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Abstract

I show that the QML procedure, used in many papers in the current literature to

estimate the CIR model from time series data, is based on an approximation of the

latent factors' density that becomes very inaccurate for typical parameter values. I

also argue that this issue is not addressed by the Monte Carlo experiments carried

out to support the conclusion that the QML bias is negligible.

The second part of the paper describes a computationally eÆcient maximum

likelihood estimator based on particle �lters. The advantage of this estimator is to

take into account the exact likelihood function while avoiding the huge computational

burden associated with MCMC methods. The proposed methodology is implemented

and tested on a sample of simulated data.

Introduction

The aim of this paper is to derive a maximum likelihood procedure to estimate the Cox,
Ingersoll and Ross (1985) (henceforth CIR) model from multivariate time series data
using Monte Carlo integration.

The CIR model and its generalised versions1 have proved very popular both in the
academic literature and among practitioners. The key to the success of the model is
arguably the fact that it can replicate three features that are commonly observed in the
data: nonnegativity of the interest rates, conditional heteroscedasticity and time-varying
market prices of risk.

�These notes are part of the work for my Ph.D. dissertation. I am grateful to Andrew Harvey for

continuous advice and comments. I would also like to thank Bent Jesper Christensen, Arnaud Doucet,

William Fitzgerald, Simon Godsill, Siem Jan Koopman, Eric Zivot and seminar participants at the 2003

Econometric Study Group Annual Meeting, Bristol, Department of Engineering, Cambridge University,

and Aarhus University for helpful comments on earlier versions of the paper. All remaining errors are

my own.
1To name a few: the extended CIR model of Hull and White (1990), the two-factor model of Longsta�

and Schwartz (1992), the Bakshi and Chen (1997) model, the multi-factor CIR models of Dai and

Singleton (2000).
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Estimates of the parameters can be obtained either from a cross section of data
(typically zero coupon rates or bond prices) or from time series. The former solution is
usually chosen in the �nancial literature when the purpose of the econometric analysis
is to price derivative assets. The disadvantage of this approach is that the risk pre-
mium parameters cannot be identi�ed because they are subsumed in the drift term. In
addition, if the estimation is carried out sequentially at di�erent points in time with
di�erent cross sections of rates, the estimated parameters can vary with sudden jumps
when temporary shocks a�ect the observations.

There are several approaches to the estimation of the CIR model from time series
data. Some authors use a univariate time series approach, often �tting the model to
a short term observed interest rate.2 To fully exploit the information contained in the
observed interest rates, however, it is necessary to use rates for a wide range of maturities.
This raises an issue of identi�ability because if multivariate time series data are used,
then the CIR model as such is clearly underidenti�ed. It would be invariably rejected by
the data because it implies that any cross section of rates observed at time t is a function
of the parametrs (which are constant over time) and the value of the risk factors at time
t. This is not true in general when one uses more interest rates than risk factors. One
solution is to allow for discrepancies between the observed and the theoretical rates,
i.e. to introduce measurement errors in the relation between the observed rates and the
latent factors. This is typically done by assuming that the observed rates are a�ected
by temporary shocks, usually Gaussian white noise errors with `small' variance (relative
to the variance of the innovations to the theoretical rates). When this assumption is
made, it becomes impossible to write down explicitly the likelihood function for the
observed rates, so that maximum likelihood estimation becomes a diÆcult problem.
The most common solution, adopted among others by Lund (1997), de Jong and Santa
Clara (1999), Duan and Simonato (1999), Du�ee (1999), Geyer and Pichler (1999) and
de Jong (2000), is to use a quasi maximum likelihood (QML) estimator based on the
linear Kalman �lter. The resulting estimator is biased and inconsistent, but the authors
claim that the size of the bias is negligible for typical parameter values. I argue in
Section II that the evidence provided to support the claim is not conclusive and that
this approach can be misleading, especially when the Gaussian densities are used for
�ltering and smoothing.

MCMC estimation is an alternative to the QML approach and has recently been
proposed by Lamoureaux and Witte (2002). They use a Gibbs sampler to draw from
the conditional distributions of the state variables and parameter values, so as to �nd
the marginal predictive densities of all the hyperparameters. The main drawback of
this approach is that it turns out to be extremely time consuming because the state
variables evolve very slowly. Lamoureaux and Witte (2002) report that it takes more
than �ve days on a powerful machine to obtain a suÆcient number of iterations for the
two-factor model. They work with a sample of �ve instruments and around 350 weekly
observations; presumably, the amount of time required to carry out the same procedure
using more instruments would be signi�cantly larger.

2Durham and Gallant (2002) give useful references on the subject.
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The main purpose of the analysis proposed in this paper is to obtain an estimator that
maximises the exact likelihood (and therefore is consistent and asymptotically eÆcient)
avoiding the computational burden associated with the MCMC approach.

I The CIR model in state space form

The Cox-Ingersoll-Ross model is characterised by one factor, call it r, that evolves in
continuous time according to

drt = � (� � rt) dt+ �
p
rtdBt (1)

where Bt is Brownian motion, � is the long term mean the factor reverts to and � and
� are constants. Consider a sequence of points in time t0; t0 + �; t0 + 2�; : : : for an
arbitrary time interval �. De�ne the sequence f�sg1s=1 �

�
rt0+(s�1)�

	
1

s=1
. Let

q � 2��

�2
� 1; c � 2�

�2 (1� e���)
:

It can be shown that the density of � can be written as:

p (�1) = gamma
�
�1; c

�
1� e���

�
; q + 1

�
=

�
c
�
1� e���

��q+1
� (q + 1)

�
q
1e
��1c(1�e���) (2)

and

p (�tj�t�1) = 2c noncentral�2
�
2c�t; 2q + 2; 2ce����t�1

�
= c exp

��c ��t + e����t�1

��� �t

e����t�1

�q=2

Iq

�
2c
q
�te����t�1

�
(3)

where Iq () is the modi�ed Bessel function of the �rst kind of order q. The observed
interest rates yt (�) ; characterised by a time to maturity � ; are then obtained as:

yt (�) = �A (�) +B (�)�t + "t

where

B (�) =
1

�

2 (e
� � 1)

2
 + (�+ �+ 
) (e
� � 1)


 =

q
(�+ �)2 + 2�2
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and

A (�) =
q + 1

�
log

�
2
 exp (� (�+ �+ 
) =2)

2
 + (�+ �+ 
) (e
� � 1)

�
:

The quantities A and B are known functions of � , the risk premium parameter � and
the CIR parameters �, � and �: We can now gather N yields in the observable vector yt

yt =

2
64

yt (�1)
...

yt (�N )

3
75 =

2
64

B (�1)
...

B (�N )

3
75�t �

2
64

A (�1)
...

A (�N )

3
75+

2
64

"1;t
...

"N;t

3
75

= B�t�A+ ":

The measurement error �t is assumed to be IID Gaussian with covariance matrix hIN .
Therefore, the density of yt (�) conditional on �t is

p (yt (�) j�t) = N (yt (�) ; �A (�) +B (�)�t; h)

=
1p
2�h

exp

"
� [yt (�) +A (�)�B (�)�t]

2

2h

#
:

Multi-factor CIR models typically assume that the short rate is a sum of factors evolving
as (1). It can be shown that zero coupon interest rates are still linear functions of the
factors.

II Quasi maximum likelihood in the existing literature

To obtain the QML estimator one needs to

1. replace expressions (2) and (3) with Gaussian densities;

2. �nd the parameter value that maximises the likelihood p (y).

The Gaussian densities are chosen by matching the �rst two moments of �tj�t�1:

E (�tj�t�1) = e����t�1 +
�
1� e���

�
�

var (�tj�t�1) =
�
e��� � e�2��

� �2
�
�t�1 +

�
1� e���

�2 �2
2�

�

so that in the approximating density

�t = e����t�1 +
�
1� e���

�
� + �t

where

�tj�t�1 � N
�
0;
�
e��� � e�2��

� �2
�
�t�1 +

�
1� e���

�2 �2
2�

�

�
:

The resulting transition density is still nonlinear for two reasons:

1. �t must be prevented from assuming negative values;

4



Author q1 q2
Lamoureaux and Witte (2002) 37.15 -0.79
de Jong and Santa Clara (1999) -0.015 7.29
Duan and Simonato (1999) 13.48 -1.00
Geyer and Pichler (1999) 12.24 0.73

Table 1: Estimated parameters q in the literature on two-factor CIR models. The value
of q2 in Duan and Simonato, which has been rounded to minus one to be displayed in
the table, is obviously less than one in absolute value.

2. the conditional variance of the state at time t is a function of its position at time
t� 1.

To overcome these diÆculties one can run a modi�ed Kalman �lter so as to set the
state value equal to zero when the �lter gives a negative value and make the covariance
matrix of the innovations in the transition equation, Qt, linear in the �ltered value of �
at time t� 1.3

Under which conditions is the Gaussian density a good approximation of the non-
central �2? To answer this question recall that the noncentral �2 density with � degrees
of freedom and parameter of noncentrality � can be thought of as a mixture of central
�2 densities with Poisson probabilities as weights4

p�02
�;�

(x) =

1X
j=0

 
(�=2)j

j!
e��=2

!
p�2�+2j

(x) :

It is clear from (3) that, since �=2 = ce����t�1 , the parameter of the Poisson distribution
is a linear function of �t�1, the previous position of the state. This implies that if �t�1 is
small enough, then the Poisson probabilities will tend to concentrate on the value zero.
As a result, the noncentral �2 density will approach a central �2 with 2q + 2 degrees of
freedom. Therefore, for small values of �t�1 only if q is large does the Gaussian density
give a good approximation. In particular, if q < 0 then 2q + 2 < 2 and the density
becomes a monotonically decreasing function that diverges when the argument �t tends
to zero. Clearly, such a function should not be approximated by a bell-shaped normal
density function.

The condition q > 0 ensures that the factor cannot reach the origin. If we compute
the values of q implied by the estimated parameters obtained in the existing literature
(as shown in Table 1) we can see immediately that the case q < 0 is indeed relevant:
one of the factors can typically reach the origin. The only exception is the paper by
Geyer and Pichler (1999) but it is worth noting that their analysis of the two-factor CIR
model cannot be compared directly to the others because the estimation is carried out
on rescaled interest rates.

3Lund (1997) gives details of the procedure.
4See Johnson and Kotz (1970; ch. 28).
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The Monte Carlo experiments carried out in Lund (1997) and Duan and Simonato
(1999) do not take this feature of the multi-factor CIR models into account. In fact,
Duan and Simonato (1999) only simulate from one-factor models. Clearly, in a one-factor
model it is not realistic to assume that the single factor, which is also the instantaneous
interest rate, can reach the origin. But in a multi-factor model the factors typically have
very di�erent statistical properties. Lund (1997) uses a two-factor model which cannot
be compared to the ones whose estimates are shown in Table 1 because the speci�cations
are di�erent. Lund's model is a `double decay' model, i.e. a model in which one factor
reverts to a stochastic mean level that evolves as a CIR process, whereas in the model
discussed here (like in all the articles quoted in the table) the short rate is the sum of
two CIR processes. The reason why neither factor can attain the origin in the `double
decay' case is that both factors can be interpreted as interest rates (a short rate and a
long term mean rate) and therefore the estimated parameters re
ect the fact that the
observed interest rates do not reach the level zero. Despite its useful interpretation,
Lund's model is less tractable than the one discussed in this paper as bond prices are
not available in closed form.

III Computing the likelihood

A Monte Carlo integration

In the state space form described above it is impossible to write the density of the
observations y1; : : : ;yT directly, because we only make assumptions about the condi-
tional density. Theoretically, one could write down the joint density of y1; : : : ;yT and
�1; : : : ; �T and then integrate out the state values:

p (y) =

Z
p (y;�) d� (4)

where

p (y;�) = p (yj�) p (�) =
TY
t=1

p (ytj�t)

| {z }
TY
t=2

p (�tj�t�1)

| {z }
� p (�1)| {z }.

Gaussian Noncentral �2 Gamma

(5)

In this paper I propose an eÆcient procedure to compute the above high-dimensional
integral.

The �rst product in (5) can be thought of as a density for �t; t = 1; : : : ; T multiplied
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by a constant. Call

�t (x) = p (ytj�t = x)

=

NY
i=1

1p
2�h

exp

"
� [yt (� i) +A (� i)�B (� i)x]

2

2h

#

=
1

(2�h)N=2
exp

��ax2 � btx� ct
�

where

a � 1

2h

NX
i=1

B2 (� i) ; bt � �1

h

NX
i=1

(yt (� i)�A (� i))B (� i)

and

ct � 1

2h

NX
i=1

(yt (� i)�A (� i))
2

Then the importance density can be chosen to be

f (�t) = �t (�t) =

Z
1

0

�t (x) dx:

Since a is a sum of squares, the density f () exists and is symmetric around the mean
�bt=(2a), i.e. the OLS estimator of �t computed from the cross section of observations

at time t. Note that the random draws �
(i)
t are mutually independent by construction.

The choice of this importance density is motivated by the informativeness of the obser-
vation distribution p (yj�), which is typically very concentrated around the mean. The
parameter h, i.e. the measurement error variance, plays an important role in determin-
ing the shape of f() as it appears in the denominator of a. Small values of h result in
very concentrated densities. For example, de Jong and Santa Clara (1999) obtain an
estimate of 4 basis points for

p
h in their two-factor CIR model.

Thus the integral (4) becomes:

p (y) =

Z
1

0

TY
t=1

�t (�t) � p (�1)
TY
t=2

p (�tj�t�1) d�

/ Ef

 
p (�1)

TY
t=2

p (�tj�t�1)

!
(6)

where Ef denotes expectation with respect to the joint distribution
Q

f (�t). The
constant of proportionality is given by the product of integrals

TY
t=1

Z
1

0

�t (x) dx:
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The expectation (6) can be estimated as

1

n

nX
i=1

"
p
�
�
(i)
1

� TY
t=2

p
�
�
(i)
t j�(i)t�1

�#
� 1

n

nX
i=1

w(i) (7)

where �
(i)
t is a draw from f (�t).

B Particle �ltering

Unfortunately, for realistic sample sizes, the procedure described above su�ers from a
problematic degeneracy: one of the weights w(i) typically dominates the sum (7), so
that the others have no e�ect on the estimate. This problem can be solved by using
importance sampling with sequential resampling. A good introduction to sequential
Monte Carlo methods can be found in Doucet, de Freitas and Gordon (2001).

Rewrite the joint likelihood p (y) as

p (y) = p (y1)

TY
t=2

p (ytjYt�1) :

Each density will be estimated by Monte Carlo. Firstly, p (y1) can be estimated as

K1

n

nX
i=1

p
�
�
(i)
1

�

where �
(i)
1 is drawn from f (�1) and

Kt �
Z
1

0

�t (x) dx:

Let
w
(i)
1 � K1 p

�
�
(i)
1

�
and

w
(i)
t � K1 p

�
�
(i)
1

� tY
s=2

Ks p
�
�
(i)
s j�(i)s�1

�
Pn

j=1w
(j)
s�1

= Kt p
�
�
(i)
t j�(i)t�1

� w
(i)
t�1Pn

j=1w
(j)
t�1

; t = 2; : : : ; T:
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Thus we have that the densities p (ytjYt�1), for t = 2; : : : ; T , can be estimated as5

nX
i=1

w
(i)
t :

The sequential nature of the procedure allows us to check the accuracy of the approxi-
mation step by step, i.e. at each point in time t. The statistic

en =

�Pn
i=1w

(i)
t

�2
Pn

i=1

�
w
(i)
t

�2
can be used to detect the presence of degeneracies. When all weights are equal, and
therefore we are not wasting any draw, en = n. When the degeneracy is extreme, i.e. all
weights are equal to zero except one, en = 1. At each step I compute the statistic and
resample if it falls below the threshold set at n=2. The resampling algorithm used here

Importance sampling/sequential resampling Monte Carlo �lter

1. Sample �
(i)
1 from f (�1) for i = 1; : : : ; �n. Compute the weights w

(i)
1 .

2. For t = 2; : : : ; T sample �
(i)
t from f (�t) for i = 1; : : : ; �n. Compute the

weights w
(i)
t recursively from w

(i)
t�1.

3. Given all the weights for time t, compute the statistic en. If en < �n=2
then resample.

4. Go back to point 2.

is the systematic resampling described by Kitagawa (1996). After the resampling stage
the weight of each particle becomes

bw(i)
t =

Pn
i=1w

(i)
t

n
:

The advantage of this residual resampling scheme on, for example, multinomial resam-
pling is that it minimises the variance of the number of replicates of each particle in the
old sample that will appear in the new one.

5Doucet, Godsill and Andrieu (2000) and H�urzeler and K�unsch (2001) describe alternative estimators

that are more eÆcient, especially when the resampling procedure is used many times. In this case their

procedures would involve taking draws from a noncentral �2 distribution to generate a prediction sample

at each iteration.
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Resampling algorithm

First, compute the cumulative distribution function of the normalised weights

w
(i)
t =

Pn
i=1 w

(i)
t :

cdfi =

(
0 i = 0

cdfi�1 + w
(i)
t =

Pn
i=1w

(i)
t i = 1; : : : ; n

Then the cumulative distribution function for the new sample of particles,ccdf i, is obtained as follows. First, draw ccdf1 from a uniform distribution with

support (0; 1=n) and set ccdf i = ccdf i�1 + 1=n; i = 2; : : : ; n Furthermore, let
j = 1. Then, starting with i = 1

� If cdfj � ccdf i then set the i-th particle in the new sample equal to the
j-th particle in the old one, i.e.�b�(i)1 ; : : : ; b�(i)t � = ��(j)1 ; : : : ; �

(j)
t

�
Increase i and check the inequality again.

� If cdfj < ccdf i then increase j and check the inequality again.

The two steps are repeated until all the new particles
�b�(i)1 ; : : : ; b�(i)t � have

been obtained.

IV Filtering and smoothing

Monte Carlo integration can also be used to obtain �ltered and smoothed values of
the state. Firstly, suppose that we are interested in the expectation E (�tjYt) ; i.e. the
expectation of the position of the state at time t given the observations up to time t.
Then we have

E (�tjYt) =

Z
�t p (�tjYt) d�t

=

Z
�t p (�t;y1; : : : ;yt) =p (y1; : : : ;yt) d�t

=

Z
�t

R
p (�1; : : : ; �t;y1; : : : ;yt) d�t�1 : : : d�1R
p (�1; : : : ; �t;y1; : : : ;yt) d�t : : : d�1

d�t

=

R
�t p (�1; : : : ; �t;y1; : : : ;yt) d�t : : : d�1R
p (�1; : : : ; �t;y1; : : : ;yt) d�t : : : d�1

: (8)
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The last expression in (8) can be estimated using

Pn
i=1

h
�
(i)
t p

�
�
(i)
1

�Qt
s=2 p

�
�
(i)
s j�(i)s�1

�i
Pn

i=1

h
p
�
�
(i)
1

�Qt
s=2 p

�
�
(i)
s j�(i)s�1

�i =

Pn
i=1 �

(i)
t w

(i)
tPn

i=1 w
(i)
t

; t = 2; : : : ; T (9)

where again �
(i)
t is a draw from f (�t).

6 Note that the sequential procedure can be

carried out in a computationally eÆcient way if we store at each step the values w
(i)
t .

This allows us to draw only one additional set of n values for the state, i.e. �
(i)
t+1;

i = 1; : : : ; n; from f (�t+1) and set

w
(i)
t+1 = p

�
�
(i)
t+1j�(i)t

�
w
(i)
t :

A similar device can be used to obtain the smoothed estimates of �. Let

E (�tjYT ) =

Z
�t p (�tjYT ) d�t

=

Z
�t p (�t;y1; : : : ;yT ) =p (y1; : : : ;yT ) d�t

=

Z
�t

R
p (�1; : : : ; �T ;y1; : : : ;yT ) d�T : : : d�t+1d�t�1 : : : d�1R

p (�1; : : : ; �T ;y1; : : : ;yt) d�T : : : d�1
d�t

=

R
�t p (�1; : : : ; �T ;y1; : : : ;yT ) d�T : : : d�1R
p (�1; : : : ; �T ;y1; : : : ;yt) d�T : : : d�1

: (10)

The last expression in (10) can be estimated using

Pn
i=1

h
�
(i)
t p

�
�
(i)
1

�QT
s=2 p

�
�
(i)
s j�(i)s�1

�i
Pn

i=1

h
p
�
�
(i)
1

�QT
s=2 p

�
�
(i)
s j�(i)s�1

�i =

Pn
i=1 �

(i)
t w

(i)
TPn

i=1w
(i)
T

; t = 2; : : : ; T (11)

where again �
(i)
t is a draw from f (�t). Note that the �lter and the smoother can be

applied together in a computationally eÆcient way using the weights w
(i)
T that have been

computed in the last step of the �lter to compute the smoothed estimates backward. To

implement this procedure, one only needs to store all the draws �
(i)
t while computing

the �ltered estimates and use them to compute the quantity (11) for t = T; : : : ; 2.

6Several re�nements of the estimators (9) and (11) have been proposed in the literature, for example

by Doucet, Godsill and Andrieu (2000).
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V Generation of pseudo-random numbers

This section describes the pseudo-random number generator used to draw from f (�t).
Recall that

f (�t) = �t (�t) =

Z
1

0

�t (x) dx (12)

where
�t (x) = (2�h)�N=2 exp

��ax2 � btx� ct
�

and the values a; bt and ct are functions of the model's parameters. A draw from f (�t)
can be obtained in two stages using the algorithm described below. The Newton method

Algorithm to draw from the importance density

1. Draw a quantity Æ from the uniform distribution.

2. Take e�t = F�1 (Æ) as the draw from f (�t). F (x) is the cumulative
density function associated with f (�t), i.e.

F (x) =

Z x

0

f (u) du

can be used to invert F , as if we were to solve the problem

min
x

(F (x)� Æ)2

Start with an initial value e�0t = 0:5. Then iterate

e�n+1
t = e�n

t �
�

d2

dx2
(F (x)� Æ)2

�
�1

d

dx
(F (x)� Æ)2

= e�n
t �

R
e�n
t

0
�t (u) du� Æ��

1 + (2�h)N=2
�R

e�n
t

0
�t (u) du� Æ�

��
� (e�n

t )

where Æ� � ÆKt = Æ
R
1

0
�t (x) dx. If regularity conditions apply, the sequence e�n

t con-
verges to a draw from f (�t). In practice, I have iterated (13) until the second term in
the di�erence reached 10�6=(2c). Convergence usually occurs after a few iterations.

The integrals of �t() are computed numerically using the Simpson method. This can
be done eÆciently by storing the value of the integral from zero to the maximum point
�bt=(2a) after the computation of Kt and then adding the integral from the maximum
point to x each time a new integral of the form (12) has to be calculated.

It is worth noting that the procedure lends itself naturally to a bivariate generalisa-
tion. In a two-factor CIR model the exponentials in the Gaussian densities are linear in
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� � � �=�2

0.1862 0.0654 0.0481 -32.03

Table 2: CIR parameters as estimated by de Jong and Santa Clara (1999).

both factors, so that the function � becomes:

�t (x; y) =
NY
i=1

1p
2�h

exp

"
� [yt (� i) +A (� i)�Bx (� i) x�By (� i) y]

2

2h

#

=
1

(2�h)N=2
exp

��axx2 � ayy
2 � at;xyxy � bt;xx� bt;yy � ct

�

where the quantities A, Bx and By are known functions of the parameters. If we had to
draw from f (�1;t; �2;t) we could �rst �x �1;t at the level b�1;t given by the OLS estimator

of �1;t and draw �
(i)
2;t from the univariate density f (�2;tj�1;t = b�1;t). Then �

(i)
1;t could

be drawn from the univariate conditional density f
�
�1;t; �2;tj�2;t = �

(i)
2;t

�
which can be

written as a univariate density of the form of f (). As a result, the procedure would
involve taking two draws from univariate densities.

VI Results for simulated data

A sample of T = 250 weekly observations for the CIR model has been simulated using
the parameters estimated by de Jong and Santa Clara (1999) (shown in Table 2) and
a two step procedure described by Duan and Simonato (1999). Sequential draws from
the Poisson distribution simulate the degrees of freedom of the central chi squared from
which the state variables are drawn. Measurement errors with a standard deviation of
10 basis points are then added to form the observations for eight (N = 8) maturities:
0.25, 0.5, 1, 2, 3, 5, 7 and 10 years. The methodology described above has been used to
compute the likelihood function from the simulated data at the true parameter value.
The computer code was written in Ox 3.0 (see Doornik (2002)) and C. To assess the
accuracy of the estimator, the procedure has been repeated 100 times on the same
simulated sample with di�erent sets of pseudo-random numbers in the Monte Carlo
integration part . Furthermore, the whole exercise has been carried out for three di�erent
values of �n: 100, 200 and 500.

The results are presented in Table 3 and Figure 1. The number of resampling stages
used in the procedure is relatively small (below 13% of the sample size T ), not signi�-
cantly larger, for example, than the corresponding �gure reported in Doucet, Godsill and
Andrieu (2000) who use a less eÆcient resampling scheme and a lower threshold (�n=3).
It turns out that the parameter h a�ects the number of times resampling is performed.
In particular, large values of h make the observation density p (yj�) less informative
and tend to increase the number of resampling stages. As for the computation times, it
takes 2.2 seconds to compute the likelihood with �n = 100 on a Pentium 4 PC, which is
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Figure 1: Each box plot represents the distribution of 100 estimates of the log-likelihood
of the same simulated sample with T = 250 and N = 8 di�erent interest rates. The
number of particles �n used in each exercise is respectively 100, 200 and 500.

�n RS Time S.d.

100 31 2.2 0.744
200 32 4.2 0.474
500 32 10.8 0.359

Table 3: Descriptive statistics for 100 estimates (each obtained for a di�erent seed of the
random generator) of the log-likelihood of the same simulated sample for three di�erent
choices of �n, the number of particles. RS is the average number of resamplings, time is
the average computation time in seconds and S.d. is the standard deviation of the 100
estimates.

a satisfactory result. Using more particles, the computation time becomes 4.2 seconds
for �n = 200 and 10.8 seconds for �n = 500. Both the standard deviations in Table 3
and the box plots in Figure 1 show that increasing the simulation size �n results in a
more accurate estimation. The distribution of the values of the statistic clearly tends
to gradually concentrate around the true value as �n increases.

To assess the accuracy of the maximum likelihood estimator proposed in the paper
I have estimated the CIR parameters �, �, �, � and h from each of the 100 simulated
samples. The numerical maximisation is a diÆcult task in this case because the usual
methods that require the calculation of numerical �rst derivatives fail. This is due to the
fact that the errors introduced by the simulation dominate when one tries to measure
the e�ect of small changes in the value of a parameter and as a result any iterative
optimisation procedure becomes unstable. Fixing the set of pseudo-random numbers
used in the Monte Carlo integration (so that the same draws are used each time the
calculation is performed) does not solve the problem, because resampling introduces
discontinuities in the approximate likelihood function. The solution adopted here is the
use of a grid search. Starting with a suitable initial value, I have calculated the likelihood
function in the neighborhood of the initial point. The procedure is repeated, iteration
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by iteration, for the point giving the largest value of the statistic, until a maximum
point is reached. I have tried several initial points to ensure convergence to a global
maximum.7 It should be noted that, in practice, I used the logarithm of the likelihood
function, thereby introducing a bias in the estimation.

The results are summarised in Figure 2. Each panel reports two histograms that
represent the empirical distribution of the estimated values of four parameters: � (a),
�=�2 (b), � (c) and � (d). The histogram at the top of each panel shows the estimates
obtained with 100 particles, the one at the bottom illustrates the results for �n = 200.
As for the parameter h, using a grid with increments of one basis point I obtained
an estimate equal to the true value (0.001 i.e. 10 basis points) in all cases. For all
four parameters the distributions are bell-shaped and peak at the grid point that is
nearest to the true value. This result indicates that even using a moderate simulation
size (�n = 100) it is possible to obtain a relatively accurate estimate of the parameter
value. If we compare for each parameter the two sets of estimates we can conclude
that doubling the simulation size does not produce signi�cant changes in the empirical
distribution of the estimates. The only e�ect seems to be that the values of �̂ are
slightly more concentrated around the true value. We can conclude that the errors in
the estimation of the likelihood that are caused by simulation do not seem to undermine
the estimation procedure.

VII Conclusion

The contribution of this paper is twofold.
Firstly, I show that the QML procedure, used in many papers in the current literature

to estimate the CIR model from time series data, is based on an approximation of the
latent factors' density that becomes very inaccurate for typical parameter values. I also
argue that this issue is not addressed by the Monte Carlo experiments carried out to
support the conclusion that the QML bias is negligible.

Secondly, I show how to build in a computationally eÆcient way a maximum like-
lihood estimator based on simulation. The advantage of this estimator is to take into
account the exact likelihood function while avoiding the huge computational burden as-
sociated with MCMC methods. A simulation based �lter and smoother is also derived
to compute conditional moments of the latent factors. The proposed methodology is
implemented and tested for the single factor CIR model on a sample of simulated data.
The Monte Carlo procedure is stable and convergence to the true value of the likelihood
is relatively fast. Moreover, I use a grid search to maximise the likelihood function
with respect to the CIR parameters. The estimator seems to have good properties even
using moderate simulation sizes (100 particles for a sample of 250 observations of eight
interest rates). In particular, the e�ect of simulation errors does not seem to undermine
the estimation procedure.

Future work will be focussed on the estimation of the two-factor version of the CIR

7A more sophisticated procedure is proposed by H�urzeler and K�unsch (2001) who use a small number

of sets of particles to compute local approximations of the likelihood functions and then optimise.
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Figure 2: Distribution of the estimators calculated using a grid search from 100 simu-
lated samples for a number of particles �n = 100 and 200. Panel a) plots the empirical

distribution of �̂. Panels b) to d) plot the distributions of ^�=�2, �̂ and 10�̂ respectively.
The histogram at the top of each panel shows the results for �n = 100, the one at the bot-
tom shows the results for �n = 200. The true parameter values are respectively 0.1862,
-32.03, 0.481, 0.654.

model, using a natural generalisation of the univariate procedure. It is also possible
to explore ways to improve the computational eÆciency of the procedure, in particular
with more eÆcient numerical integration algorithms.
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