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Abstract

The estimation of the memory parameter in perturbed long memory series has re-
cently attracted attention motivated especially by the strong persistence of the volatility
of many financial and economic time series and the use of Long Memory in Stochastic
Volatility (LMSV) processes to model such a behaviour. This paper proposes an ex-
tension of the log periodogram regression which explicitly accounts for the added noise.
Contrary the the non linear log periodogram regression of Sun and Phillips (2003), no
linear approximation of the logarithmic term which accounts for the noise is used. This
produces a reduction of the bias and increases the asymptotic efficiency in long memory
signal plus noise series. Asymptotic and finite sample properties of the estimator are
analyzed. Finally an application to the Spanish stock index Ibex35 is included.
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1 INTRODUCTION

The estimation of the memory parameter in perturbed long memory processes has become

a subject of increasing interest motivated especially by the strong persistence found in the

volatility of many financial and economic series. Alternatively to the different extensions of

ARCH and GARCH models, the Long Memory in Stochastic Volatility (LMSV) has proved

a useful tool to model such a strong persistent volatility. A logarithmic transformation of

the squared series becomes a long memory process perturbed by an additive noise where the

long memory signal corresponds to the volatility of the original series. As a result estimation

of the memory parameter of the volatility component in LMSV corresponds to a problem

of estimation in a long memory signal plus noise model. Several estimation techniques have

been proposed in this context (Harvey(1998), Breidt et al.(1998), Deo and Hurvich (2001),

Arteche (2003), Sun and Phillips (2003)).

The perturbed long memory series recently considered in the literature are of the form,

zt = µ + yt + ut (1)

where µ is a finite constant, yt is a long memory (LM) process such that its spectral density

satisfies

fy(λ) = Cλ−2d(1 + O(λα)) as λ → 0 (2)

for a positive finite constant C, α ∈ [1, 2] and 0 < d < 0.5, and ut is a weakly dependent

process. The LMSV model considers ut a non normal white noise but in a more general

signal plus noise model ut can be a serially dependent process as in Arteche (2003) and

Sun and Phillips (2003). The constant α determines the smoothness of the spectral density

of yt around the origin. In the standard fractional ARIMA processes α = 2. We also

consider the cases 2 > α ≥ 1 which correspond for example to the seasonal or cyclical long

memory processes of Arteche and Robinson (1999) where α = 1. The condition of positive

memory 0 < d < 0.5 is usually imposed when dealing with frequency domain estimation

in perturbed long memory processes and it guarantees the asymptotic equivalence between

spectral densities of yt and zt. For ut uncorrelated with yt the spectral density of zt is

fz(λ) = fy(λ) + fu(λ) = Cλ−2d(1 + O(λα)) + fu(λ) ∼ Cλ−2d as λ → 0 (3)
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and zt inherits the memory properties of yt. The semiparametric estimators of d based

on the partial specification of the spectral density in (2) can also be applied in perturbed

LM series as zt. Two semiparametric estimators are mostly used: the log periodogram

regression of Geweke and Porter-Hudak (1983) and the variant of Robinson (1995a), and

the local Whittle or Gaussian semiparametric estimator of Robinson (1995b). Based on

(2) Deo and Hurvich (2001) and Arteche (2003) proved the validity of both techniques in

certain perturbed LM processes.

The version of Robinson (1995a) of the log periodogram regression estimator (LPE) in

a fully observable LM series is based on the least squares regression

log Iyj = a + d(−2 log λj) + vj , j = 1, ..., m,

where

Iyj = Iy(λj) =
1

2πn

∣∣∣∣∣
n∑

t=1

yt exp(−iλjt)

∣∣∣∣∣
2

is the periodogram of the series yt, t = 1, ..., n, at Fourier frequency λj = 2πj/n and m

is the bandwidth such that at least m−1 + mn−1 → 0 as n → ∞. The original regressor

proposed by Geweke and Porter-Hudak was −2 log(2 sin λj

2 ) instead of −2 log λj but both

are asymptotically equivalent and the differences between using one or another are minimal.

The motivation of this estimator is the log linearization in (2) such that

log Iyj = a + d(−2 log λj) + Uyj + O(λα
j ), j = 1, 2, ..., m, (4)

where a = log C − c0, c0 = 0.577216... is Euler’s constant and Uyj = log(Iyjf
−1
y (λj)) + c0.

The bias of the least squares estimate of d is dominated by the O(λα
j ) term which is not

explicitly considered in the regression such that a bias of order O(λα
m) arises (Hurvich et al.

(1998))

The main rival semiparametric estimator of the LPE is the local Whittle or Gaussian

semiparametric estimator (GSE) of Robinson (1995b) defined as the minimizer of

R(d) = log C̃(d)− 2d

m

m∑

j=1

log λj , C̃(d) =
1
m

m∑

j=1

λ2d
j Iyj (5)

over a compact set. This estimator has the computational disadvantage of requiring non-

linear optimization but it is more efficient than the log periodogram regression. However
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both share important affinities as described in Robinson and Henry (2003). In particular

the bias is in both cases of order O(λα
m) (see Henry and Robinson (1996) for the GSE).

Both estimators preserve the consistency and asymptotic normality when applied to

perturbed long memory series (Deo and Hurvich (2001) and Arteche (2003)). In this case

fz(λ) = Cλ−2d

(
1 +

fu(λ)
C

λ2d + O(λα)
)

as λ → 0 (6)

with fu(λ) positive and bounded. The leading term of the bias is in both estimators

fu(λ)C−1λ2d which is the dominant part not considered explicitly in the estimation. Then

the bias is of order O(λ2d
m ) which can be quite severe, especially if d is low. Correspondingly

the asymptotic normality requires at least m1+4dn−4d → 0 as n →∞ which limits the size

of the bandwidth and consequently the asymptotic efficiency of both estimators.

In order to reduce the bias of the GSE Hurvich et al. (2003) suggested to incorporate

explicitly a βλ2d
j term in the estimation to take into account the effect of the added noise

on the spectral density of zt and proposed a modified Gaussian semiparametric estimator

(MGSE) defined as

(d̃M , β̃M ) = arg min
∆×Θ

R(d, β) (7)

where Θ = [0, Θ1], Θ1 < ∞, ∆ = [∆1, ∆2], 0 < ∆1 < ∆2 < 1/2,

R(d, β) = log


 1

m

m∑

j=1

λ2d
j Iyj

1 + βλ2d
j


 +

1
m

m∑

j=1

log{λ−2d
j (1 + βλ2d

j )}

In Hurvich et al. (2003) ut is iid(0, σ2
u) so that fu(λ) = σ2

u(2π)−1 and β = σ2
u(2πC)−1.

Including this term in the estimation procedure the upper bound in the bandwidth is relaxed

to comply
m1+2α

n2α
(log m)2 → 0

as n →∞ which allows a gain in asymptotic efficiency. In the fractional ARIMA processes

the MGSE achieves a rate of convergence arbitrarily close to n2/5 which is the upper bound of

the rate of convergence of the Gaussian semiparametric estimator in the absence of additive

noise. However with an additive noise the best possible rate of convergence achieved by

the GSE is n2d/(4d+1). Regarding the bias, the MGSE has a bias of order O(λα
m) instead of

O(λ2d
m ) which is the bias of the GSE in the presence of an additive noise.
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Sun and Phillips (2003) extended the log periodogram regression in a similar manner.

From (6) with f ′u(0) = 0

log Izj = log C − c0 + d(−2 log λj) + log
(

1 +
fu(λ)

C
λ2d

j + O(λα
j )

)
+ Uzj

= log C − c0 + d(−2 log λj) + log
(

1 +
fu(0)

C
λ2d

j

)
+ log

(
1 +

O(λα
j )

1 + fu(0)
C λ2d

j

)
+ Uzj

= log C − c0 + d(−2 log λj) + log
(

1 +
fu(0)

C
λ2d

j

)
+ O(λα

j ) + Uzj (8)

= log C − c0 + d(−2 log λj) +
fu(0)

C
λ2d

j + O(λα∗
j ) + Uzj

where α∗ = min(4d, α). Sun and Phillips (2003) proposed a non linear log periodogram

regression

log Izj = a + d(−2 log λj) + βλ2d
j + Uzj (9)

for β = fu(0)/C, such that the non linear log periodogram regression estimator (NLPE) is

defined as

(â, d̂, β̂) = arg min
m∑

j=1

(log Izj − a + d(2 log λj)− βλ2d
j )2 (10)

The bias of d̂ is of order O(λα∗
m ) which is produced by the O(λα∗

j ) omitted in the regression in

(9). Correspondingly the upper bound of m for the asymptotic normality is O(n2α∗/(2α∗+1)).

Sun and Phillips (2003) only consider the case α = 2 so that α∗ = 4d and the behaviour of

m is restricted to be O(n8d/(8d+1)) with a bias of order O(λ4d
m ), but the extension to α < 2

is straightforward. The asymptotic efficiency of the NLPE is higher than in the standard

LPE but lower than the asymptotic efficiency of the MGSE when α > 4d. The reason of

this behaviour is the approximation of the log expression in (8). This approach has been

used by Andrews and Geggenberger (2003) in their bias reduced log periodogram regression

in order to get a linear regression model. However, the regression model of Sun and Phillips

(2003) is still non linear and the approximate linearization of the logarithmic term does not

imply any computational advantage. Instead, noting (8) we propose the following non linear

regression model

log Izj = a + d(−2 log λj) + log(1 + βλ2d
j ) + Uzj (11)

which only leaves an O(λα
j ) term out of explicit consideration.
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Section 2 considers the bias of the periodogram as an approximation of the spectral

density of the LM signal. This bias is directly related to the bias of LPE and GSE of the

memory parameter in a perturbed LM process. Section 3 analyzes the asymptotic properties

of the estimator based in the regression model in equation (11) that we call the augmented

log periodogram estimator (ALPE) . Section 4 considers its finite sample behaviour and

compares it with the LPE and NLPE in LMSV models. Section 5 shows an application to

a Ibex35 stock index series. Finally section 6 concludes. Technical details are placed in the

Appendix.

2 ASYMPTOTIC BIAS OF THE PERIODOGRAM

The properties of the different estimators of d depend on the adequacy of the approxima-

tion of the periodogram to the spectral density. Hurvich and Beltrao (1993), Robinson

(1995a) and Arteche and Velasco (2003) in an asymmetric long memory context, observed

that the asymptotic relative bias of the periodogram as an approximation of the spectral

density produces the bias typically encountered in semiparametric estimates of the memory

parameters.

Deo and Hurvich (2001), Crato and Ray (2002) and Arteche (2003) found that the bias

is quite severe in perturbed long memory series if the added noise is not explicitly considered

in the estimation. This bias is caused by the poor approximation of the periodogram of zt to

the spectral density of the signal yt. This section analyzes the asymptotic behaviour of the

periodogram of the observable series zt as an approximation of the spectral density of the

latent signal yt when evaluated at the Fourier frequency λj for both j fixed and increasing

with n as n →∞.

Consider the following assumptions:

A.1: zt in (1) is a long memory signal plus noise process with yt an LM process with

spectral density function in (2) with d < 0.5 and ut is stationary with positive and bounded

continuous spectral density function fu(λ).

A.2: yt and ut are independent.
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Theorem 1 Let zt satisfy assumptions A.1 and A.2 and define

Lj(d) = E

[
Izj

Cλ−2d
j

]
.

Then, considering j fixed:

Lj(d) = A1j + A2j + o(n−2d)

where

lim
n→∞A1j =

∫ ∞

−∞
ψj(λ)

∣∣∣∣
λ

2πj

∣∣∣∣
−2d

dλ

and

lim
n→∞n2dA2j =

∫ ∞

−∞
ψj(λ)

fu(0)
C(2πj)−2d

dλ

where

ψj(λ) =
2
π

sin2 λ
2

(2πj − λ)2
.

Remark 1: In the LMSV case fu(0) = σ2
ξ/2π. The influence of the noise is clear here,

the larger the variance of the noise the higher the relative bias of the periodogram. This

explains the high bias of semiparametric estimates in LMSV models under a low signal to

noise ratio in Crato and Ray (2002) and Arteche (2003).

Remark 2: When d < 0 the bias increases without limit as n increases. This justifies

the difficulties encountered when estimating a negative d in perturbed long memory series

(Deo and Hurvich (2001) and Arteche (2003)).

It is also interesting to consider the asymptotic bias of the periodogram at Fourier

frequencies with j increasing with n.

Theorem 2 Let zt satisfy assumptions A.1 and A.2, and consider a sequence of positive

integers j = j(n) such that j/n → 0 as n →∞. Then

Lj(d) = 1 + O

(
log j

j
+ λ

min(α,2d)
j

)

Proof: The only variation with the proof of Theorem 2 in Robinson (1995a) comes from

the difference between fz(λj) and Cλ−2d
j which by assumptions A.1 and A.2 is

fz(λj)− Cλ−2d
j = fy(λj) + fu(λj)− Cλ−2d

j
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and by assumption A.1,
fz(λj)
Cλ−2d

j

= 1 + O
(
λ

min(α,2d)
j

)
. 2

The second term in the right hand side of the equality in Theorem 2 can be guaranteed

to be negligible only under positive memory. The spectral density of zt only inherits the

behavior of the spectrum of yt if d > 0. This makes difficult the estimation of the memory

parameter of the signal for d < 0. In fact, semiparametric estimates of d in perturbed LM

series have been only proposed for positive memory avoiding the negative d case.

3 AUGMENTED LOG PERIODOGRAM REGRESSION

The augmented log periodogram estimator (ALPE) is defined as

(ã, d̃, β̃) = arg min
m∑

j=1

(log Izj − a + d(2 log λj)− log(1 + βλ2d
j ))2 (12)

under the constraint β ≥ 0. Concentrating the constant a out

(d̃, β̃) = arg min
∆×Θ

Q(d, β) (13)

where

Q(d, b) =
m∑

j=1

(log I∗zj + d(2 log λj)∗ − log∗(1 + βλ2d
j ))2

and for a general ξt we use the notation ξ∗t = ξt − ξ̄ where ξ̄ =
∑

ξt/n.

The first order conditions of this minimization problem are

S(d̃, β̃) = (0, Λ)′

Λβ = 0

where

S(d, β) =
m∑

j=1

(
x∗1j(d, β)
x∗2j(d, β)

)
Wj(dβ)

whith

x1j(d, β) = 2

(
1− βλ2d

j

1 + βλ2d
j

)
log λj ,

x2j(d, β) = − λ2d
j

1 + βλ2d
j

,

Wj(d, β) = log I∗zj + d(2 log λj)∗ − log∗(1 + βλ2d
j )
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The elements of the Hessian matrix H(d, β) are

H11(d, β) =
m∑

j=1

(x∗1j)
2 − 4β

m∑

j=1

Wj

(log λj)2λ2d
j

(1 + βλ2d
j )2

H12(d, β) =
m∑

j=1

x∗1jx
∗
2j − 2

m∑

j=1

Wj

(log λj)λ2d
j

(1 + βλ2d
j )2

H22(d, β) =
m∑

j=1

(x∗2j)
2 +

m∑

j=1

Wj

λ4d
j

(1 + βλ2d
j )2

Let d0 be the true unknown memory parameter and d any admissible value and consider

the same notation for the rest of parameters to estimate. Define the diagonal matrix Dn =

diag(
√

m,λ2d0
m

√
m) and the matrix

Ω =

(
4 − 4d0

(2d0+1)2

− 4d0
(2d0+1)2

4d2
0

(4d0+1)(2d0+1)2

)

Consider the following assumptions:

B.1: yt and ut are independent Gaussian processes.

B.2: fu(λ) is continuous on [−π, π], bounded above and away from zero with bounded

second derivative in a neighbourhood of zero.

B.3: The spectral density of yt satisfy

fy(λ) = Cλ−2d(1 + Eλα + o(λα))

for some finite E and α ∈ (4d0, 2].

B.4: As n →∞,
m2α+1

n2α
→ K

for some positive constant K.

Assumption B.1 is quite severe and excludes LMSV models where ut is not Gaussian

but a log chi-square. We impose B.1 for simplicity and to directly compare our results with

those in Sun and Phillips (2003). Considering recent results, Guassianity of signal and noise

could be relaxed. The hypothesis of Gaussianity of yt could be weakened as in Velasco

(2000) and LMSV could also be allowed as in Deo and Hurvich (2001). However this would
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significantly complicate the technical details of the proofs and we prefer to keep the technical

requirements to a minimum. Assumption B.2 restricts the behaviour of ut and B.3 imposes

a particular spectral behaviour of yt around zero. As in Henry and Robinson (1996) this

local specification permits to obtain the asymptotic bias of d̃ in terms of E. We restrict our

analysis to the case α > 4d0 where the ALPE achieves a lower bias and higher asymptotic

efficiency than the NLPE. In the standard fractional ARIMA process as considered in Sun

and Phillips (2003) α = 2. We consider also α < 2 what may be relevant in some situations,

and permit a direct extension to the seasonal or cyclical long memory case. Assumption

B.4 restricts the behaviour of the bandwidth m in a similar manner as in Sun and Phillips

(2003) but allowing a larger m.

Theorem 3 Let zt in (1) satisfy assumption B.1-B.3 and m satisfy B.4. Then as n →∞

a) If var(ut) > 0

Dn

(
d̃− d0

β̃ − β0

)
d→ N

(
Ω−1b,

π2

6
Ω−1

)

b) If var(ut) = 0

√
m(d̃− d0)

d→ −(Ω̃11η1 + Ω̃12η2){Ω̃12η1 + Ω̃22η2 ≤ 0} − Ω−1
11 η1{Ω̃12η1 + Ω̃22η2 > 0}

√
mλ2d0

m (β̃ − β0)
d→ −(Ω̃12η1 + Ω̃22η2){Ω̃12η1 + Ω̃22η2 ≤ 0}

where Ω̃ = (Ω̃ij) = Ω−1, η = (η1, η2)′ ∼ N(−b, π2Ω/6) and

b = (2π)αK2

(
− α

(1+α)2
αd0

(2d0+α+1)(2d0+1)(1+α)

)
E.

Sun and Phillips (2003) consider the case yt = (1 − L)−d0wt with a weak dependent

wt such that fz(λ) = (2 sin λ
2 )−2d0(fw(λ) + (2 sin λ

2 )2d0fu(λ)) and then α = 2, C0 = fw(0),

β0 = fu(0)/fw(0) and E = (d0/6 + f ′′w(0)/fw(0)) /2. Whereas in Sun and Phillips (2003)

the bias leading term b is different when var(ut) = 0 and var(ut) > 0 we do not need to

discriminate both situations and in both cases the bias is of the same order.

When var(ut) > 0 the asymptotic bias of (d̃, β̃) is

D−1
n Ω−1bn = D−1

n Ω−1√mλα
m2

(
− α

(1+α)2
αd0

(2d0+α+1)(2d0+1)(1+α)

)
E
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=
λα

mα(2d0 + 1)E
4d0(1 + α)2(2d0 + α + 1)

(
α− 2d0

λ−2d0
m

(2d0+1)(4d0+1)α
d0

)

which for the processes considered in Sun and Phillips (2003) corresponds to the results in

their Remark 2 but with the bn of the σu = 0 case and correcting the rate of convergence

in the asymptotic bias of β̃ and the fw(0)2/fu(0)2 term which should be fu(0)2/fw(0)2. In

particular the asymptotic bias of d̃ is

ABias(d̃) =
(m

n

)α
K0 where K0 =

(2π)αα(2d0 + 1)(α− 2d0)E
4d0(1 + α)2(2d0 + α + 1)

In contrast to the LPE and NLPE, the ALPE d̃ has an asymptotic positive bias which

decreases with d0. The asymptotic variance is

AV ar(d̃) =
π2

24m
Cd where Cd = 1 +

1 + 4d0

4d2
0

and consequently the asymptotic mean squared error is

AMSE(d̃) =
π2

24m
Cd +

(m

n

)2α
K2

0 .

The optimal bandwidth, in an asymptotic MSE sense, is

mopt =
(

π2Cd

48αK2
0

) 1
2α+1

n
2α

2α+1 .

The optimal bandwidth of the ALPE increases with n faster than the corresponding mopt

of the NLPE. Correspondingly the AMSE(d̃) converges to zero at a rate n−2α/(2α+1) which

is faster that the n−4d0/(4d0+1) obtained with the optimal m in the LPE and if α > 4d0 (as

in the α = 2 case) it is faster than the n−8d0/(8d0+1) rate achieved by the NLPE with an

optimal m.

4 FINITE SAMPLE PERFORMANCE

Deo and Hurvich (2001) and Crato and Ray (2002) show that the finite sample bias of the

LPE in perturbed LM series is very large, especially when the variance of the added noise is

high with respect to the variance of the LM signal. A considerable bias reduction is achieved

by the NLPE of Sun and Phillips (2003). We compare the finite sample performance of these

two estimators with the ALPE in a LMSV

zt = yt + ut
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for (1 − L)dyt = wt and ut = log ε2
t , for εt and wt independent, εt is standard normal and

wt ∼ N(0, σ2
w) for σ2

w = 0.5, 0.1. We have chosen these low variances because they are close

to the values that have been empirically found when a LMSV model is fitted to financial

time series (see Breidt et al. (1998) and Pérez and Ruiz (2001) among others). These values

correspond to long run noise to signal ratios fu(0)/fw(0) = π2, 5π2. The first value is close

to the values considered in Deo and Hurvich (2001) and Sun and Phillips (2003). The second

one corresponds more closely to the values found in financial time series. We just consider

a representative case d = 0.45. Since εt is standard normal, ut is a log χ2
1 and consequently

assumption B.1 does not hold. However we consider relevant to show that the ALPE can be

applied in LMSV models which are a essential tool in the modelling of financial time series,

and justify in that way our conjecture of no necessity of Gaussianity of the added noise.

The Monte Carlo is carried out in SPlus 2000, generating yt with the option arima.fracdiff.sim

and for the non linear optimization we use nlminb for 0.0001 < d < 0.7 providing the gradi-

ent and the hessian. We just consider a sample size of n = 1024 which is comparable with

the size of many financial series and permits the exact use of the Fast Fourier Transform.

The grid of bandwidths analysed is m = 10(2)..., 500. The number of replications is 1000.

Figure 1 shows the bias and mean square error of the LPE, NLPE and ALPE. The bias

of the ALPE is significantly lower than the corresponding bias of the NLPE and the LPE

and it shows a milder increase with m. The MSE of the ALPE is also more stable with m

and, contrary to the LPE and NLPE, does not show a marked minimum for a small m. For a

small bandwidth the MSE of the ALPE is not the lowest of the three estimation procedures

but the situation adjusts as the bandwidth increases. Overall the main advantage of the

ALPE is a significant reduction of the bias due to the explicit consideration of the added

noise in the estimation procedure.

5 LONG MEMORY IN IBEX35 VOLATILITY

Many empirical papers have recently exposed evidence of long memory in the volatility of

financial time series such as asset returns. In this section we analyze the persistence of the

volatility of the Spanish stock index Ibex35 composed of the 35 more actively traded stocks.
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The series covers the period 1-10-93 to 22-3-96 half-hourly. The returns are constructed

by first differencing the logarithm of the transaction prices of the last transaction every

30 minutes, omitting incomplete days. After this modification we get the series of intra-

day returns xt, t = 1, ..., 7260. Arteche (2003) found evidence of long memory volatility

by means of the Gaussian semiparametric estimator described in equation (5) and observed

that the estimates decreased with the bandwidth which could be explained by the increasing

negative bias found in LMSV models. Figure 2 show the LPE, NLPE and ALPE for a grid

of bandwidths m = 6, ..., 160. The decreasing behaviour of the LPE is similar to that of the

Gaussian semiparametric estimation in Figure 3. However the NLPE and ALPE are higher

and more estable with m sustaining the Monte Carlo results in the previous section.

For comparative purposes, Figure 3 shows the Gaussian semiparametric estimates (GSE)

defined in (5) and the modified Gaussian semiparametric (MGSE) in equation (7). The

resemblance to the LPE and ALPE is evident. The MGSE is more similar to the ALPE

because contrary to the NLPE, neither of them use the linear approximation of the logarithm

term.

6 CONCLUSION

The strong persistence of the volatility in many financial and economic time series and

the use of LMSV models to capture such behaviour has motivated a recent interest in the

estimation of the memory parameter in perturbed long memory series. The added noise

gives rise to a negative bias in traditional estimators based on a local specification of the

spectral density. We focus on the log periodogram regression and propose a modification

that explicitly takes into account the added noise. Avoiding the log-linearization used by

Sun and Phillips (2003) we attain a gain in efficiency and a significant reduction of the bias.

Although the asymptotic properties of the ALPE have been rigourously proved only

under Gaussianity of signal and noise, our Monte Carlo results and other recent theoretical

results in somewhat similar contexts suggest that both requirements might not be necessary,

but further research following this line would be welcome.
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A APPENDIX: TECHNICAL DETAILS

Proof of Theorem 1: The proof is similar to that of Theorem 1 in Hurvich and Beltrao

(1993) (see also Theorem 1 in Arteche and Velasco (2003)). Write

Lj(d) =
∫ n

−n
gn(λ)dλ (A.1)

where

gn(λ) = Kn(λj − λ)
fz(λ)
Cλ−2d

j

17



and the Fejer´s kernel

Kn(λ) =
1

2πn
|

n∑

t=1

eitλ|2 =
sin2(λ

2n)

2πn sin2 λ
2

satisfies

Kn(λ) ≤ constant×min(n, n−1λ−2) (A.2)

From (A.2) the integral in (A.1) over [−π,−n−δ]
⋃

[nδ, π] for some δ ∈ (0, 0.5) is

O(n−1|λj − n−δ|−2λ2d

∫ π

−π
fz(λ)dλ) = O(n−1n2δn−2d) = o(n−2d).

The integral over (−n−δ, n−δ) is A1j + A2j where

A1j =
∫ n1−δ

−n1−δ

sin2
(

2πj−λ
2

)

2πn2 sin2
(

2πj−λ
2n

) fy

(
λ
n

)

Cλ−2d
j

dλ

A2j =
∫ n1−δ

−n1−δ

sin2
(

2πj−λ
2

)

2πn2 sin2
(

2πj−λ
2n

) fu

(
λ
n

)

Cλ−2d
j

dλ

and the theorem is proved letting n go to ∞. 2

Proof of Theorem 3: The theorem is proved as in Sun and Phillips (2003) noting that

x1j(d, β) = 2

(
1− βλ2d

j

1 + βλ2d
j

)
log λj = 2 log λj(1 + o(1)) (A.3)

x2j(d, β) = − λ2d
j

1 + βλ2d
j

= −λ2d
j (1 + o(1)) (A.4)

which are the corresponding expressions in Sun and Phillips (2003) except a o(1) term. The

consistency of d̃ and β̃ is proved similarly noting (A.3) and (A.4). With respect to the

asymptotic normality we emphasize two main differences. The first one is related with the

convergence of the Hessian matrix in Lemma 5 of Sun and Phillips (2003), in particular the

proof of part a),

sup
(d,β)∈Θn

||D−1
n (H(d, β)− J(d, β))D−1

n || = op(1) (A.5)

where Θn = {(d, β) : |λ−d0
m (d − d0)| < ε and |β − β0| < ε} for ε > 0 arbitrary small and

Jab(d, β) =
∑m

j=1 x∗ajx
∗
bj , a, b = 1, 2. The proof that the (1,1), (1,2) and (2,1) elements of

the left hand side are o(1) is as in Sun and Phillips (2003) noting (A.3) and (A.4). However

the (2,2) element is not zero but

λ−4d
m

m

m∑

j=1

Wjλ
4d
j

(1 + βλ2d
j )2

=
1
m

m∑

j=1

(aj(d, β)− ā(d, β))W1j(d, β)

18



where

aj(d, β) =
(j/m)4d

(1 + βλ2d
j )2

W1j(d, β) = Vj(d, β) + εj + Uj

Vj(d, β) = 2(d− d0) log λj + log(1 + β0λ
2d0
j )− log(1 + βλ2d

j )

εj =
λα

j E

1 + β0λ
2d0
j

+ o(λα
j ).

Now

|aj(d, β)| = O

([
j

m

]4d
)

j = 1, 2, ..., m,

and |aj(d, β)− aj−1(d, β)| is bounded by
∣∣∣∣∣

(j/m)4d

(1 + βλ2d
j )2

− ([j − 1]/m)4d

(1 + βλ2d
j )2

∣∣∣∣∣ +

∣∣∣∣∣
([j − 1]/m)4d

(1 + βλ2d
j )2

− ([j − 1]/m)4d

(1 + βλ2d
j−1)2

∣∣∣∣∣

=

∣∣∣∣∣
(

j

m

)4d 1
(1 + βλ2d

j )2

[
1−

(
j − 1

j

)4d
]∣∣∣∣∣ +

∣∣∣∣∣
(

j − 1
m

)4d β2(λ4d
j−1 − λ4d

j ) + 2β(λ2d
j−1 − λ2d

j )

(1 + βλ2d
j )2(1 + βλ2d

j−1)2

∣∣∣∣∣

= O

(
j4d−1

m4d

)

since λa
j−1 − λa

j = O(j−1λa
j ) for a 6= 0. By lemma 3 in Sun and Phillips (2003)

sup
(d,β)∈Θn

∣∣∣∣∣∣
1
m

m∑

j=1

(aj − ā)Uj

∣∣∣∣∣∣
= Op

(
1√
m

)
= op(1)

Also sup(d,β)∈Θn

∣∣∣m−1
∑m

j=1(aj − ā)Vj(d, β)
∣∣∣ is bounded by

sup
(d,β)∈Θn

∣∣∣∣∣∣
1
m

m∑

j=1

(aj − ā)2(d− d0) log λj

∣∣∣∣∣∣
+ sup

(d,β)∈Θn

∣∣∣∣∣∣
1
m

m∑

j=1

(aj − ā) log

(
1 + β0λ

2d0
j

1 + βλ2d
j

)∣∣∣∣∣∣

= O

(
log λm sup

(d,β)∈Θn

|d− d0|
)

) + O

(
sup

(d,β)∈Θn

λ2d
m

)
= o(1)

since aj = O(1), and similarly

sup
(d,β)∈Θn

∣∣∣∣∣∣
1
m

m∑

j=1

(aj − ā)εj

∣∣∣∣∣∣
= O(λα

m) = o(1)

and (A.5) holds. With this result the convergence of sup(d,β)∈Θn
|D−1

n H(d, β)D−1
n | to Ω

follows as in Sun and Phillips (2003).
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The main difference with the NLPE lies on the bias. Consider

D−1
n S(d0, β0) =

1√
m

m∑

j=1

Bj(Uj + εj)

where Bj = (x∗1j(d0, β0) , λ−2d0
m x∗2j(d0, βo))′. The bias comes from m−1/2

∑
Bjεj such that

1√
m

m∑

j=1

x∗1j(d0, β0)εj =
2E√
m

m∑

j=1

(
log j − 1

m

∑

k

log k

)
λα

j

1 + β0λ
2d0
j

+ o

(
mα+ 1

2

nα

)

=
2E√
m

m∑

j=1

(
log j − 1

m

∑

k

log k

)
λα

j + o

(
mα+ 1

2

nα

)

=
2Eα

(1 + α)2
√

mλα
m + o

(
mα+ 1

2

nα

)

λ−2d0
m√
m

m∑

j=1

x∗2j(d0, β0)εj = −λ−2d0
m E√

m

m∑

j=1

(
λ2d0

j − 1
m

∑

k

λ2d0
k

)
λα

j

1 + β0λ
2d0
j

+ o

(
mα+ 1

2

nα

)

= − 2d0αE

(2d0 + α + 1)(2d0 + 1)(1 + α)
λα

m

√
m + o

(
mα+ 1

2

nα

)

Then as n →∞

D−1
n S(d0, β0) + bn =

1√
m

m∑

j=1

BjUj + o(1) d→ N

(
0,

π2

6
Ω

)

as in (A.34)-(A.37) in Sun and Phillips (2003). The proof when var(ut) = 0 follows as in

their Theorem 4. 2
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Figure 1: Bias of LPE, NLPE and ALPE, d = 0.45
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Figure 2: Log periodogram estimates (IBEX35)
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Figure 3: Standard and modified Gaussian semiparametric estimates (IBEX35)
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