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Abstract

In this paper, a simulation of high-frequency market data is performed with the
Genoa Artificial Stock Market. In the market model, heterogeneous agents trade
a risky asset in exchange for cash. Agents have zero intelligence and issue random
limit or market orders depending on their budget constraints. The price is cleared
by means of a limit order book. The order generation process is a renewal pro-
cess where the waiting-time distribution between two consecutive orders follows a
Weibull law. This hypothesis is motivated by recent theoretical and empirical stud-
ies on high-frequency financial data. According to simulation results, the mechanism
of the limit order book can reproduce fat-tailed distributions of returns without ad-
hoc behavioral assumptions on agents. As for the simulated trade process, in the
case of exponentially distributed order waiting times, also trade waiting times are
exponentially distributed. Conversely, if order waiting times follow a Weibull law,
the same does not hold true for trade waiting times. These findings are interpreted
in terms of a random thinning of the order renewal process.
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1 Introduction

In recent years, thanks to the availability of large databases of financial data,
the statistical properties of high-frequency financial data and market mi-
crostructural properties have been studied by means of different tools, in-
cluding phenomenological models of price dynamics and agent-based market
simulations [1-10]. Various studies on high-frequency econometrics appeared
in the literature including the autoregressive conditional duration models [11-
14].

Among these approaches, agent-based based simulations [7,8] are particularly
flexible as they allow the study of both the behaviour of agents and the influ-
ence of market structures in a well-controlled way. Here, the focus is on the
influence of the double auction clearing mechanism where the price is fixed by
the order book.

An important empirical variable is the waiting time between two consecutive
transactions. Due to the double auction mechanism, waiting times between
two trades are themselves a stochastic variable. They may also be correlated
to returns [15] as well as to traded volumes. Indeed, trading via the order
book is asynchronous and a transaction occurs only if a trader issues a market
order. For liquid stocks, waiting times can vary in a range between some
seconds and a few minutes, depending on the specific stock and on the market
considered. In ref. [15], the reader can find a study on General Electric stocks
traded in October 1999. Waiting times between consecutive prices exhibit 1-
day periodicity, typical of variable intraday market activity. Moreover, the
survival probability (the complementary cumulative distribution function) of
waiting times is well fitted by a Weibull function.

In this paper, we simulate different distributions of waiting times between
consecutive limit orders, namely the Weibull distribution and the exponen-
tial distribution. Orders are then selected by means of the limit order book
mechanism implemented in the Genoa Artificial Stock Market (GASM) and
described in Section 2.2 The resulting distribution of waiting times between
consecutive trades is then compared to a zero-order theory of order selection
described in Section 2.3. Section 3 is devoted to a description of numerical
simulation results Finally, Section 4 is devoted to discussion and conclusions.

2 Computational experiments

In the implemented simulation, agents in the GASM trade one single stock
in exchange for cash. They are liquidity traders and, therefore, the decision



making process is nearly random and depends on the finite amount of cash
+ stock available. At the beginning of the simulation, cash and stocks are
uniformly distributed among agents.

2.1 Order generation

Trading is divided into M daily sections. Each trading day is divided into
T elementary time steps of size one second. During the day, at given time
steps 1, a trader k£ is randomly chosen for issuing an order. Order waiting
times 77 = ¢, — tp_1 are extracted according to a Weibull distribution or to a
power-law distribution. The Weibull probability density function is:

o7 =2 (;)ﬁ expl—(r* /1)), (1)

where 7 is the scale parameter and [ is the shape parameter, also known
as slope, as it is the slope of the regression line in a probability plot. The
Weibull distribution reduces to the exponential distribution for f = 1. In
these computational experiments we considered values of 3 less of equal to
one.

The order generation process is then described as a general renewal process
where the waiting times between two consecutive orders, 7°, are indipendent
and identically distributed (i.i.d.) random variables following the densities in
eq. (1). In the case 8 = 1, the order generation process is a Poisson process with
an exponential waiting-time distribution. For further information on renewal
processes the reder is referred to ref. [16].

2.2 Order selection and trading

A trader issues a buy or sell order with probability 1/2. Let a(t,—1) and d(tp—1)
be the values of the ask and bid prices stored in the book at time step ¢5_1.

In case the order issued at time step f, is a sell order, the limit price s;
associated to the sell order is:

sk(th) = nk(tn) - alth-1) (2)

where ny(t,) is a random draw by trader k at time step ¢, from a Gaussian
distribution with mean p = 1 and standard deviation o. If sg(ty) > dg(th-1)
then the limit order is recorded in the book and no trade occurs, else the order
becomes a market order and a transaction takes place at the price S(t,) =



d(tp—1)- In the latter case, the sell order is partially or totally fulfilled and
the bid price is updated. The quantity of stock offered for sale is a random
fraction of the quantity owned by the trader.

In case the order is a buy oder, the limit price by (t) is now:

be(tn) = n(tn) - d(th-1), (3)

where ny(ty) is determined as above. If by (t,) < ax(tn—1) then the limit order
is recorded in the book and no trade occurs, else the order becomes a market
order and a transaction takes place at the price S(t;) = a(ts_1). The quantity
of stock ordered depends on the cash of trader £ and on the value of by ().

As a final remark for this subsection, it is worth observing that, in this frame-
work, agents compete for liquidity. If a buy order is issued by an agent, its
benchmark is the best limit buy order given buy the bid price. As u = 1 for half
of the times, the agent offers a more competitive buy order (if by (¢,) > d(tn_1)),
that can result in a trade if bg(ts) > a(ty_1). The same is valid for sell limit
orders.

2.8 Random thinning for order selection and trading

As a zero-order model of order selection and trading, let us consider the ran-
dom thinning [16] of the order generation process. This has been studied by
Gnedenko and Kovalenko [17]. It means that given a random sequence of i.i.d.
order waiting times 75, for each index h, a decision is taken: the event is deleted
with probability p or kept with probability ¢ = 1 —p, with 0 < ¢ < 1. In order
to compute the probability density function (7,¢)(7), the probability density
function fi(¢) of the sum of k£ waiting times is needed. As waiting times are
i.i.d. variables, fi(t) is given by the k-fold convolution of ¢:

110 = 90, ) = [ Sl =)ot @

Now, (T,¢)(T) can be obtained by purely probabilistic arguments, by noting
that, after a kept event, the next one of the original process is kept with
probability ¢ but dropped in favour of the second next with probability pq
and, in general, n — 1 events are dropped in favour of the n-th next with
probability p"~'q. Therefore one has:

o

Z n— lfn (5)

Let fu(s) = [°e *'f,(t) dt be the Laplace transform of f,(¢). From the be-
haviour of the Laplace tranform of a convolution, it turns out that the Laplace



tranform of eq. (5) is:

T = X0 o) = T2, )

from which by Laplace inversion, in principle, we can reconstruct the proba-
bility density function of the thinned process.

Eq. (5) or eq. (6) can be used to estimate the density of waiting times between
two consecutive transaction from the knowledge of the order waiting-time
probability density function. Alternatively, a Monte Carlo simulation can be
used, in which the thinning procedure is performed directly on a pseudo-
random sequence of waiting times. Random thinning for order selection and
trading is a rough approximation as it does not take into account many features
which are present in a market, including price and volume feedback and partial
order fulfillment. However the distributions obtained by random thinning can
be easily generated and compared with those obtained with GASM by the
procedure described in Section 2.2.

3 Simulation results

The simulations were performed with the following parameters. The number
of daily sections M was set equal to 50. The length of the daily sections was
T = 25,200 s (corresponding to 7 hours of trading activity). In Fig. 1, data are
presented for Weibull-distributed orders with 5 = 1 (the exponential case),
whereas in Fig. 2, the case § = 0.4 is discussed. The average waiting-time
(7°) between orders was set to 20 s for every simulation. The scale factor 7 is
related to (7°) according to the following equation:

(%)
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where I'(+) is Euler’s Gamma function. The survival probability Ps(7) corre-
sponding to the Weibull density in eq. (1) is:

P, (1) = exp(=7/n)°. (8)

The lifespan of orders was 600 s, a time much larger than (7°). Sell and buy
limit prices were computed following eq. (2) and eq. (3), respectively. The
random numbers n;(t,) were drawn from a Gaussian distribution with g =1
and ¢ = 0.005. The number of agents was 10,000. The initial stock price was
100.00 units of cash, say Euro, and each trader owned an equal amount of
cash and of shares: 100,000 Euro and 1,000 shares. These simulations produce
realistic intraday price paths [18,19].
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Fig. 1. Survival probability distribution of order waiting times (dots) and of trade
waiting times (crosses) in the case § = 1 (exponential distribution). The two lines
represent the corresponding exponential fits. The hollow circles represent the result
of a Monte Carlo simulation of random thinning with probability ¢ = 0.36

In Fig. 1, the survival probability distribution of order waiting times is com-
pared with the one for trade waiting times, in the case § = 1. This case corre-
sponds to exponentially distributed order waiting times. As a consequence of
the GASM order selection procedure, the waiting time between trades, ('), is
still exponentially distributed, with a larger average waiting time. The hollow
circles in Fig. 1 correspond to a Monte Carlo simulation of random thinning
with a probability ¢ = (7°)/(7*) = 0.36. The agreement between the GASM
oder selection and the random thinning procedure is good.

In Fig. 2, the survival probability distribution of order waiting times is com-
pared with the one for trade waiting times, in the case f§ = 0.4. This case
corresponds to Weibull distributed order waiting times. As a consequence of
the GASM order selection procedure, the waiting time between trades, (7*), no
longer follows the Weibull distribution. In Fig. 2, the dashed line is the Weibull
fit of the trade waiting-time survival function and a Kolmogorov-Smirnov test
rejects the null hypothesis of Weibull-distributed trade waiting times at the
5% significance level. The hollow circles in Fig. 2 correspond to a Monte Carlo
simulation of random thinning with a probability ¢ = (7°) /(") = 0.36. Again,
the agreement between the GASM oder selection and the random thinning
procedure is good.
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Fig. 2. Survival probability distribution of order waiting times (dots) and of trade
waiting times (crosses) in the case § = 0.4. The two curves represent the correspond-
ing Weibull fits. The hollow circles represent the result of a Monte Carlo simulation
of random thinning with probability ¢ = 0.36

4 Discussion and conclusions

The simulation results described in the previous section can be interpreted
as follows. When the waiting time distribution between orders is exponential,
then the GASM order selection procedure described in Section 2.2 leads to
exponentially distributed waiting times between two consecutive trades. When
the order waiting times follow a Weibull renewal process with 0 < 5 < 1, then
the trade waiting-time distribution is no longer ruled by the Weibull law.
However, in both cases, for what concerns waiting times, the outcome of the
order selection process can be well-mimicked by a simple random thinning
with probability ¢ given by the ratio between the average order waiting time
and the average trade waiting time: ¢ = (7°)/(7*). In other words, the GASM
selection process of the order book is equivalent to a random thinning for the
simulation parameters investigated.
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