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Abstract

We investigate evidence for nonlinear mean reversion in yearly S&P500 data from 1871 until
2001. We find that up to 1990 there is significant evidence of nonlinear mean reversion. In
particular, stock prices are characterized by a persistent process close to the fundamental value.
However, when prices deviate significantly a mean reverting regime is activated and prices adjust
to fundamental values. Instead, the stock price run-up of the late 90s exacerbated the persistence
of the deviations and there is no evidence for a mean reverting regime that drives prices back to

fundamentals.
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1 Introduction

Does the stock market rationally reflect fundamental values? The stock price run-up of the late
90s revived the debate about the rationality of stock prices. In 2000 the Price-to-Dividends (PD)
ratio for the S&P500 index reached a level of 85 against an historical average of approximately
25. The extreme behaviour compared to historical standards has been explained in different
ways.

According to rational explanations, the rapid increase in stock prices reflects changes oc-
curred in fundamental factors. They argue that the required rate of return has lowered signifi-
cantly because of higher participation of investors to the stock market and changes occurred in
consumers preferences. If investors discount future pay-offs at a lower rate, prices will increase.
A similar result is obtained when the expected growth rate of dividends or earnings increases.
These arguments were proposed by Heaton and Lucas (1999). However, they found that these
explanations are not able to account for the large increase of the late 90s.

On the other hand, Campbell and Shiller (2001) argue that changes in fundamental factors
are not large enough to explain changes in stock prices. In addition, historical evidence suggests
that in periods followed by large collapses of stock prices the valuation ratios never reached such
extraordinary levels. An alternative explanation is that prices experience large swings from
fundamental valuations due to fads in investors expectations. Summers (1986) suggested that
irrational fads create persistent deviations of prices from intrinsic valuations that are difficult
to arbitrage away by rational investors. According to this approach, a combination of irrational
expectations of some investors and limits to the arbitraging activities of rational investors ex-
plains the deviations of stock prices from rational valuations. This view is also consistent with
the empirical evidence of mean reversion and long-run predictability of stock prices. If the stock
price reverts (in the long-run) back to its intrinsic value, a positive (negative) deviation predicts
that prices will decrease (increase). Hence, the adjustment process creates a negative relation
between the changes in prices and the deviation from the fundamentals that emerges at long
horizons. Some theoretical models that try to capture this idea are de Long et al. (1990) and
Brock and Hommes (1998).

In this paper we investigate the role that fundamental factors played in the recent increase
of stock prices. In particular, we use a dynamic version of the Present Value Model (PVM) that
allows for time variation in the discount rate and the growth rate of dividends. The analysis of
more than a century of the S&P500 index shows that the fundamental factors fail to explain the
persistence of the deviations from intrinsic valuations, in particular in the late 90s. Shocks to
the growth rate of dividends or to proxies for the discount rate, such as interest rates and returns

volatility, die out very quickly compared to shocks to the stock prices. This indicates that the



excessive persistence of the deviations from fundamentals could be caused by the overreaction
of investors to fundamental news: they expect the effects of positive (negative) news about the
fundamentals to be more persistent than it is rational. This evidence is consistent with the
explanation of Summers (1986) that assumes that deviations follow a persistent AR(1) process.
Recently, there has been a growing interest in modelling deviations of asset prices from instrisic
valuations using nonlinear models. A common result is that asset prices can be characterized as
switching between two regimes: when deviations are small they follow a random walk process
but when they are large they follow a stable AR process that contributes to the reversion of the
price toward the fundamentals. Some studies along these lines are Gallagher and Taylor (2001)
for stock prices and Kilian and Taylor (2002) and Taylor and Peel (2000) for exchange rates.

We investigate the issue of nonlinear mean reversion for yearly observations of the S&P500
index from 1871 until 2001. Estimation results for stock price data up to 1990 show that there
is evidence for nonlinearity in the mean reversion process. In particular, when the price is close
to the intrinsic value the deviations are very persistent and mean reversion is weak; however,
when deviations are large the speed of adjustment increases and the price reverts back toward
the fundamental value. The results suggest that in the mean reverting regime the half-life of a
shock is approximately 3 years. When the 90s are included in the sample, there is strong evidence
of nonlinearity in the transitory component. The estimation results indicate that the pattern
of mean reversion has changed compared to the previous findings. Both close and far from the
long-run equilibrium deviations are very persistent. So, there is no evidence that the speed of
mean reversion becomes stronger for large deviations. We interpret these results as evidence
that the extreme behaviour of prices in the 90s exacerbated the persistence of the mean reversion
process. Before the 90s, when a fad was driving the stock price away from the fundamentals,
stabilizing forces were activated to weaken the persistence of the process. However, in the 90s
the persistence became stronger and drove the PD ratio to unprecedented levels.

The chapter is organized as follows: section (2) introduces different notions of fundamental
values used for empirical investigation. Section (3) describes the nonlinear model used for the
deviations of stock prices from fundamentals. Section (4) discusses the estimation results and
the evidence in support of the hypothesis of nonlinear mean reversion. Finally, section (5)

concludes.

2 Fundamentals

A standard approach in asset valuation is to assume that the price satisfies
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where P; is the price of the asset at the end of period ¢, D¢ is the cash flow paid during period

(t + 1) and 741 is the required rate of return at time (¢ 4+ 1). FE:(-) indicates the expectation

conditional upon information available at time ¢. Solving Equation (1) forward for T' periods

and applying the law of iterated expectations, we obtain
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The present value of holding the asset for T periods is equal to the expected discounted value
of its cash flows and the expected discounted value of the resale price. A typical assumption
introduced to rule out the occurrence of bubbles is
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called the transversality condition. If we assume that T — oo and the transversality condition
holds, the asset price is equal to the expected discounted value of its future cash flows
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where we indicate P as the fundamental value. We define the growth rate of the dividend

process g¢ as Dyy1 = (14 g4+1) Dy, so that the fundamental value is given by
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The time variation of g; and 7; and the nonlinearity in the pricing equation complicate the
derivation of analytically tractable formulas. One approach to simplify the problem consists of
assuming that the dividends growth rate and the required return are constant and equal to g

and r, respectively. Under these assumptions, Equation (5) implies that
P} =mDx, (6)

where m = (1+ g)/(r — g). The stock price at time ¢ is given by the cash flow times a multiple
that depends on the ex-ante rate of return and the growth rate of dividends. This model is also
known as the Gordon valuation formula and has recently been used by Heaton and Lucas (1999)
to determine the rational valuation of stock prices and by Fama and French (2002) to evaluate
the size of the risk premium. The model is very simple and makes some clear predictions about
the behaviour of prices: prices will increase if r is lowered, that is, if investors discount at a lower
rate future cash flows, or if dividends are expected to grow at a faster rate. Another implication

of the model is that the PD ratio should be constant over time.



However, the assumption that the dividend growth rate and the expected returns are constant
seems unrealistic. It is possible to allow for time variation by following the approach of Poterba
and Summers (1986). They approximate the pricing formula given in (5) by a first-order Taylor

expansion around the mean of the required return, r, and the mean of the growth rate, g,
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where the partial derivatives are given by
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and § = (14 g¢)/(1 + r). Substituting the derivatives into Equation (7), we get

«_ Jl+g 1
Pt—{r_g (r—g)Et }Dt- (10)

The pricing formula depends on the expectations of investors about future ex-ante returns and
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dividends growth rates. A typical assumption made in the literature is that the expectations

follow an AR(1) process, that is
E(rerj —r) = p'(re =) (11)
Ei(gt+j — 9) = ¢ (9t — 9), (12)
and the approximated pricing formula in Equation (10) becomes
P =mDy, (13)

where my is the time-varying multiplier given by
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This version of the fundamental value is known in the literature as the dynamic Gordon model
because it defines asset prices as a time-varying multiplier of the dividends. The multiplier in
Equation (14) has a straightforward interpretation: if the required rate of return and the growth
rate of dividends are constant and equal to their mean then it collapses to the static multiplier
of Equation (6); however, time variation in the required rate of return and/or in the dividend
growth rate changes the level of the multiplier. The response of prices to changes in r; and ¢;

is similar to the case of the static Gordon: if investors require at time ¢ a return higher (lower)



than the average r, this will decrease (increase) the multiplier and consequently prices. On the
other hand, if dividends grow at a higher (lower) rate at time ¢, this will increase (decrease)
the multiplier and will affect positively (negatively) stock prices. Equation (14) shows that the
multiplier depends also on the AR coefficients in the expectations of the required return and
the dividend growth rate. High p and ¢ imply that shocks to g; and r; will have a persistent
effect on the multiplier and on prices. Analogously to the static case, the multiplier can be
interpreted as the PD ratio: in this case the forcing variables, ex-ante returns and dividend
growth rate, determine the dynamics of the ratio. The required rate of return is unobserved and
many variables have been used as proxies. Campbell and Shiller (1989) used different notions of
required returns: the risk-free interest rate plus a constant risk premium, the expected growth
of real consumption times the coefficient of relative risk aversion plus a constant risk premium
and another version in which the risk-free rate is constant and the risk premium is given by the
conditional volatility of stock returns times the coefficient of relative risk aversion.

The extension to the dynamic Gordon model takes into account the possibility that time
variation in interest rates, risk premia or growth rates could explain the large deviations of the
PD ratio from its mean. The top plot in Figure (1) shows the PD ratio for yearly data from
1871 to 2001 of the S&P500 index!.

Figure (1)

It is clear that the static Gordon model is rejected by the large and persistent deviations of the
ratio from its mean. It is also striking how the PD ratio increased during the 90s: while it has
historically oscillated between approximately 10 to 35, after 1995 it exceeded this range to reach
levels as high as 85. This is also apparent in the bottom plot of Figure (1) that shows the log
of the real stock price and the log of the fundamental value.

It makes then sense to use the dynamic version of the Gordon formula in order to explain the
large deviations by changes occurred in fundamentals. Figure (2) shows the time series properties
of the dividend growth rate, the real riskless interest rate and the yearly volatility measured by
the average squared monthly returns. The autocorrelation plots show that at yearly frequency
only the interest rate has some significant linear dependence whereas both the growth rate of
dividends and the volatility of the stock returns have no significant dependence. In addition,
the autocorrelation in the riskless rate is quite small to be able to explain the large deviations of
the stock price from the fundamental price. The last column of Figure (2) depicts the multiplier

(equivalent to the PD ratio) in Equation (14) when the dividend growth rate or the required

!The dataset used is described in Shiller (1989). It consists of yearly observations of the price and dividends
for the S&P500 Composite Stock Price Index from 1871 until 2001. We deflated the series by CPI index. The

interest rate used is the return on four to six months commercial paper.



rate are allowed to vary. We follow the approach of Campbell and Shiller (1989) and use the
risk-free rate (plus a constant risk premium) and the stock return volatility as proxies for ex-ante
returns. In all cases, the multipliers do not have the persistence and variability displayed by the

PD ratio in Figure (1).
Figure (2)

The evidence discussed here and the results of Campbell and Shiller (1989) and, more recently
by Zhong et al. (2002), suggest that the fundamental factors should have high persistence to
explain stock prices. Barsky and de Long (1993) assume that prices are formed according to
Equation (6) with the dividend growth rate following an ARIMA(0,1,1). This process contains
a unit root and gives more persistence to the warranted fundamental value. However, there
is no empirical evidence to support the assumption of a unit root in the dividend growth rate.
Bansal and Lundblad (2002) provide evidence that at monthly frequency an ARMA(1,1) process
has quite large AR and MA coefficients. However, Figure (2) suggests that for the yearly data
analyzed here there is no evidence of statistical significance of an ARMA specification.

These results point to the fact that fundamental factors are not able to give a full account of
the dynamics of stock prices. On the other hand, the failure of rational valuation could be caused
by misspecification of the fundamental process. This issue has been investigated by Donaldson
and Kamstra (1996) in order to give a rational explanation for the bubble occurred in 1929.
They used monthly data and simulated paths from Equation (5) assuming that the discount
factor included a nonlinear component and ARCH innovations. In this way, they allow for time
variation in the fundamental factors without relying on the approximated pricing formula. They
found that the stock price run-up and crash of 1929 was not caused by a bubble but it could be
rationalized by considering nonlinear effects and heteroscedasticity in the discount factor and
the growth rate of dividends. However, the results are based on the findings of significant linear
structure in the monthly growth rate of dividends. As it is clear from Figure (2), the yearly data
do not show significant evidence of ARMA dependence. Hence, it is unlikely that their method
would perform successfully on the data analyzed here.

In the literature, there are two alternative interpretations to explain this failure: rational
bubbles and irrational fads. The deviations are associated with rational bubbles when they
satisfy Equation (1), while irrational fads do not. In both cases, prices are decomposed into a

permanent (or fundamental) and a transitory (or non-fundamental) component
B = P} + Xq, (15)

where P is as in Equation (5) or (10) and X; represents the deviations from the fundamentals.



To be consistent with a rational bubble model X; has to satisfy the condition
X = (147" E(Xe1a), (16)

where, to simplify notation, we focus on the simple static Gordon case. This is a more general
solution to Equation (2) because it does not require the transversality condition. The character-
istic of a bubble is that it grows indefinitely at rate (14 r) > 1. Blanchard and Watson (1982)
proposed a model in which the bubble switches between two states, one in which the bubble
survives (X; > 0) with probability ¢ and one in which it collapses (X; = 0) with probability
1—gq. A further refinement is the periodically bursting bubble model proposed by Evans (1991).
In this model, the bubble grows faster than the rate (1 + r) if X; is below a positive threshold
while beyond it has a positive probability to burst. Many tests for the existence of bubbles
in asset prices or exchange rates were proposed. For a survey see Flood and Hodrick (1990).
The results based on data until the beginning of the 90s did not show evidence to support the
hypothesis of rational bubbles in asset prices.

An alternative explanation for the transitory component X; is that it represents an irra-
tional fad in investors sentiment that causes temporary deviations from fundamental valuations.
This approach has been proposed by Summers (1986) and Poterba and Summers (1988). The
assumption that X; is a persistent stationary process is consistent with the evidence of mean
reversion and long-term predictability in stock prices. Mean reversion was investigated mainly
by using variance ratio tests that showed that stock prices do not follow a random walk because
the variance of returns over k periods is significantly lower than & times the variance of one
period return. In addition, long-horizon returns are negatively related to measures of deviations
from the fundamentals, such as the PD ratio.

However, few attempts have been made to explicitly model the transitory component and
investigate the possibility that it evolves in a nonlinear fashion. In the next section we introduce
a nonlinear model to explain the time variation in the mean reversion of stock prices to the

fundamental value.

3 Nonlinear Dynamics

A simple way to consider nonlinear effects consists of a smooth (nonlinear) transition between
2 linear regimes. The model is called STAR (Smooth Transition AR)? and assumes that the

process X; for the transitory component in stock prices evolves as

2We largely simplify the discussion of STAR models according to the application at hand. For a more detailed
discussion of this family of models see Terasvirta (1994) and van Dijk et al. (2002).



Xt = {¢/1Gt(5t7%c) + ¢/2[1 - Gt(shﬁ%c)]} Xt—l + & (17)

where X1 = (1, X¢_1, ..., X;_p)" and the disturbance term ¢; is i.i.d. with constant variance o2.

Gt(St,7,¢) is the function that regulates the transition from the first regime, with coefficient
vector ¢1, to the second regime, where the dynamics evolves according to ¢s. S; is the variable
that determines the switch between regimes. In the application in the next section we use
St = X g for d > 1. Two common choices of G¢(St,7,¢) are the logistic and the exponential
function. The logistic version of the STAR model (called in the literature LSTAR) has transition
function

Gi(St,7,¢) = {1 + exp[—y(S: — )]} 1, (18)

where v > 0 determines the speed of transition and the threshold ¢ determines the regime that is
active. The logistic function varies smoothly from 0 to 1 as the transition variable, S;, becomes
increasingly larger than the threshold ¢. Another common choice for the transition function is

the exponential (and the model is termed ESTAR), given by
Gi(Si,7,¢) = 1 — exp[—y(S; — ¢)?] (19)

In this case the transition function smoothly approaches 1, the further S; deviates (in either
directions) from the threshold value c.

These transition functions imply different dynamics for the process of mean reversion: the
logistic is characterized by an asymmetric adjustment of X; to its past values depending on
the transition variable, St, being above or below the threshold c. In contrast, the exponential
implies a symmetric adjustment in both directions of (S; — ¢). In other words, when using the
logistic function we assume that negative and positive deviations revert back to the fundamentals
at different speeds, whereas using the exponential the speed of mean reversion is equal for
negative and positive deviations. The choice of the transition function is a crucial issue for the
interpretation of the results. We will test which type of transition seems to accommodate better
the dynamics in the deviations of stock prices from the fundamental value.

The null hypothesis of linearity against STAR holds if either Hg : ¢1 = ¢ or H(l) :y=0. As
discussed more extensively in Terasvirta (1994), under both null hypotheses the test statistics are
affected by the presence of nuisance parameters that complicate the derivation of the asymptotic
distribution. In order to overcome this identification problem, Luukkonen et al. (1988) proposed
to approximate the transition function G¢(St,, ¢) with a Taylor-expansion around v = 0. This
allows to derive an LM type statistic with a standard y? distribution. A 24 order Taylor-series

expansion of the exponential transition function around -y = 0, leads to the auxiliary regression

xr = BpXi—1 + B Xe-1S; + B5 X157 + B5Xe-15} + BiXe—1S¢ + e (20)



where X;_1 = (X¢-1,..., X¢—p) and the (; are reparametrizations of the vector of parameters
(¢, d5,7v,¢). The null hypothesis that v = 0 against ESTAR corresponds to test that Hp :
B1 = P2 = B3 = B4 = 0. Similarly, a 3" order expansion of the logistic function involves only
the first four elements of the RHS of Equation (20) and the null of linearity can be tested as
Hy : 51 = B2 = 3 = 0. The artificial regression in Equation (20) could also be used to guide the
specification of the transition function. The reparametrizations of the expansion of the logistic
function imply that the null holds if 3; = 0 and §3 = 0, whereas the expansion of the exponential
function under the null involves only the second order term, that is, 32 = B4 = 0. We can design
the following null hypotheses in order to test for evidence of STAR dynamics and the type of

transition function that is more appropriate. The null hypotheses are

(LMy) Ho:01=P2=03=01=0
(LM;) Ho:p1=02=03=0|81=0
(Ho,L) Ho:061=03=0

(Ho,r) Hy:(2=0p1=0

LM, and LMs3 are used as general tests of linearity against STAR dynamics. Instead, rejection
of Hy r suggests that a logistic transition should be preferred while rejection of Ho g points
to an exponential specification. The testing procedure is conditional on the lag d used for the
transition variable. By testing for different values of d, the tests are also useful in the selection
of the optimal lag for the transition variable. In order to robustify inference in small samples
we will use the F-version of the tests. A relevant issue in the implementation of these models
is the choice of p, the order of the AR regimes. We follow the approach of Terasvirta (1994) by
looking at the PACF and the order selected by AIC.

4 Estimation Results

We use the static Gordon valuation as our notion of fundamental value for the yearly S&P500
Index data described earlier. From Figures (1) and (2) it is clear that considering the dynamic
PVM would not change significantly the dynamics in the transitory component of stock prices.
We estimate the STAR model to the deviations of the price from the fundamental value scaled

by the dividends, that is, we define
_A-F

D,
Using the static Gordon model in Equation (6), X; is equivalent to the deviation of the PD ratio

X, (21)

from the multiplier m. In what follows we analyze the time series both in the full sample and

10



in the sub-sample from 1871 to 1990. This seems a natural choice because the late 90s might
have changed dramatically the time series properties and the mean reversion dynamics of the
deviations from the fundamentals.

Figure (3) shows the time series of the PD ratio, X, and the PACF in the restricted and the
full sample. In the subperiod, the PACF suggests that there is dependence up to lag 3. This
is also confirmed by the AIC selection criterion. However, in the full sample the dependence in

the third lag is not significant and p = 2 seems appropriate.
Figure (3)

First, we tested for linearity of the time series of the transitory component against a STAR

alternative. The p-values of the tests described in the previous section are given in Table (1).

Table (1)

In the sample up to 1990 the LMs and LM, tests reject at 5% significance level the null hypoth-
esis of linearity. For both tests the rejection occurs in the 4" lag of the transition variable. The
rejection for LMy is stronger than for the other test and it is evidence in favour of the choice
of the exponential as transition function. More insights about the specification of the transition
function come from the Hy 1, and Hy g tests. For both tests we reject the null of linearity: for
Hy 1, the third and seventh lag have p-value 0.02 and for Hg g the lowest p-value is 0.04 in the
fourth lag. Thus, contrary to the previous more general tests, the rejections favour the logistic
specification.

The pattern of rejections changes dramatically when the sample is extended to include the
last 10 years. Both LMz and LM, reject for d up to lag 8. The test for logistic transition,
Hy 1, rejects strongly from the second lag up to the fifth and also in the eight and tenth lag.
Instead, Hy g rejects on the forth lag and in the seventh lag. These results might be explained
by the run-up of the late nineties that attributes a higher weight to one tail of the distribution
and gives more support to a logistic specification. As discussed in detail in Terasvirta (1994),
LSTAR and ESTAR are to some extent substitutes. This might happen when an ESTAR model
has most of the observations lying in one side of the threshold such that it can be reasonably
approximated by an LSTAR specification.

The tests for linearity suggest that there is evidence to reject the null hypothesis both in
the period 1871-1990 and in the full sample until 2001. The evidence about the specification of
the transition function is mixed: there seems to be support for both specifications up to 1990
while the full sample favours more clearly the logistic function. Given the mixed evidence of

the tests, we chose the best specification by estimating and selecting the models based on the
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AIC selection criteria for the period 1871-1990. The best model is an ESTAR, specification with
d = 4 as was also found by the tests. This result suggests that there is no evidence of asymmetry
in the adjustment process of the stock price toward its long-run equilibrium. This confirms the
evidence of Kilian and Taylor (2002) and Taylor and Peel (2000) that estimated ESTAR models
to exchange rates. It is also consistent with the results of Gallagher and Taylor (2001) that
used an ESTAR model to quarterly stock prices data from 1926 to 1997. However, the late 90s
can be interpreted as evidence that positive deviations might have become more persistent than
negative. A definitive answer to this issue requires to observe the evolution of stock prices in
the following years to conclude that there has been a break in the symmetry of the adjustment
process.

We use the same specification both in the estimation for the subsample and in the full
sample. In this way we can interpret the changes that might occur in the estimation results.
The estimation results are shown in Table (2). We performed a grid search for v and ¢ to
initialize the NLLS estimation procedure. When a coefficient was not significant we dropped it

from the regression and fitted the reduced model.
Table (2)

In the sample 1871-1990 the estimated coefficients are statistically significant and the residuals
diagnostics proposed in Eitrheim and Terasvirta (1996) do not show significant model misspecifi-
cation. The mid-regime is characterized by an AR(3) with modulus 0.962, that is, very persistent
and close to a unit root. The outer regime is a stationary process with dependence only in the
first lag. The estimated model suggests that the dynamics of the deviations from the fundamen-
tals is characterized by a very persistent process in the inner regime that drives the price away
from the fundamental value; when the deviations get large the outer regime is activated and the
process mean revert to the fundamental value. The outer regime has an AR(1) coefficient of
0.794. When this regime is completely active the half-life of a shock is approximately 3 years.
It is interesting to analyze the behaviour of the transition function G¢(X:_4,7,c) in Figure (4).
The top plot shows the evolution over time of G;(-). It is clear that there are wide variations in

the transition function but the external regime is never completely active.
Figure (4)

This is due to the small estimated value of v that implies a very smooth transition clear in
the bottom plot of Figure (4). These results suggest that the speed of mean reversion of the
transitory component (toward its mean) varies over time and depends in a nonlinear fashion on

the magnitude of the deviation. They can interpreted as evidence that investors are uncertain
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about the direction of the stock market when the price is close to the fundamentals while
they become increasingly concerned of the irrational mispricing when the transitory component
becomes large. Similar results where also found in the exchange rate literature by Kilian and
Taylor (2002) that show that a linear mean reverting process is not consistent with the findings
of long-horizon predictability.

The estimation results of the previous model specification for the sample 1871-2001 are shown
in Table (2). The LMy, adequacy test rejects the null hypothesis of no further nonlinearity in
the data. This is to expect given the pattern of strong rejections in the linearity tests and the
fact that the model was selected on the shorter sample. The tests for residuals autocorrelation
do not reject at 10% significance level but they are much lower than in the shorter sample. Also
the test for parameter constancy, LMpc, has a much lower p-value. The results for the mid-
regime confirm the previous findings. The coefficients of the AR(3) process have very similar
magnitude and the modulus is 0.971. However, the estimated coefficients of the outer regime is
0.989 while before it was 0.794. The interpretation of this result is clear: to accommodate for
the price behaviour after 1995 the model has to allow for more persistence in the outer regime.
Figure (5) shows the transition function for the full sample estimation. It is quite similar to
the plot in the shorter sample. However, the upper limit of 1 is reached in the last years of the
sample, suggesting that for those years the transitory component had a random walk type of

dynamics.
Figure (5)

Contrary to the results in the sub-sample, the outer regime is also close to have a unit root.
This highlights the fact that the late 90s represented a discontinuity in the time series properties
of the data. While until the 90s large deviations were adjusted by the activation of a stabilizing
regime, the sample until 2001 is heavily characterized by the unprecedented run-up in stock
prices. The persistence found in the outer regime is probably related to the fact that the sample
stops in 2001. If stock prices are mean reverting, the addition of more observations in the coming
years would allow us to test if a structural break has occured in the adjustment pattern of stock

prices.

5 Conclusion

It is a well documented fact that rational valuation models are not able to account for the
dynamics of stock prices that are too volatile and take long swings away from intrinsic valuations.
As we showed in this paper, allowing for time variation in the discount rate and in the dividends

growth rate does not improve significantly the explanatory power of the PVM presented in
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Section (2). The deviations of stock prices from the fundamental value are much more persistent
than warranted by the factors that are assumed to determine the asset price dynamics.

An explanation proposed by Summers (1986) is that stock prices contain a temporary com-
ponent associated with the sentiment of investors. When investors observe positive (negative)
news about the fundamentals of an asset they expect the effect on the stock price to be more
persistent than it is rational. This implies that shocks to stock prices are more persistent than
warranted by shocks to fundamental factors as it is clear from Figure (2). In Summers (1986)
and Poterba and Summers (1988) it is assumed that the transitory component follow a persis-
tent AR process while the fundamental value evolves according to a random walk. This model
implies that stock returns have small negative autocorrelations at short-horizons while they be-
come large and negative at long-horizons. In other words, they display the same type of mean
reversion that was found for various assets, such as stocks and exchange rates.

In this paper we show that the assumption of a linear process for the deviations from the
fundamentals is inappropriate. The transitory component is better explained by a nonlinear
model that behaves like a unit root process when prices are close to the intrinsic value and
follow a stable AR process when the the deviations are large. This model implies that the
speed at which stock prices revert towards the fundamentals is higher when deviations are large.
This could be the result of the arbitraging activities of smart investors that act to correct the
mispricing of a stock. When the stock price is farther away from the fundamentals, they will
act more aggressively to correct the deviation that will cause the adjustment toward the mean.

However, this explanation seems not appropriate to explain the rapid stock price run-up
of the late 90s. The stabilizing role of the outer regime has significantly lowered and there is
weak evidence of mean reversion. After 1996, instead of experiencing fast adjustment toward
the mean the stock price continued to deviate from the intrinsic value until 2000 when it started
to correct downward. This fact is at odd with the previous interpretation of the role of rational
arbitrageurs that cause the stock price to revert back. Probably, in the late 90s the irrational
expectations of a majority of investors about the persistence of stock prices prevailed on the
stabilizing role of rational agents and drove the transitory component to unprecedented levels.

A situation that could be probably associated with a bubble in stock prices.
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Figure 1: PD ratio
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(a) Price-Dividend ratio for the S&P500 Composite Index from 1871 to 2001. The
line indicates the average PD ratio of 25.78. (b) Log of the stock price and the
static PVM fundamental value. The multiplier is obtained by assuming g = 0.018
and r = 0.057.
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Figure 2: Fundamental Factors

1900

[ — interest rat

0.25

0.00

-0.25

1950

|
1900

0.4
L —vol

1900

|
1950

1950

|
2000

2000

5 10

1870 1890 1910 1930 1950 1970 1990

30

28+

26l g

| I R R R B B

1870 1890 1910 1930 1950 1970 1990
30

28+

26

A M v

24+

22 Il Il Il Il
1870 1890 1910 1930 1950 1970 1990

Plot of the time series (left), autocorrelation function (center) and multiplier as given
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Figure 3: Deviations from the Fundamental
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Time series of X, the deviation from the fundamentals scaled by the dividends. It can
also be interpreted as the deviation of the PD ratio from its multiplier. The bottom plots

are the PACF up to lag 10.
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Table 1: Linearity Tests

d LMs LMy Hyy Hyg LMs LM, Hyy Hog
1871 - 1990 1871 - 2001
1 053 033 039 039 0.00 0.00 008  0.42
2 011 011 006  0.28 0.00 0.00 0.02 0.7
3 012 009 0.02 0.39 0.00 0.00 0.01 0.55
4 003 0.0l 008 0.04 0.00 0.00 0.00 0.04
5 048 057 041  0.78 0.00 0.00 0.01  0.62
6 021 036 092 008 0.01 0.02 018  0.52
7 012 008 0.02 027 0.01 0.00 011 0.02
8 092 092 090  0.79 0.01 0.00 0.00 0.20
9 050 068 060  0.65 0.03 010 007  0.42
10 007 009 027  0.06 0.01 0.01 001 004

The tests are described in Section (3) and are applied to X¢, the deviations of stock
prices from the static PVM. The autoregressive order, p, was set to 3. The tests are

implemented as F-tests. In bold the p-values that are smaller than 5% significance level.
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Table 2: ESTAR Estimation

1871-1990 1871-2001
G()=0 G()=1 G()=0 G()=1
bo,i -1.053 2.265 -1.152 3.033
[-2.175] [1.368] [-1.538] [2.094]
b1,i 0.712 0.794 0.738 0.989
[5.193] [4.869] [4.951] [13.51]
$2,i -0.311 -0.308
[-2.135] [-1.97]
?3,i 0.531 0.52
[4.758] [4.137]
¥ 0.35 2.08
(3.364] [12.8]
c 2.87 -1.421
[2.03] [2.21]

1871-1990: R® =0.619 , AIC = 2.637, & = 3.645,AR(1) = 0.34,
AR(4) = 0.565, LMy, =0.276, LM pc=0.892

1871-2001: R® = 0.881, AIC =2.929, 6 = 4.228, AR(1) = 0.1,
AR(4) = 0.21, LMy, = 0.01, LMpc = 0.16

Estimation results for the sample period 1871-1990 and the full sample; the t-values in
parenthesis are obtained by Newey-West variance-covariance estimator. The adequacy
tests are as in Eitrheim and Terasvirta (1996): AR(q) is a test for residual serial inde-
pendence of order q, LMy, tests for no remaining nonlinearity and LMpc¢ is a test for

parameter constancy.
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Figure 4: Transition Function: 1871-1990
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Transition function G¢(X;_4, 9, ¢) plotted in time and against X;_4 for the period

1871-1990.
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Figure 5: Transition Function: 1871-2001
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