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Abstract

This paper develops a globally convergent algorithm which modifies
standard block Gauss-Seidel iterations used by tatonnement methods for
solving large scale deterministic heterogeneous agent models. It is shown
that the restrictions on the structure of the Jacobi matrix implicit in any
such first-order iterative method can easily be relaxed for these models.
Instead of relying on ad hoc and fixed dampening factors, standard Quasi-
Newton methods can be used to determine the exact Jacobi matrix for
steady state calculations and to update its elements by Broyden’s method
as the iteration proceeds. By transforming variables such that they are
constant in the steady states, very few elements of the Jacobian have to
be determined. For transition calculations the resulting steady state Ja-
cobi matrix can be used as an approximation of the true transition Jacobi
matrix. This extension of standard Gauss-Seidel iterations is shown to con-
siderably improve convergence both in terms of speed as well as robustness
relative to an ad hoc choice of fixed dampening factors. In addition, the
relative advantage of the modified algorithm increases in the number of
state variables of the model. The algorithm is particularly attractive since
it is easy to implement - it only augments conventional and intuitive taton-
nement iterations by standard numerical methods.
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1 Introduction

This paper modifies Gauss-Seidel iterations used to solve large-scale deterministic
heterogeneous agent models. Such models are increasingly used for analysis of
economic questions. Standard procedures use domain truncation methods and re-
sort to general methods for solving large systems of (nonlinear) equations. Three
types of such conventional solution methods can be distinguished: (i) Newton
based methods such as the L-B-J method!, (ii) the Fair-Taylor (extended path)
method? and (iii) tatonnement methods®, see (Judd, Kubler, and Schmedders
2000). Let @ = {¢}i™, where ¢; = {¢it}—or Vi be sequences of m endoge-
nous economic variables such as factor supplies starting from intital conditions
up to some fixed 7. Conventional methods have in common that they solve
the model for each ¢;;. More recently, Judd (2002) has proposed an alternative
route. Rather than explicitely solving for each ¢;;, Judd suggests to use prior
information about the time path of ¢; and to approximate it by a functional form
¢ir = D;(t, a) with a low-dimensional parameter vector a. Judd’s method can be
regarded as a more modern approach.

This paper is concerned with traditional methods and suggests a simple pro-
cedure for improvement of tatonnement methods. While L-B-J and Fair-Taylor
methods regard any perfect foresight general equilibrium model simply as a sys-
tem of (non-linear) equations including aggregate and disaggregate variables and
iterate over this entire system, tatonnement methods break variables into ag-
gregate and disaggregate variables. Outer loops then proceed via block Gauss-
Seidel algorithms using aggregate variables only, while inner loops are used to
solve for disaggregate variables in a disaggregate model. Outer loops work as
follows: Let P = S~'(Q) denote a sequence of factor prices corresponding to
the sequence of factor supplies (). Equilibrium of tatonnement methods is de-
fined sequentially as a fixed point, @ = D(S7'(Q)), where D denotes the de-
mand function. S71(Q) and D(P) are solved by inner loops of the disaggregate
model and by aggregating individual decisions. The fixed point problem sug-
gests to execute the iteration Q™ = D(P*) = D(S1(QF)), which is the
familiar hog-cycle process, where k is the iteration number. Since P**! and
not P* is used to form an update of Q**' the iterations performed are non-
linear Block-Gauss-Seidel iterations. Depending on the relative shape of S and
D such iterations may however not converge. These convergence problems force
researchers to rely on ad hoc dampening factors such that the iteration rewrites as
QM = QF —w(QF—D(STHQY))) = QF —w(Q* — Q¥), where w is the dampening
factor. Dampening factors play a similar role as adaptive expectations in the
cobweb model. Such modifications of standard Gauss-Seidel iterations have been

!See Laffargue (1990), Boucekkine (1995), Juillard (1996) and Juillard et al. (1998).
2See Fair and Taylor (1983).

3See Auerbach and Kotlikoff (1987).

“The relative weight w attached to Q* and Q* respectively



referred to as fast Gauss-Seidel (FGS) iterations (Hughes Hallet 1984). Since
these methods only use values of D(S~1(QF)) to solve the fixed point problem,
they belong to the class of first-order iterative methods. While intuitive, conver-
gence of these methods is slow (linear at best) and they may not converge at all
even after various dampening factors have been tried out.

As an alternative to using ad hoc dampening factors, optimal dampening fac-
tors can be determined. However, they are difficult to determine even for linear
models, see, e.g., Hagemann and Young (1981) and Judd (1999). Therefore, var-
ious adaptive techniques to update dampening factors as the iteration proceeds
have been suggested in the literature (Hagemann and Young 1981; Hughes Hal-
let 1982). The approach developed in this paper instead departs from the well
established fact that first-order iterations can be regarded as approximate New-
ton methods. Hence equations like Q¥ = Q¥ — w(Q* — D(S~1(Q%))) can be
written as Q" = QF — wG(Q*) where G(QF) is a set of simultaneous non-linear
equations and Q" is the root of these equations. The approximation of the true
Jacobi matrix, J, is J = w1, where I is an identity matrix. One obvious way
for improvement of standard Gauss-Seidel iterations would be to perform Gauss-
Seidel-Newton iterations and to determine the elements of J in each iteration
step, see Ortega and Rheinboldt (2000, chapter 7.4). An alternative is to use
Gauss-Newton methods which approximate the objective by a quadratic form of
G(Q%), see Ortega and Rheinboldt (2000, chapter 8.5). However, if 7' becomes
large such approaches become too costly.?

The approach followed in this paper is much simpler and hence easier to im-
plement. It exploits that first, the number of state variables denoted by m will in
general be relatively small. For a typical one sector closed economy general equi-
librium growth model with endogenous capital formation and endogenous labor
supply m = 2. Second, the elements of the true Jacobi matrix will be constant
in the steady state if the variables in () are defined such that they are constant
in the steady state. As a consequence, the Jacobi matrix can be written as a
Kronecker product of the inverse of a low-dimensional matrix, W, xm), and an
identity matrix, J = W~ ® I. The - generally few - m? elements of matrix W
can easily be determined by Newton’s method in (fast) steady state calculations.
In addition, they can be used as good starting values for an approximate Ja-
cobi matrix in transition calculations. It is suggested to update W by Broyden’s
method during both steady state and transition iterations. Asymptotically, the
rate of convergence therefore increases from (at best) linear to super-linear. Ro-
bustness of the iterations can further be achieved by using standard line search
methods like the familiar backtracking algorithm. Since an approximate Jacobian
is used for almost all iteration steps, the algorithm will be referred to as Gauss-
Seidel-Quasi-Newton (GSQN) method. The attractiveness of GSQN stems from
its simplicity: the intuitive appeal and relatively low computational demands of

5Even though J is a sparse matrix, see below.



tatonnement iterations is combined with standard Newton based methods that
are implementable at little extra costs.

As an illustration of the procedure, a large-scale multi-country overlapping
generations (OLG) model with endogenous labor supply is used such that the
number of states, the dimension m, can be increased from m = 1 (closed econ-
omy model with exogenous labor supply) to m = 4 (three country model with
endogenous labor supply). In order to compare the relative performance of both
algorithms (FGS and GSQN), the model is simulated under various combinations
of parameters. Previewing results, the simple modifications suggested in this pa-
per quite considerably improve convergence compared to FGS. For the latter, only
relatively low values for the dampening factor such as w = 0.1 lead to almost
sure convergence. In fact, even for this choice of the dampening factor, standard
Gauss-Seidel iterations are shown not converge for about five percent of cases.
For higher values of w, robustness of FGS decreases sharply: for w = 0.3, FGS
does not converge for about 50 to 60 percent of cases. In contrast, GSQN always
converges. For transition calculations, average convergence speeds of GSQN are
about double than those of FGS with w = 0.1 when m = 1 and about seven times
higher when m = 4. Hence, GSQN considerably improves convergence both in
terms of speed as well in terms of robustness relative to standard FGS.

The paper proceeds as follows: Section 2 develops the suggested modification
of the conventional Gauss-Seidel algorithm, GSQN. Section 3 briefly describes
the OLG model to be used for illustration and section 4 compares the relative
performance of FGS and GSQN. Section 5 concludes and proposes some directions
for further research.

2 The Gauss-Seidel-Quasi-Newton algorithm

2.1 General considerations

Let Y = {y;}", where y; = {y;:}/_oVi be a list of endogenous variables. y;
includes wage rates and interest rates as aggregate variable (a;) as well as disag-
gregate variables (d;) such as consumption and assets of individual households,
etc.. Further, let Z = {z;}!_, where z; = {2}/, Vi be a list of exogenous vari-
ables such as population data of cohorts living at time £. Deterministic perfect
foresight heterogeneous agent models can be written in a general form as

F(Y,Z)=0
Yio = yiyo, 1= 0, 1, vy Ny My <M
yi+ bounded for all (1)

where F'(Y, Z) are nT non-linear functions that represent equilibrium. Since Z
are exogenous they are dropped from here on. The equations in (1) include Euler
equations, asset accumulation equations, market clearing conditions as well as
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any other equations that define equilibrium. Domain trunction has been applied
in equation (1) since the time horizon starts in period ¢ = 0 departing from
some initial conditions and is restricted to 1. Traditional solution methods,
such as Fair-Taylor and L-B-J, try to directly solve systems of equations such as
(1) for each element in y;; by Gauss-Seidel iterations or Newton based methods
respectively.

In contrast, conventional tatonnement methods break the system of equations
in (1) into a factor supply and a factor demand model. Both require inner loops
to solve and to aggregate individual decision problems. Let A = (ay,as,...) be
aggregate variables and B = (by, by, ...) be dis-aggregate variables. Further split
Aas A = (Q, P,R) where @) are aggregate factor supply variables such as the
aggregate capital stock and aggregate labor supply of an economy and P are the
associated factor price variables such as aggregate interest and wage rates and
let @ = (q1,,qm) € R™ as well as P = (py,...,pn) € R™. R are all other
aggregate variables such as aggregate consumption and savings which are not
necessary to define equilibrium since they are functions of (), P and B and will
therefore not be considered from here on. A perfect foresight OLG model of the
form given in equation (1) can be re-written as

Supply model: P = S Q)
Demand model: Q = D(P)
Aggregators: STH(Q) = ¥(s7H(Q, B))
and D(P) = U”(d(P,B)), (2)
where S~ is the inverse aggregate supply function and D is the aggregate demand
function. The aggregators are only used to indicate that aggregate demand and
supply functions are derived from individual decisions of heterogeneous agents
and will be ignored from here on. Since P = S™(Q), there are m endogenous
variables that are sufficient to define equilibrium. Combining the first two lines

of equation (2) leads to the definition of equilibrium of a heterogeneous agent
model as a fixed point by

Q= D(57(Q)) (3)
This suggests to use standard (block) Gauss-Seidel iterations to solve for @
and hence to iterate over the system

Pl = STYQ

Q1 = D(PH (4)
which can be more concisely written as

Q' = D(SHQY)

It is well-known that such methods may not converge. An alternative ap-
proach is to first transform equation (3) into a root-finding problem as

GQ)=Q-HQ) =Q-D(S Q) =0, (6)
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where H(-) is introduced as a short-cut notation for D(S™1)(-).

Applying a first-order Taylor series approximation to equation (6) leads to

the familiar Newton updating formula of ) given by

Q' =@ - JTRNG(QY), (7)

where J[Q*] is the Jacobi matrix of the system of equations in (6) evaluated at

Q".

the functions G = {g;(Q)}™, where ¢;(Q) = {g:.(Q)}l_, in equation (6), the
elements of the Jacobi matrix given by

Recall that Q@ = {¢;}!",, where ¢; = {g;;}]_;. Due to the specific form of
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can be re-written as

_1 _ Bhio(@%) 9h1,0(QY) _Oho(@%)  _ 8h1,0(Q%) _ 9h1,0(Q%) _ 9h1,0(Q%)
Bq’f’o 8q{c,1 " 8‘I{c,T 6‘1!26,0 8‘15,1 " 6‘15,1“
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which can be partitioned as

Je Ty IR
S g, IR (1)
Sy Thy o JE

according to the endogenous variables in ¢;. Hence, each sub-matrix J; ;, for ¢,j =

1,

..., m is of dimension 1" x T" with each element given by

1= @) o A, =0 and i = j

Bq’?
Ji’j’t’At - . ahz‘,t(g’j)m else
8q§‘c,t+At
for t=0,..T,
where —t< A, <T—t (11)




Due to the heterogeneous agent structure of the model, _%(i’“) =0 for A,
7
sufficiently large. Hence J[G(Q")] is sparse. Despite this it is gertlerally quite
costly to determine all elements of the Jacobi matrix J[G(Q")] as T' becomes
large.
Given these computational costs an obvious solution is to approximate the
Jacobi matrix. Conventional Gauss-Seidel iterations with one-parameter damp-

ening by factor w iterate on

Qk+1 = Qk — wG(Qk) = Qk - wI(mTXmT)G(Qk) (12)

and hence restrict the elements of the true Jacobi matrix J[Q*] to W ).
The restrictions of the iteration matrix w/ on the Jacobian can be summarized as
follows: first, the iteration matrix is constant across all iteration steps k, second,
the difference of the sub-matrices along the diagonal of the partitioned matrix
in equation (10), J;;, i = 1,...m, i = j, is ignored and third, the off-diagonal
elements of the partitioned matrix in equation (10), J;;, i = 1,..m, i # j, are
ignored.
This paper suggests to restrict the Jacobi matrix to be

wflf(TxT) wf,ZI(TxT) wfmI(TXT)
jk — [Wfl]k ® I(T><T) _ wg,lf(TxT) WS,QI(TXT) wg,mI(TxT) (13)
mxim
LUTI%JI(TXT) LUTI%QI(TXT) wyki%ml(TxT)

where W can be interpreted as an m x m matrix of multiple dampening factors
that vary with the iteration number k. This structure of the Jacobi matrix is
similar to the partitioned matrix given in equation (10). It therefore relaxes
(some of) the restrictions imposed by the Gauss-Seidel algorithm. The rationale
for this form of the Jacobi matrix is derived from a steady state situation of a
heterogeneous agent model where the iteration matrix in (13) is the exact Jacobi
matrix if the time series in Q, qi,...,¢n, are transformed such that they are
constant in the steady state.

2.2 The steady state

Suppose the variables in () are defined such that they are constant in the steady
state. E.g., ¢; could be a time series of the capital to output ratio and ¢y of
the labor supply ratio in a closed economy growth model with endogenous la-
bor supply. Further, note that domain truncation imposes a restriction on the
equation system which is mirrored by a Jacobi matrix of finite dimension and
hence by the restriction on A; in equation (11) requiring that —t < A, < T — ¢.
This restriction is invalid if the economy was in steady state forever. For such
a model the restriction on A; is =Ty —t < A; < Ty — t, since, as noted above,



_ Bhi (QF)

= 0 for A, sufficiently large. Further, since the elements of each {¢;},

aq;'c,tJrAt
are constant in the steady state, the starting values in iteration k = 0, {¢)}",,

will be constant as well and so will be the partial derivatives in equation (11).
Hence, an “infinite dimension” representation of the Jacobi matrix in equation
(11) would be

1—%@“) for At =0 and i = j
TN, = on(@h where —Ty—t < A, < Ty—t (14)
0 — = else
aqj,At
and therefore the sub-matrices of the iteration matrix can be written as
To—t
Oh; (QF
Jh=1- > Om(Q') (15)

Ogk
Ay=—Tp—t q-]7At

and hence the inverse of matrix W in equation (13) is

To—t m
_ oy m 0 ohi (QF
w 1:{ij i7j1:{1— E: 7§€ )} (16)
1,j=1

0a”
Ay=—To—t quAt

which gives the exact Jacobi matrix of the Newton iteration in equation (7).

In general, it would be possible to start the iteration with any initial estimate
of the Jacobi matrix, J° such as J° = wlyzymr which is just the Gauss-Seidel
weight and then to update it via Broyden’s multi-variate secant method as®

(AG(QY) — J*AQM) (QY)'

JL = gk 4 Q) OF 1 , Where
AGQF) = G(Q") - G(Q*") and
AQY = QF - (17)

But, since m, the number of endogenous variables, will in general be small and
since steady state solutions are fast to compute, it is more reasonable to spend
the first m? iterations to evaluate all elements of JO by finite difference methods.
Since the model is in steady state, these evaluations must only be carried out for
each element J;(Q) for t = t, by finite difference methods as

(Gito(Q + hlrxr)) — 9i4(Q)
h

where h is some small number. %, is the steady state period, hence t; = 1 for
an (artificial) initial steady state or ¢, = T for a final steady state. In contrast,
for iterations k > 0, it is more reasonable to save these additional m? iterations
and to use Broyden’s method for an update of J* instead. In case the system is
divergent, the Jacobian will be recomputed, see below.

o
Jii = (18)

S0f course, the Sherman-Morrison formula for a direct update of [J¥] ~! could also be used
but inversion is cheap since m is small.



2.3 The transition

Recall that in general m is small but 7" is quite large. Therefore, while steady
state solutions are fast to compute, transition calculations may take considerable
time. Against this background, the general idea of the implementation of GSQN
for transition calculations is to use the Jacobi matrix derived during (fast) steady
state calculations as an initial approximate Jacobi matrix for transition calcula-
tions and to update it by Broyden’s method as the iteration proceeds. The exact
implementation of the algorithm during transition calculations however depends
on the restrictions on the structure of the equation system imposed by (initial and
final) steady states or (and) arbitrary initial conditions. Four different models
can be distinguished.

e Model 1 (initial value problem): The economy starts from an initial steady
state and converges to a final steady state. The final steady state has been
calculated.

e Model 2 (final value problem): The economy starts from an initial steady
state and converges to a final steady state. The initial steady state has
been calculated.

e Model 3 (final value problem): The economy starts from arbitrary initial
conditions and converges to a final steady state. The initial conditions are
known.

e Model 4: The economy starts from an initial steady state and converges
to a final steady state. Both steady states have been calculated.

Permanent structural changes are implicit in the definition of all models. How-
ever, for temporary changes, the economy starts from the same steady state as
it converges to and hence such a specification is nested in model 4 (or model 1).

In terms of equations the four different models can be written as follows. For
ease of presentation it is assumed that m = 1. Recall that the variables in () are
transformed such that they are constant in the steady state.

e Model 1:
g1 = 42
G2 = hz(Q)
q3 = h3(Q)
ar = ¢'*,

where fss stands for final steady state.



e Model 2:

1SS

g = q

Q2 = hz(Q)
q3 = h3(Q)
qr = dqr-1

where iss stands for initial steady state.

e Model 3:
1 = ¢
92 = hz(Q)
q3 = h3(Q)
qr = dqr—1
e Model 4:
@ = ¢
92 = hz(Q)
qs = h3(Q)
g = ¢

For models 1 to 3 it is hence assumed that the final (or initial) steady state is
calculated during the transition solution while the initial (or final) steady state
(or the initial condition) is already known from steady state calculations. For
model 4 it is assumed that both steady states were calculated during steady state
calculations. For the latter, GSQN is implemented by using the iteration matrix
derived during steady state calculations (either initial or final), J%*, throughout
all transition iterations. For model 1 (2) the iteration matrix for final (initial)
steady state calculations, J/* (J%%), will be used as initial dampening factor
matrix and will be updated by Broyden’s method using the information contained
in QF s = {qigss ey and G(QF os) = {g(qies) }iy where t°5 =1 (t* = T), i.e.,
the information contained in the initial (final) steady state period.” The updating
procedure for model 3 is equivalent to the procedure for model 2 but it requires an

"Updating J* by Broyden’s method is not necessary, but using the additional informa-
tion contained in each iteration step k is more robust than using constant dampening factors
throughout.
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initial iteration matrix. The latter could be chosen as a scaled identity matrix or
could be determined by finite difference methods by evaluating J° for time period
t = T. As before, determining the initial iteration matrix by finite difference
methods is recommended. For all models, the Jacobian will be recomputed if the
system 1is divergent, see below.

To summarize, the use of J° = J% or a Jacobi matrix determined by finite
different methods (model 3) as initial iteration matrix and to update it by Broy-
den’s method results in good approximations of the elements of the true Jacobian
for the steady state period(s) of transition calculations. It is also a good approx-
imation of the true Jacobian for all other periods. Applying different dampening
factors for different time periods is not reasonable since it would create artifi-
cial kinks in the time paths Q**!'. Thus, while the Jacobi matrix determined by
the suggested method is asymptotically optimal as Q* approaches Q** for steady
state calculations, it is a good approximation for transition calculations.

2.4 Implementation of Gauss-Seidel-Quasi-Newton itera-
tions

It is well-known that if G(Q) is continuously differentiable over a convex set
D containing the equilibrium values Q* with G(Q*) = 0, then there exists an
open set C' about Q* such that equation (7) converges at least linearly from any
Q" € C. If in addition the Lipschitz condition ||QF — Q*|| < d|Q** — Q*||
holds for Q° € C and some d > 0, the rate of convergence becomes quadratic.
However, if the starting values Q° are not within C, then Newton iterations such
as equation (7) may not be convergent. In order to obtain a globally convergent
method, i.e. an iteration that converges from almost any starting value, it is
therefore reasonable to augment the Newton iteration by a line search method to
get

Q= Q" =SS TTRMG@Y), (19)

where s” is a standard variable step-size parameter and J denotes the Broyden
iteration matrix. A fast algorithm for line searches is by backtracking, see e.g.,
Press et al. (1992). It relies on a quadratic approximation of the (unknown)
objective function given by ¢(Q¥) = ;G(Q*)'G(Q") and determines a step that
minimizes this quadratic approximation. If the resulting step is not acceptable,
then the algorithm iterates over a cubic approximation of the objective function
until an acceptable step is found.

However, since J* is not the exact Jacobian, it is not guaranteed that the line
search algorithm will give a descent step direction. Hence, the Jacobian will be
re-initialized (by finite difference methods) in case that the line search algorithm
does not return a suitable step (after a maximum of three line search iterations
or when reaching a minimum value for s*). For transition calculations, both line
search algorithm and even more re-initializing the Jacobian can by costly in terms

k
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of computational time and should therefore be avoided if possible. Therefore,
it has proven useful to first switch to the initial Jacobian, J°, in case g(QF)
increases. If this is not a suitable step, then line search is called. If the line search
algorithm does not return a suitable step, then the Jacobian is re-initialized by
first-difference methods and the resulting matrix replaces JO.

Moreover, it will be useful to re-initialize the Jacobian if the updated Jacobian
JE or if AQF fail to satisfy a number of conditions: (i) if AQF is too small, (ii)
if J* is ill conditioned® and (iii) if some of the elements of J* do not satisfy
certain criteria reflecting prior knowledge regarding their value. E.g., for the
applications considered in section 4, it is required that the diagonal elements of
J¥ are positive. Conditions (i) and (ii) are standard conditions and condition
(iii) would automatically be fixed in the next iteration step by the methods just
described (it would result in a divergent process and hence the Jacobian would
be re-computed in the next iteration step). Making use of prior information is
therefore not necessary and saves at most one iteration step.

While the application of Broyden’s method is well-established it will be useful
to more concisely summarize the GSQN algorithm as follows:

1. Chose some initial value Q° and a stopping criterion e. For steady state
calculations, Q° consist of time series of any - but reasonable - constant
values and for transition calculations Q° = Q**, i.e., the equilibrium values
from steady state calculations (or other constant or non-constant values,
e.g., obtained during previous transition calculations).

2. Initialize the Jacobian, JO. Use finite difference methods for steady state
calculations and JO = J*$ for transitions calculations, i.e. the last approxi-
mate Jacobian matrix of steady state iterations (or any other initial matrix
such as a scaled identity matrix).

3. For iteration k, determine Q**! by
QT =QF =" TQNG(Q, for st =1
and evaluate G(QF) as well as
1 /
9(Q) = 5G(QYG(@)

o If g(QF) < g(Q* ') then continue with step 4, ELSE re-initialize the
Jacobian by setting J* = J° and re-evaluate g(Q’“)

8For models where the Jacobian is ill-conditioned at at equilibrium, J* would not be further
updated in case Q¥ approaches Q*. In case iterations are divergent, J* would only be scaled
by line search methods.
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o If g(QF) < ¢g(Q* ') continue with step 4, ELSE start a line-search
algorithm. Use a standard backtracking algorithm for line search that
stops if g(Q%) < g(Q*7!), if s* = s™" or a maximum number of line
search iterations of three is reached. A good choice for s™" is (.1, see
Press et al. (1992) for details.

e [f the line search algorithm is successful then continue with step 4,
ELSE re-initialize J* by finite difference methods, reset J° = J*, re-
evaluate G(QF) as well as g(Q*) and continue with step 4.

4. If max(|G(Q*)|) < € then STOP and report success, ELSE if AQ* > n, where
n is some small number, determine J**! by Broyden’s method as

(AG(QF) — JH(Q" — Q" 1))(QY)

Tkl _ 7k
T @ QT

If
o AQF¥ <nor

e Jk*1 s ill-conditioned or

o JFt! does not satisfy any prior information regarding its structure

then re-initialize J¥*1, otherwise proceed with J*™1 = Jk+1, Re-initialize
J*+1 by first-differences in steady state iterations and by resetting JO = J*.
For transition iterations re-initialize by JA+1 = JO if the starting values are
good (i.e. if a steady state was first calculated), otherwise re-initialize by
first differences. Continue with step 3.

3 The simulation model

This section develops an OLG model which is used in section 4 for compari-
son of the relative performance of FGS and GSQN. The simulation model is a
three-country version of a multi-country OLG model developed by Borsch-Supan,
Ludwig, and Winter (2003) in the tradition of Auerbach and Kotlikoff (1987). It
extends the former by allowing for endogenous labor supply and simplifies by
using stylized demographic data consisting of less generations which results in
a smaller model. Such a smaller model is only used for simplification since it
speeds up computations per iteration but otherwise does not affect results re-
garding the relative performance of the two algorithms. The analysis in section
4 distinguishes between four alternative scenarios increasing m from one to four:
(i) one-country closed economy model with exogenous labor supply (m = 1), (ii)
one-country closed economy model with endogenous labor supply (m = 2), (iii)
two-country open economy model with endogenous labor supply (m = 3) and
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(iv) three-country open economy model with endogenous labor supply (m = 4).
The macroeconomic simulation model is based on a stylized demographic model
used to simulate transitions which is described next.

3.1 The demographic model

Demographic projections enter the simulation model via time-specific sizes of
living cohorts in year ¢ denoted by N, ,; where a is age and i is the country index.
Sex is irrelevant for the economic model and hence an index for sex is dropped
for ease of presentation. Cohorts face mortality risk: ¢ ,; denotes the age and
time specific conditional survival probability and m;,; the unconditional survival
probability. There is no migration. The size of a living cohorts is determined
recursively by Nii1 441 = NiaiSta,i for a = 1,...,20. Each year the number of
newborns is determined by age and time specific fertility rates. Birth is given
between the ages 3 — 9 and fertility rates linearly increase from zero to a peak at
the age of 6 and then linearly decrease to zero.

For all three countries, a demographic transition is assumed lasting for 30
years. The assumptions regarding the demographic transitions are arbitrary and
are only set to simulate heterogeneous transitions across countries. Departing
from an initially constant total population of size 100 in countries one and two
and of 200 in country three, the transition starts in year 20 and is characterized
by a steadily increasing life expectancy at birth from 15 to 16, 13 to 16 and 14
to 16 for countries one to three respectively.® In addition, a fertility transition is
assumed for countries one and three. In country one, a baby boom is simulated
for years 20 to 30 - an increase of the total fertility rate (TFR) from replacement
level of about 2.1 to 2.5 - which is followed by a baby bust for years 30 to 40
characterized by a steady decrease of TFR to 1.5. After the bust, the TFR again
increases to replacement level of about 2.1 by year 50. In country three, the same
baby boom is simulated for years 20 to 30 but it is not followed by a baby bust.
Instead, fertility steadily decreases back to replacement level until year 50.

3.2 The macroeconomic simulation model

General equilibrium of the overlapping generations model is constructed via the
production sector where, given factor inputs (capital and labor), output and
factor prices are determined. The production sector in each country consists of a
representative firm that uses a CES production function which is identical across

9A different initial life-expectancy in each country is chosen such that variables across coun-
tries differ in the initial steady state. Due to the higher initial population size of country three,
country three has about the same initial weight as the other two countries in the three-country
open economy version of the model.
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countries and given by

Yii=F(Q Kiiy Lii) = (OéKtTig +(1—-a) (Qt,iLt,i)_a) ) (20)

[

where « is the factor share and § = 14%9 is the elasticity of substitution between

the two production factors. K,; denotes the capital stock, L;; the aggregate labor
force and €, ; is labor augmenting technological change (Harrod neutral) growing
at a constant rate g.'°

From static profit maximization and by the assumption of perfect capital
markets, the (world) interest rate is given by

i,
ry = a—— — 0, 21
=% (21)
and the wage rate in each country is
Y, .
we; = (1— a)# (22)
ti

In order to determine aggregate consumption, optimal household behavior is
derived from intertemporal utility maximization. By choosing an optimal con-
sumption and labor supply path, each generation, economically active from period
t on, maximizes the sum of remaining discounted life-time utility taking interest
rates and wage rates as given from equations (21) and (22). The economic life
of a cohort begins at the age of 4, for which a = 1 below. The maximum age
people can reach is denoted by Z = 16. For the exogenous labor supply mode, it
is assumed that all households supply one unit of labor for a period of 8 years,
a =1,...,8, and are retired thereafter. The endogenous labor supply mode does
not restrict retirement age nor is a social security system or any other taxes mod-
eled. Of course, leaving out these aspects does not affect the relative performance
of the two algorithms.!'’ Agents face the risk of prematurely dying with positive
wealth. To rule out accidental bequests it is assumed that one-period ahead per-
fect annuity markets exist which perfectly insure agents against the event of early

death. Again, this assumption is irrelevant for the results presented in section
4‘12

10T his specification of technological progress insures a steady state in the presence of growth,
see, e.g., Barro and Sala-i-Martin (1995).

I Tf agents decide to supply zero units of labor, then shadow wages are calculated, see below.
These shadow wages are updated in the next iterations step by relating them to the aggregate
wage level and hence move in correspondence with the aggregate wage rate.

12A5 an alternative to assuming perfect annuity markets - which is equivalent to a specific
distribution scheme for accidental bequests - accidental bequests could also be distributed by
some other scheme, e.g., to all newborns or all children. Since the household model is solved
by looping from the last to the first living household, such a redistribution scheme can easily
be handled within the household model and otherwise does not affect computations.
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In a given period a representative cohort of age a born in year ¢ maximizes the
sum of discounted life-time utility. In order to insure a stationary steady state,
utility is assumed to be of the familiar Cobb-Douglas form and is given by

1 1-0
U(Ot,a,i7 1- lt,a,i) = 1— (Cga,i(l - lt,a,i)li(b) ) (23)

where (', is consumption, [;,; the labor supply ratio, o is the coefficient of
relative risk aversion and ¢ is a weight attached to leisure.'?
A household born in time period ¢ maximizes

Z a—1
1
max U= E (1 + p) 7Tt+a,a,iU(Ct+a,a,i; 1-— lt—l—a,a,i); (24)
a=1

{Ct+a,a,i 7lt+a,a,i}g:1

subject to a dynamic budget constraint given by:

1
At+a+1,a+1,i - c (At+a,a(1 + Tt+a) + wt—l—a,ilt—l—a,a,i - Ct—l—a,a,i)
t+a,a,0

(25)

L reflects the assumption of perfect annuity markets.'* A

a,a,i

second constraint requires leisure to be less than one:

where the term
St+

1— lt,a,i <1 <= lt,a,i >0 (26)

Maximization yields the inter-temporal Euler equation of consumption as

1
C a+1,a+1,3 1 Vtra+1.4 o
—tatletli (5(1 + 7"t+a+1))” (Lﬂ’> ) (27)

Ot+a,a,i Vt+ta,i

and the intra-temporal Euler equation between consumption and leisure as

1 —ligi = u,iCiay, (28)
where -6 1
i = - —, 29
Uy, & s ( )
vy = uglz_—a)(l—@ (30)

13 As Auerbach and Kotlikoff (1987) point out a steady state does not exist under CES utility
if wages are growing. To avoid such complications (Altig et al. 2001) assume, that growth does
not affect productivity but the time endowment of households. Since it is irrelevant for the
questions addressed in this paper whether utility is CES or CD, the simpler CD specification
is chosen.

4By the assumption of perfect annuity markets, end of period assets of households prema-
turely dying with positive (or negative) wealth are equally shared by the surviving members of
the same cohort.
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and
1I)t = w; + Lt (31)

i is the shadow value of wages which is above zero if the household chooses to
retire in year ¢+ a. In that case, an explicit solution of the household model does
not exist and a shooting algorithm would be required to approximate the solution
for each household. However, it is much more efficient in terms of computational
costs to only calculate shadow wages that would correspond with the labor supply
decision using equation (29) and to update these shadow wages during outer loop
iterations, see Auerbach and Kotlikoff (1987) and footnote 11.

Equilibrium is constructed via aggregating all household’s assets and labor
supply decisions in any time period t. As described above, aggregate variables
which are stationary will be used to solve the fixed point problem of equation
(3). Due to the assumption of perfect world capital markets, the aggregate world
capital to output ratio is given by

R
kY = ngl b (32)

where R denotes the number of countries considered and A;; = 2(116:1 Aoy The
aggregate labor force participation rate in any country i is given by

L Ly,
ti — )
Nii

(33)

where L;; = 21116:1 lt,0,iN1,0,i- In terms of notation of section 2, the variables P
and () depend on the scenarios considered:

e Exogenous labor supply / closed economy:
P = {r}{_ and Q@ = {k{}/_,

e Endogenous labor supply / closed economy:
P = ({rdioy, {wtisy) and Q = ({7}, {LH))

e Endogenous labor supply / two-country open economy:
P = ({Tt}?ZI’ {wt,l}?zla {Wt72}?:1) a‘nd Q = ({k?}?:17 {ltyl}?:D {lt72}?:1)

e Endogenous labor supply / three-country open economy:
P = ({Tt}?ZI’ {wt,l}?zla {wt72}?:17 {wt;3}¥1:1) and

Q - ({k:ty}?:D {lt,l}?zla {lt;z}g;l? {lt73}?:1)

The model is calibrated with stylized demographic data as described in section
3.1. Calibration of structural parameters is described in the next section.
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4 Results

The sensitivity analysis for comparison of the relative performance of FGS and
GSQN presented in this section is grouped into two subsections. First, a steady
state analysis is carried out to determine starting values of @), @*°°, to be used
for the transition analysis. Second, the performance of the two algorithms is
compared for the demographic transition scenarios of section 3.1. The transition
analysis is carried out by using Q° = Q*** as starting values. In terms of notation
of section 2.3, results reported below refer to model 2, i.e., I first solve for an initial
steady state and then use the initial steady state values as initial conditions for
the transition calculations.

The structural model parameters of the above OLG model are ¥ = (Qy, a, 3,0, p, d, ).
In order to compare the performance of the algorithms, three different values pa-
rameters of an arbitrary subset of these structural parameters, ¥y = (o, 3, p, 0),
are combined with each other which results in 81 different parameterizations
of the OLG model per model simulation, see table 1.® These parameteriza-
tions reflect standard parameterizations chosen for OLG models in the literature.
For steady state simulations, the starting value of the capital to output ratio is
constant at three for the closed economy scenario with exogenous labor supply
(m = 1). For all other models (m > 1), the steady state capital to output ratio
resulting from previous models with m — 1 endogenous variables is used. The
same procedure is adopted for the choice of starting values regarding the labor
supply ratio: it is assumed constant at 0.5 for the closed economy model with
endogenous labor supply (m = 2) and equilibrium labor supply shares resulting
from previous computations are used for all subsequent models with m > 2. In
addition, two alternative dampening factors w; = 0.1 and wy = 0.3 will be com-
pared for FGS. Note that more linear models obviously solve faster than more
non-linear models.

The convergence criterion € is set to le=*. This is an arbitrary choice. The
relative advantage of GSQN increases the lower the convergence criterion since it
asymptotically converges at a super-linear rate whereas FGS converges at a linear
rate. No convergence may occur under two cases: first, when Q* is divergent or
exhibits cyclical behaviour and second, when max(||G(Q*"*")||) > € for some
maximum number of iteration steps £™%. To best rule out the latter case, k™"
is set to 100. The convergence properties of the two algorithms are evaluated
along two dimensions, number of cases without convergence as well as running
time (average and median) as the time it takes for convergent runs (in seconds).
Since running time per iteration step differs between the two algorithms, results
for the number of iterations it takes until convergence are only reported for sake
of completeness.'6

5Except for Qg which is normalized in each iteration step by requiring the model to match
arbitrary GDP levels of 100 for countries one and two and 200 for country three.
6 Running time differs between FGS and GSQN since GSQN requires additional iterations
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4.1 The steady state analysis

Convergence results for the steady state analysis of the model are reported in
table 2. The table is organized in four sections in increasing order of m. The
first two rows of each section show the results for FGS with w = 0.1 and w = 0.3
respectively. The third row shows the results for GSQN. The last two columns of
each row show the relative cases without convergence respectively. GSQN always
converges whereas FGS may not converge even if a low value for the dampening
factor (w = 0.1) is chosen.!” The fourth and fifth row of each section show the re-
lation between running time (and number of iterations) between FGS (w = 0.1)
and (w = 0.3) and GSQN for those convergent runs of FGS respectively. For
example, column one shows the average running time it takes for convergent sim-
ulations of FGS divided by the average running time of those GSQN simulations
for which FGS also converges.

FGS may not converge even for the low value of the dampening factor of
w = 0.1. For model simulations considered here, FGS does not converge for
about 6 percent of cases when m > 1. For values of m larger than 2 robustness
of FGS slightly improves largely because starting values are improved. Average
convergence speed for w = 0.1 is about four times lower than GSQN when m =1
and about 7 times lower when m = 3. For m = 4 relative convergence speed
of FGS again improves due to better starting values and since GSQN wastes
relatively more time on Jacobi evaluations. But still, GSQN is about four times
faster. For FGS with w = 0.3 the algorithm fails to converge in quite many
cases (about 14 percent for mm = 1 up to 50 to 60 percent when m > 1), but
convergence speed (of the convergent runs) is higher than for FGS with w = 0.1.
Hence, a higher value of the fixed dampening factor trades robustness for speed.
The sections of the table also show median running times since some cases of
difficulties in convergence may be driven by outliers, but results do not look
much different according to this criterion.

4.2 The transition analysis

While these steady state results already show that FGS is clearly inferior, this
may not seem very compelling since non-convergent cases of FGS with w = 0.1
are relatively rare and absolute overall speed is high since steady state solutions
are fast to compute. But first, non-convergent cases require discretionary fixes by
the user which may be time consuming and second, convergence speed slows down
if a larger model is used for both transition as well as steady state iterations.'®

if the Jacobia matrix is re-computed, compare section 2.4.
17 As a matter of fact, the maximum number of iterations is rarely reached. Most cases of no
convergence are due to divergent or cyclical behaviour of the iterations even for w = 0.1.
18This is the case when the number of generations per time period - here equal to 8 - is
increased. Results are available upon request.
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Hence computational speed may become relevant after all even for steady state
simulations and it is especially important for transition simulations.

Results for transition calculations are shown in table 3 where steady state
solutions for Q° = Q*** and J° = J** are used as initial conditions. First,
GSQN again always converges whereas the number of non-convergent cases of
FGS for both dampening factors slightly increases to roughly 6 to 7 percent for
w = 0.1 and 14 to 67 percent for w = 0.3. Second, compared to FGS with
w = 0.1, GSQN is again 2 to 7 times faster than FGS and this speed advantage
strictly increases in the number of variables m. Third, the user may be lucky
when using FGS with w = 0.3 for m = 1 since the algorithm might converge even
faster than GSQN if it converges at all. Fourth, according to the median running
time criterion, the relative performance of FGS is slightly better.! However,
GSQN is still 2 to about 5.5 times faster.

These results are striking and suggest to use GSQN with good starting values
derived from steady state solutions of the simulation model or earlier transition
iterations since GSQN is so much superior and since it is so easy to implement.

5 Conclusions

This paper suggests to use Gauss-Seidel-Quasi-Newton instead of conventional
(FGS) fast Gauss-Seidel iterations for solving heterogeneous agent models. Stan-
dard Quasi-Newton based methods (Broyden’s method) are used to determine
elements of a Jacobi matrix for Gauss-Seidel iterations which considerably im-
proves convergence both in terms of speed as well as robustness of the iterations.
Sensitivity analysis shows, that GSQN increases convergence speed by a factor
of two to seven relative to FGS. For transition simulations, this relative speed
advantage strictly increases in the number of aggregate endogenous variables, m,
required for tatonnement iterations. The particular attractiveness of the algo-
rithm stems from the combination of low computational costs of conventional
tatonnement methods with the speed of Newton based methods. The algorithm
is globally convergent which is achieved by the additional use of standard line
search methods.

Comparing the performance of GSQN to standard one-parameter fixed damp-
ening Gauss-Seidel iterations may seem too restrictive. Intermediate cases - e.g.,
multi-variate fixed dampening or standard adaptive methods for one-parameter
dampening - are of course possible. However, GSQN is likely to dominate any
such other - more or less arbitrary - approach as well since it efficiently uses the
information of each iteration step and since it is particularly easy to implement.

9Gince outliers require costly line searches or Jacobi evaluations in case GSQN is used.
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Table 1: Calibration parameters, starting values and dampening factors

Parameter Value
capital share « 0.3 0.4 0.5
substitution elasticity J 0.8 1 1.2
coefficient of relative risk aversion o 1 2 3
discount rate p 0.01 0.02 0.03
growth rate g 0.015
depreciation rate ¢ 0.05

Notes: Parameter values for the discount rate, p, the growth rate, g, and the depreciation rate,
d, refer to an annual model. Corresponding discount factors, growth factors and depreciation
factors are calculated during solution of the quinquennial model used for illustration of the
algorithm.
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Table 2: Convergence of FGS and GSQN for the steady state

Running time

Iteration number

No convergence

Mean Median

Mean Median

%NC

Closed economy, exogenous labor supply (m =1)

FGS(w=0.1) 248 255 | 27.04 27 0.00%
FGS(w=10.3) 115 0.78 | 12.86 9 13.58%
GSQN 061 059 | 6.28 6 0.00%
FGS(w=01)/GSQN | 4.04 429 | 430  4.50
FGS(w=03)/GSQN | 1.82 130 | 2.00  1.50

Closed economy, endogenous labor supply (m = 2)

FGS(w=10.1) 6.76 683 | 6525  66.5 6.17%
FGS(w=10.3) 279 224 | 24.15 18 59.26%
GSQN 115 1.09 | 7.17 7 0.00%
FGS(w=01)/GSQN | 5,77 624 | 892  9.50
FGS(w=103)/GSQN | 2.07 183 | 2.91 2.25

Two-country model, endogenous labor supply (m = 3)

FGS(w=0.1) 1237 11.92 | 60.86 61 4.94%
FGS(w = 0.3 547 456 | 26.56 21 51.85%
GSQN 182 175 | 3.74 1 0.00%
FGS(w=0.1)/GSQN | 6.78 681 | 1633  15.25
FGS(w=03)/GSQN | 283 225 | 686  5.25

Three-country model, endogenous labor supply (m = 4)

FGS(w=0.1) 15.77 14.97 | 55.59 55 3.70%
FGS(w =10.3) 6.89  5.77 | 24.10 19 50.62%
GSQN 385  3.70 | 3.06 3 0.00%
FGS(w=0.1)/GSQN | 4.09 404 |17.99 1833
FGS(w=03)/GSQN | 1.66 136 | 7.14  6.33

Notes: FGS: Conventional fast Gauss-Seidel algorithm with one-parameter dampening. GSQN:
Gauss-Seidel-Quasi-Newton algorithm. This table shows steady state convergence results of
FGS and GSQN for four different scenarios with 81 model simulations each. The last two rows
of each section show the relative performance of FGS and GSQN for convergent runs of FGS

only.
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Table 3: Convergence of FGS and GSQN for the transition

Running time

Iteration number

No convergence

Mean Median

Mean Median

%NC

Closed economy, exogenous labor supply (m =1)

FGS(w=0.1) 820  7.88 | 35.37 34 0.00%
FGS(w=0.3) 412 334 | 17.26 14 13.58%
GSQN 411 363 | 15.17 14 0.00%
FGS(w=01)/GSQN | 1.99 217 | 2.33 2.43
FGS(w=0.3)/GSQN | 099 094 | 1.14 1.04

Closed economy, endogenous labor supply (m = 2)

FGS(w=01) 20.75  12.64 | 44.87 13 7.41%
FGS(w=10.3) 1358 1250 | 19.78 14 66.67%
GSQN 588  4.22 | 13.37 13 0.00%
FGS(w=0.1)/GSQN | 3.52  3.06 | 350  3.31
FGS(w=03)/GSQN | 1.54 171 | 183  1.27

Two-country model, endogenous labor supply (m = 3)

FGS(w=01) 52.92  26.34 | 52.43 52 6.17%
FGS(w=0.3) 35.37  28.03 | 23.60 18 62.96%
GSQN 865 581 |10.78 10 0.00%
FGS(w=0.1)/GSQN | 6.07 457 | 5.06 520
FGS(w=03)/GSQN | 274 232 | 272 225

Three-country model, endogenous labor supply (m = 4)

FGS(w=01) 92.47 41.47 | 57.08 56 6.17%
FGS(w=0.3) 56.72  56.48 | 27.73 19 59.26%
GSQN 1322 7.78 | 10.19 9 0.00%
FGS(w=0.1)/GSQN | 6.97 541 | 594  6.22
FGS(w=03)/GSQN | 314 309 | 349  2.38

Notes: FGS: Conventional fast Gauss-Seidel algorithm with one-parameter dampening. GSQN:
Gauss-Seidel-Quasi-Newton algorithm. This table shows transition convergence results of FGS
and GSQN for four different scenarios with 81 model simulations each when results derived
from steady state calculations are used as starting values. The last two rows of each section
show the relative performance of FGS and GSQN for convergent runs of FGS only.
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