposition, consider to the case J = 2 in which the population consists of

investors who trade for three consecutive periods in the market. In the sequel, generation

j = 2 will therefore be referred to as the young, j = 1 as the middle-aged and j = 0 as

the old generation, respectively. Furthermore, we shall confine the analysis to the case

with homogeneous expectations and assume that second moment beliefs of all agents

are constant over time. In each period t ∈ N beliefs are therefore completely described

by the expected values of both generations j = 1, 2, given by

µ
(2)
t =

(

µt,t+1

µt,t+2

)

∈ R
2K , and µ

(1)
t = µt,t+1 ∈ R

K , (27)

and by constant variance-covariance matrices

Σ
(2)
t = Σ(2) =

[

Σ11 Σ12

Σ21 Σ22

]

∈ M⋆
2K and Σ

(1)
t = Σ(1) = Σ11 ∈ M⋆

K . (28)

In the sequel, the expected values µ
(j)
t ∈ R

Kj, j = 1, 2 will be referred to as the forecast

made by generation j. Defining from (28) the parameters A1 := RIK − Σ21Σ
−1
11 and

Σ2 := Σ22 − Σ21Σ
−1
11 Σ12 the price law (15) for J = 2 becomes

pt = α
R

ΓA⊤
1 Σ−1

2 µt,t+2 +
[

1
R
IK − αΓA⊤

1 Σ−1
2

]
µt,t+1 − Γ[x̄− ξt], (29)

where the matrix Γt ≡ Γ given in (16) is constant over time and reads

Γ = 1
α

[

RΘ(1)−1 + Θ(2)−1
]−1

.
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Given the price law (29), unbiased expectations require that in each period t the fore-

cast µt−1,t made at time t − 1 for prices in t must coincide with the true conditional

expectation, i.e.,

Et−1[pt] = α
R

ΓA⊤
1 Σ−1

2 µt,t+2 +
[

1
R
IK − αΓA⊤

1 Σ−1
2

]
µt,t+1 − Γ

[
x̄− Et−1[ξt]

]

!
= µt−1,t, (30)

where again Et−t [·] denotes the expectations operator taken with respect to the σ-field

Ft−1. The no-updating-condition reads

µt,t+1 = µt−1,t+1 ∀t ∈ N. (31)

Inserting (31) into (30) and solving for µt,t+2 yields an unbiased forecasting rule

µt,t+2 = ψ⋆(µt−1,t, µt−1,t+1,Et−1 [ξt]) (32)

:=
[
RIK − 1

α
Σ2A

⊤
1 Γ−1

]
µt−1,t+1 + R

α
Σ2A

−⊤
1 Γ−1µt−1,t

+R
α
Σ2A

−⊤
1

[

x̄− Et−1[ξt]
]

.

The unbiased forecasting rule (32) is a linear function of the previous forecast µ
(2)
t−1 as

well as of the conditional expectation Et−1 [ξt] and is independent of previous realizations

of prices. Condition (30) is therefore satisfied for all times t if young agents determine

their forecast according to (31) and (32). Observe that applying the unbiased forecasting

rule (32) requires knowledge not only of the previous forecast µ
(2)
t−1 but also of the

true conditional expectation Et−1 [ξt] of the random variable ξt. In addition to that,

knowledge of some of the market fundamentals (stock of assets, aggregate risk-tolerance)

is required to apply (32).

Inserting (32) and (31) into the price law (29), one obtains a random difference equation

(Arnold 1998)






pt = µt−1,t + Γ [ξt − Et−1[ξt]]

µt,t+1 = µt−1,t+1

µt,t+2 = R
α
Σ2A

−⊤
1 µt−1,t +

[
RIK − 1

α
Σ2A

−⊤
1 Γ−1

]
µt−1,t+1

+ R
α
Σ2A

−⊤
1

[
x̄− Et−1[ξt]

]

(33)

which describes the evolution of expectations and prices in the three-period CAPM

under unbiased homogeneous expectations and constant second moment beliefs

Observe that prices at time t are determined from the pervious forecast µt−1,t and

an additive deviation from the noise traders’ transactions. Using (17), the aggregate

generational portfolios x
(j)
t , j = 1, 2 are

x
(1)
t :=

I∑

i=1

ϕ(i1)(µt,t+1, pt) = αΘ(1)−1(µt,t+1 −Rpt). (34)

and, using the market clearing condition

x
(2)
t :=

I∑

i=1

ϕ(i2)(µt,t+1, ψ⋆ (µt−1,t, µt,t+1,Et−1 [ξt]) , pt) = x̄− ξt − x
(1)
t . (35)
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The portfolios (34) and (35) confirm above’s observation, that under homogeneous un-

biased expectations the portfolios held by different generations j = 1, 2 will in general

not be collinear.

5 Evolution of asset prices under unbiased expectations

Since the unbiased forecasting rule (32) contains no past prices as arguments the evolu-

tion of expectations in (33) decouples completely from the evolution of the price process.

The qualitative behavior of the expectations process is crucially influenced by the noise

traders’ portfolios process {ξt}t∈N. In the particular case in which the noise {ξt}t∈N is

iid one has Et−1 [ξt] = E[ξt] = ξ̄ for all t ∈ N. In this case the dynamic evolution of

beliefs will be described by a deterministic dynamical system and only the price process

will be stochastic.

To analyze the stability of the dynamical system (33), it suffices to consider the process

{µ
(2)
t }t∈N of forecasts generated by the second two equations in (33). These form an

affine-linear random difference equation with a (block) coefficient matrix

Λ :=

[
0 IK

R
α
Σ2A

−T
1

[
RIK − 1

α
Σ2A

−T
1 Γ−1

]

]

∈ R
2K×2K . (36)

The long-run behavior of the random difference equation (33) is described by random

attractors which is the random analogue of an attractor of a deterministic system (see

Arnold 1998, p. 483). Each path starting from the corresponding domain of attraction

will then eventually end up on such an attractor. Typical candidates for these special

orbits are generated by asymptotically stable random fixed points.6 A random fixed

point may be seen as a special solution to the difference equation (33) that induces a

stationary and ergodic process. Loosely speaking, asymptotic stability of a random fixed

point means that for almost all noise paths {ξt}t∈N, all paths starting from sufficiently

close initial conditions eventually converge to paths of the random fixed point and after

sufficiently long time be indistinguishable from the paths of the random fixed point.

The following theorem provides conditions under which a globally asymptotically stable

random fixed point obtains.

Theorem 3

Let Assumption 2 on the noise process {ξt}t∈N be satisfied. In addition, assume that all

eigenvalues of the coefficient matrix Λ ∈ R
2K×2K defined in (36) are smaller than one

in modulus, i.e. χ(λ) := det(Λ−λI2K) 6= 0 ∀λ ∈ C with |λ| ≥ 1. Then the expectations

process defined by (33) possesses a unique random fixed point {µ⋆
t }t∈N which is globally

asymptotically stable.

The proof of Theorem 3 follows directly from Arnold (1998), Corollary 5.6.6. From the

definition of the coefficient matrix (36) it follows that stability of the random fixed point

6 In classical terminology, a random fixed point of (33) corresponds to a ‘steady state solution’ of a

linear stochastic system, see Hannan & Deistler (1988, Chap. 1).
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is essentially determined by the entries of the subjective variance-covariance matrix (28)

and the safe rate R > 0. This result imposes further restrictions on the class of admissible

second moment beliefs to ensure stability under homogeneous unbiased expectations.

Assuming that the conditions given in Theorem3 are satisfied, the long run behavior of

(33) will be described by a stationary stochastic process with constant (unconditional)

moments. Moreover, exploiting ergodicity, the realizations observed along a particular

sample path can be used to estimate the moments of the invariant distribution associated

with the random fixed point.

To obtain further insight into the nature of the price process in (33), consider the case

with a single risky asset K = 1. In this case, the block matrix entries of the variance-

covariance matrices in (28) reduce to scalars. Using lowercase letters for these entries,

(28) is written as

Σ(2) =

[

σ11 σ12

σ12 σ22

]

∈ M2, (37)

and the corresponding parameters as

a1 = R−
σ12

σ11
and σ2 = σ22 −

σ2
12

σ11
. (38)

The coefficient matrix (36) reads Λ =

[

0 1

−Rλ2 R+ λ2

]

with

−λ2 :=
(1 +R)σ2

Rσ11 − σ12
+ a1 =

(1 +R)(σ22σ11 − σ2
12) + (Rσ11 − σ12)

2)

(Rσ11 − σ12)σ11

The eigenvalues of Λ are λ1 = R and λ2. Due to the assumption Σ(2) ∈ M⋆
2 we have

a1 6= 0 and therefore λ2 < 0 ⇐⇒ a1 > 0. This yields the following corollary to Theorem

3.

Corollary 2

ForK = 1 the random difference equation (33) possesses a unique globally stable random

fixed if and only if

(i) R < 1, (ii)
(1 +R)(σ22σ11 − σ2

12) + (Rσ11 − σ12)
2

(Rσ11 − σ12)σ11

{

< 1, if R > σ12
σ11

> −1, if R < σ12
σ11

.

Condition (i) in Corollary 2 parallels Theorem 3.2 in (Böhm & Chiarella 2000) for the

case with a one-period planning horizon (J = 1). In addition to that, Condition (ii)

imposes further assumptions on the subjective variance-covariance matrices to ensure

asymptotic stability of (33) in the multiperiod case. Namely, σ22 must be small in

relation to σ11.
7 Stability of the system (33), requires moreover a safe rate R which is

7 It may seem reasonable to choose σ22 = σ11 such that investors hypothesize a constant variance of

the price process over time. This, however, would lead to an unstable price process.
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smaller than one. At first sight this may seem quite unrealistic, although it should be

stressed that R denotes a real rather than a nominal rate of return.

For our numerical investigation we choose the following parameters. For the process

{ξt}t∈N describing noise traders’ portfolios we assume a stable AR(1)-process of the

form

ξt = γ(0) + γ(1)ξt−1 + γ(2)εt. (39)

The process {εt}t∈N of innovations consists of uncorrelated random variables drawn

from a standard normal distribution such that E [εt] = 0, V [εt] = 1 for all t ∈ N and

E [εtεs] = 0, t 6= s. Since the stock of risky assets was set to x̄ = 100, the parameters

γ(h), h = 0, 1, 2 were chose such that the portfolios of noise traders take positive values

between 0 and 100. All parameters are displayed in the following Table 1.

Parameter Value Description Parameter Value Description

α 50 Aggr.risk tolerance γ(1) 0.9 AR-parameter

σ11 5 Variance pt+1 γ(2) 2.5 AR-parameter

σ22 1.875 Variance pt+2 R 0.99 Safe rate

σ12 2.5 Covariance pt+1, pt+2 x̄ 100 Stock of assets

γ(0) 5 AR-parameter p0 60 Initial price

Table 1: Parameter set.

70

52.5

35

17.5

0

800 850 900 950 1000

ξt

t

Figure 2: Time series window with noise trader portfolios

Figure 2 depicts a typical realization of the noise process {ξt}t∈N, which describes the

noise traders’ portfolios while Figure 3 illustrates an asymptotically stable random fixed

point as follows. Using the same realization of the noise process displayed in Figure 2,

Figure 3 displays three different time series corresponding to three different initial values

µ1
0 = 50, µ2

0 = 60 and µ3
0 = 70 of the expectations process {µt−1,t}t∈N. Independently of
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Figure 3: Convergence of expectations for alternative initial values.

these initial conditions, all three time series converge to the same path within the first

500 iterations.

The next two figures portray the dynamic behavior of the price process of the risky

asset. Figure 4 shows the induced sample path, the corresponding empirical density

defined by relative frequencies is depicted in Figure 5. The latter is based on a length

of iteration of T = 106. The associated empirical moments are summarized in the table

below.

70

67.5

65

62.5

60

800 850 900 950 1000

pt

t

Figure 4: Time series window with the price process

Prices are strictly positive taking values in the interval [60, 70]. As an important ob-

servation, note that the volatility of the price process appears not to be constant over

time but in some regions (t ∈ [800, 840], t ∈ [920, 1000]) appears to be significantly

greater than in other regions (t ∈ [840, 870] ,t ∈ [890, 910]). This feature was observed

throughout all simulations carried out and is very much in line with empirical observa-

tions suggesting that the conditional variance of the price process is time-dependent and

the process undergoes phases of high volatility followed by phases with low volatility
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Figure 5: Empirical density/frequencies of prices

Statistic Estimate Statistic Estimate

Mean 63.1962 Variance 3.78956

Std.deviation 1.94668 Skewness -0.0189265

(volatility-clustering). Hence it seems that our simple multiperiod model is capable of

replicating a stylized fact of empirically observed in financial data.

The following Figures 6–8 show the evolution of portfolios of the two generations j = 1, 2

and of noise traders. First observe that young investors hold throughout a larger quantity

of the risky asset than the middle-aged generation, confirming the result established

above. In addition to that, one observes that volatility in the portfolios of noise traders

is fully absorbed by a movement in the portfolios of young agents into the opposite

direction. However, portfolios of young investors seem to fluctuate significantly more

than the noise process. Furthermore, one again observes the phenomenon of clustered

volatility in the portfolios of the two generations. This holds in particular for the

portfolios of middle-aged investors belonging to generation j = 1.

We finish this section with Figure 9 by displaying a time series of risky returns {rt}t∈N

with rt := pt−pt−1

pt−1
induced by the price process. As in empirical return series, we again

find strong volatility clustering.

6 Conclusions

We developed a fully explicit and dynamic model of a financial market in which investors

with different planning horizons of arbitrary finite length interact. An innovative feature

of the models is that investors are allowed to reoptimize their portfolios through the
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Figure 6: Portfolios of young and middle-aged investors and noise traders.
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Figure 7: Time series window with portfolios of young investors.
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Figure 8: Time series window with portfolios of middle-aged investors.
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Figure 9: Time series window with asset returns.

course of time until they leave the market. In addition to possibly diverse beliefs, this

model allows to investigate the impact of different planning horizons on asset prices,

returns, and portfolios. Introducing the notion of a generational portfolio, we extended

the notion of a market portfolio and showed that traders with different planning horizons

will generally hold different portfolios even if expectations are homogeneous. Moreover,

we provided numerical evidence that different planning horizons account for volatility

clustering in time series of asset prices, returns and portfolios. It would be interesting

to now what mean-variance efficient portfolios look alike in the presence of multiperiod

planning horizons and whether the results on their performance Böhm & Wenzelburger

(2002) can be generalized.
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A Appendix

A.1 Proof of Theorem 1.

Consider the decision problem (7) of investor (i, j) ∈ I in period t = 0, with planning

horizon j > 0. Since the case with a one-period planning horizon (j = 1) is well-

understood (e.g., see Ingersoll 1987) resulting in the demand function (9), we assume

j > 1. For notational convenience, the index (i, j) as well as the time index t = 0 will

be omitted in the sequel. Expectations at time t = 0 for prices p1, . . . , pj are given by a

joint multivariate normal distribution characterized by the first two moments given in

(5). In order to solve the decision problem, we need to impose certain restrictions on

variance-covariance matrices (5). Setting Σj
1 := Σ, for each s = 2, . . . , j we partition

the matrix Σs
1 into Σs

1 =

[

Σs−1
1 C⊤

s

Cs Σss

]

with Cs := [Σs,1 . . .Σs,s−1] ∈ R
K×K(s−1) and

define the following parameters

Σs := Σss − Cs [Σs−1
1 ]−1C⊤

s ∈ MK (40)

Bs =
[

B(s−1)
s . . . B(1)

s

]

:= Cs

[
Σs−1

1

]−1
∈ R

K×K(s−1),

where B
(h)
s ∈ R

K×K, h = 1, . . . , s − 1. Note that each Σs in (40) is well defined,

symmetric, and positive definite, cf. Ouellette (1981, Corollary 3.1, p. 208). With the

above definitions the following Lemma describes a factorization of the joint probability

distribution into marginal and conditional distributions.

Lemma 1

Let the joint distribution of the random variables p1, · · · , pj be a normal distribution

with moments (µ,Σ) ∈ R
Kj ×MKj given in (5). Then the following holds:

(1) For each s = 2, . . . , j the conditional distribution of the random variable ps given

previous observations p1, . . . , ps−1 is given by a non-singular normal distribution

on R
K with moments (µs|s−1,Σs), where

µs|s−1 := µs +B(1)
s (ps−1 − µs−1) + . . .+B(s−1)

s (p1 − µ1). (41)

and Bs,Σs are defined in (40).

(2) The marginal distribution of the random variable p1 is given by a non-singular

normal distribution on R
K with moments (µ1,Σ11) ∈ R

K ×MK given in (5).

Proof: The assertion follows from a repeated application of Theorems 2.4.3 and 2.5.1

given in Anderson (1984), p. 37, see also Tong (1990), Theorem 3.3.4, p. 35. �

Letting 0K , IK ∈ R
K×K denote the K×K zero and identity matrix, respectively, define

for each s = 0, 1, . . . , j − 1 the following parameters

Πs,n :=
[
0K , . . . , 0K
︸ ︷︷ ︸

s terms

, IK , RIK , . . . , R
n−s−1IK

︸ ︷︷ ︸

n−s terms

]⊤
∈ R

nK×K, n = s+ 1, . . . , j

πs,m :=
(
µ⊤1 − p⊤1 , . . . , µ

⊤
s − p⊤s

︸ ︷︷ ︸

s terms

, µ⊤s+1, . . . , µ
⊤
m

︸ ︷︷ ︸

m−s terms

)⊤
∈ R

mK , m = s, . . . , j. (42)

Multiperiod CAPM, Version: July 6, 2004, Page: 21



In particular, Π0,n ≡ Πn =
[
IK , . . . , R

n−1IK
]⊤

and π0,m ≡ πm =
(
µ⊤1 , . . . , µ

⊤
m

)⊤
. Given

the parameter definitions (40) and (42) some important relations which will be exploited

in the sequel are collected in Lemma 2.

The next assumption imposes further restrictions on the covariance matrix Σ from (5).

Assumption 3

(Hillebrand 2003, Annahme 3.3, p. 66) All variance covariance matrices (5) satisfy the

following condition. Given the parameters (40) and (42) the matrices

As := [−Bs, IK ] Πs−2,s = RIK −B(1)
s ∈ R

K×K, s = 2, · · · , j, (43)

are non-singular and hence invertible. For each j = 1, . . . , J , the subset of all variance

covariance matrices satisfying (43) are denoted by M⋆
Kj.

Observe that each set M⋆
Kj contains all covariance matrices (5) with Σss′ = 0 for s 6= s′.

Hence the set is non-empty for each j. In particular, M⋆
K = MK for j = 1.

Consider now the investor’s decision problem (7). To derive a solution, we will employ

a dynamic programming approach. This amounts to solving a sequence of j one-stage

problems. For each stage s = 0, 1, . . . , j−1 a one period-problem is solved given wealth8

ws = Rys−1 + x⊤s−1ps

and realizations of prices p1, . . . , ps up to time s. For the following derivations we set

µs|s−1 := µ1 and Σs := Σ11 for s = 1 and write ps
1 := (p1, . . . , ps). For each s = 1, . . . , j

the conditional distribution of prices ps given pervious observations p1, . . . , ps−1 is given

by a normal distribution with moments (µs+1|s,Σs+1) given in Lemma 1(1). Setting

Vj(wj , p
j
1) ≡ u(wj ; a) we employ for each s = 1, . . . , j−1 the following recursive relation,

referred to as Bellmann’s equation (e.g., see Pliska 1997):

Vs(ws, p
s
1) = max

y+x⊤ps=ws

{
∫

RK

Vs+1(Ry + x⊤p, ps
1, p) f(p;µs+1|s,Σs+1)dp

}

. (44)

The function Vs is called value function of period s. The principle of optimality reads

V0(w, p) := max
y+x⊤p=w

{
∫

RK

V1(Ry + x⊤p, p) f(p;µ1,Σ11)dp

}

(45)

= max
H∈H (p,w)

{∫

RKj

u(Wj(H, p
j
1); a) fKj(p

j
1;µ,Σ) dpj

1

}

.

Equation (45) states that we can derive an optimal portfolio decision for t = 0 as

a solution to a one-stage problem involving the value function V1 together with the

marginal distribution of p1. In order to utilize this fact we first need to show that the

sequence of value functions defined in (44) is well-defined and then compute an explicit

functional form for the value function V1.

8 Since the investor is assumed to choose a self-financing strategy, no wealth is added from outside

and no consumption takes place prior to period j. Hence wealth accumulated at stage s is equal to

the return on the investment made in previous period
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For this purpose we introduce the notion of a Gaussian function. A Gaussian function

in x ∈ R
N with parameters (c, µ,Σ) ∈ R++ × R

N ×MN is a real-valued function

gN (x; c, µ,Σ) := c exp

{

−
1

2
(x− µ)⊤Σ−1(x− µ)

}

, x ∈ R
N . (46)

Setting, cN (Σ) := (2π)−
N
2 [detΣ]−

1
2 , we have the relation

fN(x;µ,Σ) = gN (x; cN (Σ), µ,Σ). (47)

To simplify notation, we shall frequently suppress the dimension index N . Furthermore,

we will omit parameter c as an argument of a Gaussian function if c = 1 and write

g(x;µ,Σ) ≡ g(x; 1, µ,Σ). Important properties of Gaussian functions are collected in

Appendix A.2.

The next proposition provides the desired representation of the value functions.

Proposition 1

Let Assumption 3 be satisfied. Then for each s = 1, · · · , j − 1 the value functions Vs

defined in (44) are well defined and take the form

Vs(ws, p
s
1) = u

(
ws; aR

j−s
)
g (ps; cs, ϑs,Ωs) , (48)

where for each s = 1, . . . , j − 1

Ωs :=
[

Π⊤
s−1,jΣ

−1Πs−1,j − Σ−1
s

]−1

ϑs := Ωs

(
Πs−1,jΣ

−1πs−1,j − Σ−1
s µs|s−1

)

c̃s :=







1 s = j − 1
j−s−1
∏

n=1

c
(
Σ−1

s+n + Ω−1
s+n

)

c
(
Σ−1

s+n

) s = 1, . . . , j − 2, j > 2
(49)

cs :=
g(0; c̃s, πs−1,j,Σ)

g(0;πs−1,s,Σs
1) g(0;ϑs,Ωs)

We preface the proof of Proposition 1 by showing that the matrices Ωs appearing in

(49) are well-defined. From Lemma 2 (2c) we obtain

Π⊤
s−1,sΣ

−1Πs−1,s − Σ−1
s =

j−s
∑

n=1

Π⊤
s−1,s+n

[

B⊤
s+n

−IK

]

Σ−1
s+n

[

Bs+n − IK

]

Πs−1,s+n(50)

As noted earlier, each Σs+n (n = 1, . . . , j − s) is a symmetric, positive definite matrix.

Furthermore, the first term appearing in the sum in (50) is given byA⊤
s+1Σ

−1
s+1As+1 where

As+1 = −[Bs+1,−IK ]Πs−1,s+1 = RIK −B
(1)
s+1 is invertible by Assumption 3. Hence this

term is again a positive definite, symmetric matrix while all the other terms appearing

in the sum in (50) are positive-semi-definite matrices. This implies that each Ωs is a

symmetric, positive definite matrix and the scalars c̃s and cs defined in (49) are strictly

positive real number (the latter for each realization of previous prices p1, . . . , ps−1).
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Proof of Proposition 1: The proof consists of an induction argument and proceeds

in two steps. In step one, we verify directly that the claim is true for s = j − 1. For

j = 2, this is already sufficient. In a second step we assume that j > 2 and prove the

claim for arbitrary s given that it is true for s+ 1.

Step 1: Let s = j − 1 and let wealth wj−1 and realizations of prices p1, . . . , pj−1 be

given. Consider the following maximization problem:

Uj−1(x, y, p
j−1
1 ) :=

∫

RK

u(Ry + x⊤p; a) f(p;µj|j−1,Σj) dp −→ max
y+x⊤pj−1=wj−1

. (51)

Using (47) and Lemma 4 (setting α = a, c = c(Σj), θ = µj|j−1 and Θ = Σj) the objective

function Uj−1(·) in (51) can be rewritten to:

Uj−1(x, y; p
j−1
1 ) = u

(

Ry + x⊤µj|j−1 −
a

2
x⊤Σj x; a

)

. (52)

Using (52) in (51) and applying Lemma 5 (setting α = a, c = c(Σj), θ = µj|j−1, Θ = Σj ,

w = wj−1 and p = pj−1) the maximum of problem (51) can be written as

Vj−1(wj−1, p
j−1
1 ) := max

x,y

{

Uj−1(x, y; p
j−1
1 )

∣
∣
∣y + x⊤pj−1 = wj−1

}

(53)

= u
(
wj−1; aR

)
g
(
Rpj−1;µj|j−1,Σj

)

The assertion will thus follow if we show that

g(Rpj−1;µj|j−1,Σj) = g(pj−1, ϑj−1,Ωj−1) and cj−1 = 1.

Note from (41) and (42) that (µj|j−1−Rpj−1) = [Bj ,−IK ] (Πj−2,j pj−1 − πj−2,j). Apply-

ing Lemma 2(1) we can rewrite the quadratic form in the exponent of g(Rpj−1;µj|j−1,Σj)

as follows:

(Rpj−1 − µj|j−1)
⊤Σ−1

j (Rpj−1 − µj|j−1)

= (Πj−2,jpj−1 − πj−2,j)
⊤ [Bj ,−IK ]⊤Σ−1

j [Bj,−IK ] (Πj−2,jpj−1 − πj−2,j)

= (Πj−2,jpj−1 − πj−2,j)
⊤

(

Σ−1 −

[

[Σj−1
1 ]−1 0K(j−1)×K

0K×K(j−1) 0K×K

])

(Πj−2,jpj−1 − πj−2,j)

= p⊤j−1

(

Π⊤
j−2,jΣ

−1Πj−2,j − Π⊤
j−2,j−1

[

Σj−1
1

]−1
Πj−2,j−1

)

pj−1

−2p⊤j−1

(

Π⊤
j−2,jΣ

−1πj−2,j − Π⊤
j−2,j−1

[

Σj−1
1

]−1
Πj−2,jµj−1|j−2

)

+π⊤j−2,jΣ
−1πj−2,j − π⊤j−2,j−1

[

Σj−1
1

]−1
πj−2,j−1. (54)

Note that by virtue of Lemma 2(2a) Π⊤
j−2,j−1[Σ

j−1
1 ]−1Πj−2,j−1 = Σ−1

j−1. Defining the

parameters

Ωj−1 :=
[

Π⊤
j−2,jΣ

−1Πj−2,j − Σ−1
j−1

]−1
(55)

ϑj−1 := Ωj−1

(

Π⊤
j−2,jΣ

−1πj−2,j − Σ−1
j−1µj−1|j−2

)

.
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we obtain from (54)

(Rpj−1 − µj|j−1)
⊤Σ−1

j (Rpj−1 − µj|j−1) = p⊤j−1Ω
−1
j−1pj−1 − 2pj−1Ω

−1
j−1ϑj−1 (56)

+π⊤j−2,jΣ
−1πj−2,j − π⊤j−2,j−1

[

Σj−1
1

]−1
πj−2,j−1

Observing that the matrix Aj := −[Bj,−IK ]Πj−2,j is invertible by Assumption 3 and

using Lemma 2(1) the last two terms in (56) can be rearranged as follows:

π⊤j−2,jΣ
−1πj−2,j − π⊤j−2,j−1

[

Σj−1
1

]−1
πj−2,j−1

= π⊤j−2,j

(

Σ−1 −

[

[Σj−1
1 ]−1 0K(j−1)×K

0K×K(j−1) 0K×K

])

πj−2,j

= ϑ⊤j−1Ω
−1
j−1ϑj−1. (57)

Using the result (57) in (56) we therefore obtain

(Rpj−1 − µj|j−1)
⊤Σ−1

j (Rpj−1 − µj|j−1) = (pj−1 − ϑj−1)
⊤Ω−1

j−1(pj−1 − ϑj−1). (58)

It remains to show that the parameter definition (49) implies that cj−1 = 1. Exploiting

(57) we can write

g(0;ϑj−1,Ωj−1) =
g(0;πj−2,j ,Σ)

g(0;πj−2,j−1, (Σ
j−1
1 ))

(59)

From (49) we have c̃j−1 = 1. Using this and (59) in (49) we therefore obtain

cj−1 =
g(0; c̃j−1, πj−2,j,Σ)

g(0;πj−2,j−1, (Σ
j−1
1 )) g(0;ϑj−1,Ωj−1)

=
g(0;πj−2,j ,Σ)

g(0;πj−2,j−1, (Σ
j−1
1 ))

·
g(0;πj−2,j−1, (Σ

j−1
1 ))

g(0;πj−2,j ,Σ)
= 1.

Given these results we can write the value function from (53) as

Vj−1(wj−1, p
j−1
1 ) = u

(

wj−1; aR
)

g
(

pj−1; cj−1, ϑj−1,Ωj−1

)

(60)

where cj−1 = 1 and the parameters ϑj−1,Ωj−1 are defined by (55). This proves the

assertion for s = j − 1. In particular, we have verified Theorem 1 for the case j = 2.
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Step 2: In the second step we assume that j > 2 and prove that the claim is true for

arbitrary s = 1, . . . , j−2 given that it is true for s+1. The induction hypothesis is thus

Vs+1(ws+1, p
s+1
1 ) = u

(

ws+1; aR
j−(s+1)

)

g (ps+1; cs+1, ϑs+1,Ωs+1) (61)

where Ωs+1 :=
[

Π⊤
s,jΣ

−1Πs,j − Σ−1
s+1

]−1

ϑs+1 := Ωs+1

(
Πs,jΣ

−1πs,j − Σ−1
s+1µs+1|s

)

c̃s+1 :=







1 s+ 1 = j − 1
∏j−s−1

n=2
c(Σ−1

s+n+Ω−1
s+n)

c(Σ−1
s+n)

else
(62)

cs+1 := c̃s+1
g(0;πs,j ,Σ)

g(0;πs,s+1,Σ
s+1
1 ) g(0;ϑs+1,Ωs+1)

To show that this implies the form (48) of the value function Vs, consider the following

optimization problem given wealth ws and realizations of prices p1, . . . , ps:

Us(x, y; p
s
1) :=

∫

RK

Vs+1(Ry + x⊤p, ps
1, p) f(p;µs+1|s,Σs+1) dp −→ max

y+x⊤ps=ws

. (63)

Given the form (61) of the value function Vs+1 we may apply Lemma 6 (setting c = cs+1,

ϑ = ϑs+1, Ω = Ωs+1, µ̂ = µs+1|s, Σ̂ = Σs+1, α = aRj−s−1) to write the objective function

in (63) as

Us(x, y; p
s
1) =

ĉs+1

c(Θs+1)
u

(

Ry + x⊤θs+1 −
aRj−s−1

2
x⊤Θs+1x; aR

j−s−1

)

(64)

where Θs+1 :=
[
Σ−1

s+1 + Ω−1
s+1

]−1

θs+1 := Θs+1

[
Σ−1

s+1µs+1|s + Ω−1
s+1ϑs+1

]
(65)

ĉs+1 :=
g(0; cs+1, ϑs+1,Ωs+1)g(0; c(Σs+1), µs+1|s,Σs+1)

g(0; θs+1,Θs+1)
.

Using (64) in (63) and applying Lemma 5(2) (setting c = ĉs+1

c(Θs+1)
, Θ = Θs+1, θ = θs+1,

α = aRj−s−1, p = ps and w = ws) the value function associated to problem (63) takes

the form

Vs(ws, p
s
1) := max

x,y

{

Us(x, y; p
s
1)
∣
∣
∣y + x⊤ps = ws

}

= u(ws; aR
j−s) g(Rps;

ĉs+1

c(Θs+1)
, θs+1,Θs+1).

The assertion will follow if we show that

g(Rps;
ĉs+1

c(Θs+1)
, θs+1,Θs+1) = g(ps; cs, ϑs,Ωs). (66)

From (46), (65) and Lemma 3(2) one observes the relation

g(Rps;
ĉs+1

c(Θs+1)
, θs+1,Θs+1) =

c(Σs+1)

c(Θs+1)
g(Rps;µs+1|s,Σs+1) g(Rps; cs+1, ϑs+1,Ωs+1).(67)
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Using equations (46) and the definition of parameter cs+1 given in (65) we can expand

the second term on the r.h.s of (67) as

g(Rps;µs+1|s,Σs+1) g(Rps; cs+1, ϑs+1,Ωs+1) (68)

= c̃s+1
g(0;πs,j ,Σ)

g(0;πs,s+1,Σ
s+1
1 ) g(0;ϑs+1,Ωs+1)

︸ ︷︷ ︸

cs+1

g(Rps;µs+1|s,Σs+1) g(Rps; , ϑs+1,Ωs+1)

Using the definitions (65) the exponents of the Gaussian functions appearing on the

r.h.s. of (68) can be summarized as

−
1

2

[

π⊤s,jΣ
−1πs,j − π⊤s,s+1(Σ

s+1
1 )−1πs,s+1 + (Rps − ϑs+1)

⊤Ω−1
s+1(Rps − ϑs+1)

−ϑ⊤s+1Ω
−1
s+1ϑs+1 + (Rps − µ⊤s+1|s)Σ

−1
s+1(Rps − µs+1|s)

]

= −
1

2

[

µ⊤s+1|sΣ
−1
s+1µs+1|s +Rp⊤s Π⊤

s,jΣ
−1Πs,jRps − 2Rp⊤s Π⊤

s,jΣ
−1πs,j

+π⊤s,jΣ
−1πs,j − π⊤s,s+1(Σ

s+1
1 )−1πs,s+1

]

= −
1

2

[

(Πs,jRps − πs,j)
⊤Σ−1(Πs,jRps − πs,j)

+µ⊤s+1|sΣ
−1
s+1µs+1|s − π⊤s,s+1(Σ

s+1
1 )−1πs,s+1

]

(69)

Note from (41) and (42) that µs+1|s = −[Bs+1,−IK ]πs,s+1 and therefore, applying

Lemma 2(1)

µ⊤s+1|sΣ
−1
s+1µs+1|s − π⊤s,s+1(Σ

s+1
1 )−1πs,s+1

= π⊤s,s+1

(

[Bs+1,−IK ]⊤Σ−1
s+1[Bs+1,−IK ] − (Σs+1

1 )−1
)

πs,s+1

= π⊤s,s+1

[

(Σs
1)

−1 0Ks×K

0K×Ks 0K×K

]

πs,s+1 = π⊤s,s(Σ
s
1)

−1πs,s.

Note from the definitions (42) that πs,s = (πs−1,s − Πs−1,sps) and (Πs,jRps − πs,j) =

(Πs−1,jps −πs−1,j). Now define the parameters (Ωs, ϑs) as in (49) and note that Σ−1
s =

Π⊤
s−1,s(Σ

s
1)

−1Πs−1,s by virtue of Lemma 2(2a). With these properties write (69) as

−
1

2

[

(Πs,jRps − πs,j)
⊤Σ−1(Πs,jRps − πs,j) + µ⊤s+1|sΣ

−1
s+1µs+1|s − π⊤s,s+1(Σ

s+1
1 )−1πs,s+1

]

= −
1

2

[

(Πs−1,jps − πs−1,j)
⊤Σ−1(Πs−1,jps − πs−1,j)

+ (Πs−1,sps − πs−1,s)
⊤(Σs

1)
−1(Πs−1,sps − πs−1,s)

]

= −
1

2

[

p⊤s

(

Σ−1 − Π⊤
s−1,s(Σ

s
1)

−1Πs−1,s

)

ps + π⊤s−1,jΣ
−1πs−1,j

− 2p⊤s

(

Π⊤
s−1,jΣ

−1πs−1,j − Π⊤
s−1,sΣ

s
1)

−1πs−1,s

)

− π⊤s−1,s(Σ
s
1)

−1πs−1,s

]

=
1

2

[

p⊤s Ω−1
s ps − 2p⊤s Ω−1

s ϑs ± ϑ⊤s Ω−1
s ϑs + π⊤s−1,jΣ

−1πs−1,j − π⊤s−1,s(Σ
s
1)

−1πs−1,s

]

=
1

2

[

(ps − ϑs)
⊤Ω−1

s (ps − ϑs) − ϑ⊤s Ω−1
s ϑs + π⊤s−1,jΣ

−1πs−1,j − π⊤s−1,s(Σ
s
1)

−1πs−1,s

]

(70)
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Using the results from (69) and (70) the exponents of the Gaussian functions on the

r.h.s. of (68) can thus be rewritten to

−
1

2

[

π⊤s,jΣ
−1πs,j − π⊤s,s+1(Σ

s+1
1 )−1πs,s+1 + (Rps − ϑs+1)

⊤Ω−1
s+1(Rps − ϑs+1) (71)

−ϑ⊤s+1Ω
−1
s+1ϑs+1 + (Rps − µ⊤s+1|s)Σ

−1
s+1(Rps − µs+1|s)

]

= −
1

2

[

(ps − ϑs)
⊤Ω−1

s (ps − ϑs) + π⊤s−1,jΣ
−1πs−1,j − π⊤s−1,s(Σ

s
1)

−1πs−1,s − ϑ⊤s Ω−1
s ϑs

]

Using (71) the r.h.s of (68) can thus be written as

c̃s+1
g(0;πs,j ,Σ)

g(0;πs,s+1,Σ
s+1
1 ) g(0;ϑs+1,Ωs+1)

g(Rps;µs+1|s,Σs+1) g(Rps; , ϑs+1,Ωs+1)

= c̃s+1
g(0;πs−1,j ,Σ)

g(0;πs−1,s,Σ
s
1) g(0;ϑs,Ωs)

g(ps; , ϑs,Ωs) (72)

Observe from (49) and (65) the recursive relation c̃s =
c(Σ−1

s+1+Ω−1
s+1)

c(Σ−1
s+1)

c̃s+1 which yields

c(Σs+1)

c(Θs+1)
c̃s+1 =

c(Σs+1)

c([Σ−1
s+1 + Ω−1

s+1]
−1)

c̃s+1 =
c(Σ−1

s+1 + Ω−1
s+1)

c(Σ−1
s+1)

c̃s+1 = c̃s. (73)

Using (68), (72) and (73) in (67) we obtain

c(Σs+1)

c(Θs+1)
g(Rps;µs+1|s,Σs+1) g(Rps; cs+1, ϑs+1,Ωs+1)

=
c(Σs+1)

c(Θs+1)
c̃s+1

g(0;πs−1,j ,Σ)

g(0;πs−1,s,Σs
1) g(0;ϑs,Ωs)

g(ps; , ϑs,Ωs)

=
g(0; c̃s, πs−1,j,Σ)

g(0;πs−1,s,Σ
s
1) g(0;ϑs,Ωs)

g(ps;ϑs,Ωs) = g(ps; cs, ϑs,Ωs).

Using (67) this proves equation (66) and hence Proposition 1. �

Given parametric prices p ∈ R
K and wealth w the value function V1 obtained from

Proposition 1 together with the marginal distribution of prices p1 given by Lemma 1

allows us by virtue of the principle of optimality (45) to obtain an optimal portfolio

decision for t = 0 as a solution to the following optimization problem

U0(x, y) :=

∫

RK

V1

(

Ry + x⊤p̂, p̂
)

f(p̂;µ1,Σ11) dp̂ −→ max
y+x⊤p=w

. (74)

By Proposition 1 the value function V1 in (74) takes the form

V1(w1, p1) = u
(
w1; aR

j−1
)
g (p1; c1, ϑ1,Ω1) , (75)

where (setting Π0,n ≡ Πn, π0,n ≡ πn)

Ω1 :=
[

Π⊤
j Σ−1Πj − Σ−1

11

]−1

ϑ1 := Ω1

(
ΠjΣ

−1µ− Σ−1
11 µ1

)

c̃1 :=

j−1
∏

n=2

c
(
Σ−1

n + Ω−1
n

)

c
(
Σ−1

n

) (76)

c1 :=
g(0; c̃1, µ,Σ)

g(0;µ1,Σ11) g(0;ϑ1,Ω1)
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Given the form (75) of the value function V1 we may apply Lemma 6 (setting c = c1,

ϑ = ϑ1, Ω = Ω1, µ̂ = µ1, Σ̂ = Σ11, α = aRj−1) to write the objective function in (74) as

U0(x, y) =
ĉ1

c(Θ1)
u

(

Ry + x⊤θ1 −
aRj−1

2
x⊤Θ1 x; aR

j−1

)

.

where (using equation (76) the parameters ĉ, Θ1 and θ1 are given by

Θ1 :=
[
Σ−1

11 + Ω−1
1

]−1
(77)

=
[

Π⊤
j Σ−1Πj

]−1
∈ MK

θ1 := Θ1

[
Σ−1

11 µ1 + Ω−1
1 ϑ1

]
(78)

= Θ1

[
ΠjΣ

−1µ
]
∈ R

K

ĉ1 :=
g(0; c1, ϑ1,Ω1) g(0; c(Σ11), µ1,Σ11)

g(0; θ1,Θ1)
> 0.

By Lemma 5(1), for each p ∈ R
K and w ∈ R, the solutions to (74) are given by

x⋆
0 =

1

aRj−1
Θ−1

1 (θ1 −Rp) (79)

=
1

aRj−1
Π⊤

j Σ−1 (µ− ΠjRp)

y⋆
0 = w − p⊤x⋆

0.

Since the moments (µ,Σ) ∈ R
Kj ×M⋆

Kj were arbitrary, this proves Theorem 1. �

A.2 Technical appendix

In this section we collect some well-known properties of Gaussian functions together

with some important relations of parameters. Here for each n,m ∈ N, 0n×m denotes the

n×m zero matrix.

Lemma 2

(1) Given the partition Σs
1 =

[

Σs−1
1 C⊤

s

Cs Σss

]

and the parameters Σs and Bs defined in

(40) we have for each s = 2, . . . , j

[Σs
1]
−1 =

[ [
Σs−1

1

]−1
0Ks×K

0K×Ks 0K×K

]

+

[

B⊤
s

−IK

]

Σ−1
s

[

Bs Ik

]

(2) Given the parameters defined in (40) and (42) we have for each s = 1, . . . , j − 1 the

following relations:

(a) Π⊤
s−1,s [Σs

1]
−1 Πs−1,s = Σ−1

s

(b) Π⊤
s−1,s [Σs

1]
−1 πs−1,s = Σ−1

s µs|s−1

(c) Π⊤
s−1,sΣ

−1Πs−1,s − Σ−1
s =

j−s
∑

n=1

Π⊤
s−1,s+n

[

B⊤
s+n

−IK

]

Σ−1
s+n

[

Bs+n − IK

]

Πs−1,s+n
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Proof: (1): By Assumption the matrix Σ given in (5) is positive definite implying that

each submatrix Σs
1 (s = 1, . . . , j) is also positive definite and hence invertible. Given

the definitions (40) the assertion follows from Ouellette (1981) Theorem 2.7, p.201.

(2a): Using (1) we have

Π⊤
s−1,s [Σs

1]
−1 Πs−1,s = Π⊤

s−1,s

[ [
Σs−1

1

]−1
0Ks×K

0K×Ks 0K×K

]

Πs−1,s

+Π⊤
s−1,s

[

B⊤
s

−IK

]

Σ−1
s

[

Bs −Ik

]

Πs−1,s.

Note that [Bs,−IK ]Πs−1,s = Π⊤
s−1,s[Bs,−IK ]⊤ = −IK and that the first term on the

r.h.s. is equal to 0K×K to obtain (2a).

(2b): Use (1) again and note that [Bs,−IK ]πs−1,s = −µs|s−1.

(2c): Using (2a) and (1) we can write

Σ−1
s = Π⊤

s−1,s [Σs
1]
−1 Πs−1,s = Π⊤

s−1,s+1

[

[Σs
1]
−1 0Ks×K

0K×Ks 0K×K

]

Πs−1,s+1

= Π⊤
s−1,s+1

[
Σs+1

1

]−1
Πs−1,s+1 − Π⊤

s−1,s+1 [Bs+1,−Ik]
⊤ Σ−1

s+1 [Bs+1,−Ik] Πs−1,s+1

By simple induction one can verify that for each n = 0, 1, . . . , j − s− 1

Π⊤
s−1,s+n−1

[
Σs+n−1

1

]−1
Πs−1,s+n−1 = Π⊤

s−1,s+n

[
Σs+n

1

]−1
Πs−1,s+n

− Π⊤
s−1,s+n [Bs+n,−Ik]

⊤ Σ−1
s+n [Bs+n,−Ik] Πs−1,s+n

We thus obtain

Σ−1
s = Π⊤

s−1,jΣ
−1Πs−1,j −

j−s
∑

n=1

Π⊤
s−1,s+n

[

B⊤
s+n

−IK

]

Σ−1
s+n

[

Bs+n − IK

]

Πs−1,s+n

and rearranging yields (2c). �

Lemma 3

Given the definition of a Gaussian function (46), the following properties hold:

(1) The product of m Gaussian functions with parameters (c(h), ϑ(h),Ω(h)) ∈ R++ ×

R
K ×MK , h = 1, . . . ,m is again a Gaussian function, that is,

m∏

h=1

g(x; c(h), ϑ(h),Ω(h)) = g(x; c, ϑ,Ω), (80)

where the parameters (c, ϑ,Ω) ∈ R++ × R
K ×MK in (80) are given by

Ω =
[
Ω(1)−1 + . . .+ Ω(m)−1

]−1
, ϑ = Ω

[
Ω(1)−1ϑ(1) + . . .+ Ω(m)−1ϑ(m)

]
,

and c =

∏m
h=1 g(0; c

(h), ϑ(h),Ω(h))

g(0;ϑ,Ω)
.
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(2) The integral of a Gaussian function g(·; c, ϑ,Ω) over R
K satisfies

∫

RK

g(x; c, ϑ,Ω) dx =
c

c(Ω)
> 0.

Proof: (1) follows by induction and straightforward calculations, (2) follows from the

relation (47) and the properties of multivariate density functions, (3) can be verified

from the definition given in (46) and direct calculations. �

Lemma 4

Let (θ,Θ) ∈ R
K × MK , c > 0 and α > 0 be given and the functions u(·;α) and

g(·; c, θ,Θ) be as defined in (3) and (46). Then

∫

RK

u(Ry + x⊤p;α)g(p; c, θ,Θ) dp =
c

c(Θ)
u
(

Ry + x⊤θ −
α

2
x⊤Θ x;α

)

. (81)

Proof of Lemma 4. We have

u(Ry + x⊤p;α) g(p; c, θ,Θ) = −c exp

{

−α(Ry + x⊤p) −
1

2

(
p− θ

)⊤
Θ−1 (p− θ)

}

and using symmetry of the matrix Θ−1 = Θ−⊤, the exponent can be rewritten as

−α
(

Ry + x⊤p
)

−
1

2

(
p− θ

)⊤
Θ−1 (p− θ)

= −αRy −
1

2

[
(
p− (θ − αΘx)

)⊤
Θ−1

(
p− (θ − αΘx)

)
+ 2αx⊤θ − α2x⊤Θx

]

= −α(Ry + x⊤θ −
α

2
x⊤Θx) −

1

2

[
(
p− (θ − αΘx)

)⊤
Θ−1

(
p− (θ − αΘx)

)
]

.

Rearranging, the integrand in (81) becomes

u(Ry + x⊤p;α)g(p; c, θ,Θ) = u
(

Ry + x⊤θ −
α

2
x⊤Θx;α

)

g(p; c, θ − αΘx,Θ).

Since the first factor is independent of the integration variable p, the assertion follows

from Lemma 3 (2). �

Lemma 5

Let the parameters (θ,Θ) ∈ R
K ×MK , c > 0, α > 0, prices p ∈ R

K , and wealth w ∈ R

be given. Then the following holds true:

(1) The optimization problem

c u
(

Ry + x⊤θ −
α

2
x⊤Θ x;α

)

−→ max
x,y

s.t. y + x⊤p = w (82)

has a unique solution (x⋆, y⋆) ∈ R
K × R of the form

x⋆ =
1

α
Θ−1(θ −Rp), y⋆ = w − p⊤x⋆. (83)
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(2) The maximum takes the form

u⋆ := c u
(

Ry⋆ + x⋆⊤θ −
α

2
x⋆⊤Θ x⋆;α

)

= u(w;αR) g(Rp; c, θ,Θ). (84)

Proof of Lemma 5. (1) Due to the strict monotonicity of the function cu(·;α) for

each fixed c > 0 and α > 0 maximizing the function

c u
(

Ry + x⊤θ −
α

2
x⊤Θ x;α

)

= −c exp
{

−α
(

Ry + x⊤θ −
α

2
x⊤Θ x

)}

.

is equivalent to maximizing the function (x, y) 7−→ Ry + x⊤θ − α
2x

⊤Θ x. From the

Lagrangian function

L(x, y;λ) := Ry + x⊤θ −
α

2
x⊤Θ x+ λ(w − x⊤p− y)

one obtains the first order conditions

DxL(x⋆, y⋆;λ) = θ − αΘx⋆ − λp
!
= 0 and DyL(x⋆, y⋆;λ) = R− λ

!
= 0.

Combining this with the constraint y + x⊤p = w yields the solution (83).

(2) Substituting the solutions (83) into the objective function in (84) and exploiting the

symmetry of the matrix Θ the maximum u⋆ reads:

u⋆ = c u
(

Rw + x⋆⊤(θ −Rp) −
α

2
x⋆⊤Θ x⋆;α

)

= c u

(

Rw +
1

2α
(θ −Rp)⊤Θ−1(θ −Rp);α

)

= u(w;αR) g(Rp; c, θ,Θ)

which proves the second assertion. �

Lemma 6

Let (c, ϑ,Ω) ∈ R++ × R
K × MK , (µ̂, Σ̂) ∈ R

K × MK and α > 0 be given and the

functions u(·;α), g(·; c, ϑ,Ω) and f(·; µ̂, Σ̂) be as defined in (2), (3) and (46). Then
∫

RK

u(Ry + x⊤p;α)g(p; c, ϑ,Ω) f(p; µ̂, Σ̂)dp =
ĉ

c(Θ)
u
(

Ry + x⊤θ −
α

2
x⊤Θ x;α

)

(85)

where

Θ :=
[

Ω−1 + Σ̂−1
]−1

θ := Θ
[

Ω−1ϑ+ Σ̂−1µ̂
]

(86)

ĉ :=
g(0; c(Σ̂), µ̂, Σ̂) g(0; c, ϑ,Ω)

g(0; θ,Θ)
.

Proof of Lemma 6. Using (47) and Lemma 3 (1) the Gaussian functions in (85) can

be written as

g(p; c, ϑ,Ω) g(p; c(Σ̂), µ̂, Σ̂)dp = g(p; ĉ, θ,Θ)

with parameters (ĉ, θ,Θ) as defined in (86). Applying Lemma 4 yields
∫

RK

u(Ry + x⊤p;α)g(p; ĉ, θ,Θ) dp =
ĉ

c(Θ)
u
(

Ry + x⊤θ −
α

2
x⊤Θ x;α

)

which proves the assertion �
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