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Abstract

This paper studies the family of Koehler and Symanovski multivariate distributions
with specific marginals, as skewed Student ¢, generalized secant hyperbolic and gener-
alized exponential power distributions, in order to model financial returns and measure
dependent risks. This family of distributions can be specified using the cumulative dis-
tribution function adding interaction terms to the case of independence. Moreover, it
can be also derived using a particular transformation of independent gamma functions.
The advantage of using this distributions respect to others lies in the opportunity to
model complex dependence structures among subsets of marginals, as shown with a
Monte Carlo study, and to aggregate dependent risks of some market indices.

Keywords: Asset Returns, Risk Management, Skew Marginals, Monte Carlo Simula-
tion, IFM method.

1 Introduction

Many problems in Finance, including risk management, optimal asset allocation and
derivative pricing, require an understanding of the volatility and correlations of asset
returns. In these cases it can be necessary to represent empricial data with a parametric
distribution. In literature many distributions can be found able to model univariate
data, but they cannot be easily extended to represent multivariate populations. In this
context, the most used multivariate distribution in the aggregation of dependent risks
is the normal distribution, which nevertheless has the drawback to be not very flexible
and in many cases not appropriate to model returns.

An important tool to account of individual risks, the copula function, has been
introduced in finance by Embrechts, McNeil and Straumann (1999, 2002), who have
explained some essential concepts of dependence which have affected the construction
of methods for the risk management industry (Embrechts, Lindskog, McNeil, 2003;
Rosenberg, Schuermann, 2004). According to these specifications, this paper studies
a method to obtain an analytical form of the joint distribution of asset returns in a
portfolio based on the family of distributions introduced by Koehler and Symanowski
(KS) (1995). This family of distributions is defined by the cdf adding interaction terms
to the case of independence and it permits to specify arbitrary marginals. Moreover, it
can be also derived using a particular transformation of independent exponential and
gamma random variables. The advantage of using this distribution respect to others lies
in the opportunity to model complex dependence structures among subsets of marginals,
as shown with a Monte Carlo study, and to aggregate dependent risks.



The paper is organized as follows. In the next section we introduce the KS distri-
bution family, while in third section we present the results of a Monte Carlo study on
the dependence structure of the distribution when the marginals are skewed Student ¢,
generalized secant hyperbolic and exponential power. Then, in section 4 we show the
results of an application to four market indices and conclusions are left to section 5.

2 KS formulation

Koehler and Symanowski (1995) introduce a class of multivariate distribution families
which can be built for almost any given univariate marginal distribution and can be
viewed as a generalization of the Cook-Johnson family of distributions (Johnson, 1987;
Cook and Johnson, 1981, 1986). Therefore, consider the p-dimensional random variable
U= (Uy,Us,...,U,) with support on the unit hypercube (0,17 and cdf
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with a;; = aj; > 0 for all (4, §) and ;4 = aj1+ o+ -4 a;, >0foralli =1,2,...,p.
Deriving the cdf respect to wq,us,...,u, we obtain the probability density function
(pdf) of U which can be written as
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Koheler and Symanowski (1995) have shown that it is possible to obtain a scheme
to generate this distribution using gamma distributions. In this sense, let Y7, Y5,...,Y}
be iid. Gamma(l,1) and, independently, G11,G12, ..., Gpp be Gamma(a;;, 1) with
Giy = Z?:l Gi;j. Then, the joint pdf of

U= (14 Y/Gip) ™, i=1,2,...,p, (4)

has cdf given by (1).

The conditional means of U are not linear functions of the values of the conditioning
variables. Consequently, it is more reasonable to measure dependence between variables
using concordance coefficients as the Kendall’s tau or the Spearman’s rank correlation
than using the correlation coefficient. However, the level of association between pairs
of variables in (3) depends on the level of the parameters «;;. In particular, the cdf
of any bivariate marginal (U;,U;) approximates the Frechét upper bound as «;; — 0
and at the same time (o;y — @ij)/ai+ — 0 and (a4 — @;5)/aj4 — 0; vice versa, it
approximates (U;U;), paired independence, if «;; — 0 when «;4 and a4 are greater
than zero and at the same time a;y — oo and a;4 — oco. Moreover, the standard
form of U determines that all the correlations are positive. Variations in the standard



form that also take into account negative correlations can be obtained by applying the
transformation V; = 1 — U; to some, but not all, variables (other characteristics of the
KS formulation can be found in Caputo, 1998; Manomaiphiboon, K. and Russel, A.G.,
2003).

We can obtain also specific marginal distributions of (3) by applying the inverse
probability transforms to U;. Let the random variables X;, ¢ = 1,2,...,p, have cdf F;
with corresponding inverse F.-' and pdf f;. Then, the X; = Fi_l(Ui) have joint cdf

K3

p p
F(l‘l,l‘g,...,l‘p) = HFZ(l’Z) H Ci;alja (5)
=1 j=i+1

and pdf

P
f(901,902a---al‘p):H fi(xi)D; H Ol

=1 j=i+1
p P
70[2” - - - Qg ag
x (1420 > <a. D7 DT O B () ()Y +> ,(6)
i=1 j=i+1 +5g+

where

p
Di = o}t Joui+ D (auFrlae) /O3 |
k#i

and, in this case,
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where the «a;; parameters assumes the meaning seen before. It is immediate to verify
that, in order to simulate the joint distribution of Xy, X,..., X}, with the Monte Carlo
method, it is sufficient to generate some variates using (4) and then apply the inverse
transformation to each marginal.

3 Monte Carlo study

In this section we present the results of a Monte Carlo study on the dependence structure
of the KS distribution with skewed, fatted tails risks. The results of simulations and
of the application shown in the next section have been obtained using a FORTRAN
90 code implemented on a 2300 MHz PC Intel on Windows 2000. The code uses the
random number generator and the optimization routines of the NAG Fortran library.

3.1 KS Marginals

The Monte Carlo experiment has been run using as data generator process the skewed
Student ¢, generalized secant hyperbolic and exponential power (generalized error) dis-
tributions, which are useful in financial risk analysis because have heavier tails than the
normal distribution.

Since in their principal definition these distributions are symmetric, to skew them
we have followed Fernandéz and Steel (1998), who have introduced skewness in a sym-
metric distribution adding inverse scale factors in positive and negative orthants. More
precisely, if g is a symmetric pdf on zero with support IR, then for any « > 0 we obtain
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We can write the cdf F and the quantile function F~! corresponding to a skew
density f of an X distribution using the cdf G and the quantile function G~! of the
symmetric density. We have
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for the quantile function. Moreover, the moments of order r, r = 1,2, ..., can be written
as
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is the 7-th moment of the symmetric distribution truncated to positive values. Clearly
ET(X") assumes the value of the r-th moment of the symmetric distribution divided
by 2 when r is even.

On the basis of these formulations, we present the main characteristics of the dis-
tributions considered (for details see, among others, Ayebo and Kozubowski, 2003;
Lambert and Laurent, 2001; Palmitesta and Provasi, 2004).

Skew Student-t. A random variable X has a skew Student ¢ distribution (SST) if the
parameters x > 0 and v > 2 exist such that the pdf of X is
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where T'(-) indicates the gamma fucntion. If x = 1, the distribution is symmetric on
zero and has zero mean and unit variance. The cdf of X is given by
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is the cdf of the unscaled Student ¢ with v degrees of freedom.
The moments of order r, r = 1,2,.. ., of the SST distribution are:
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and exist when v > r.



Skew Generalized Secant Hyperbolic. A random variable X has a skew generalized
secant hyperbolic distribution with parameters x > 0 and A > — is its density is
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The skew logistic distribution is a special case of this distribution when & # 1 and
A=0.

The cdf of X is given by
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is the cdf of the symmetric generalized secant hyperbolic distribution with zero mean

and unit variance obtained when x = 1. Moreover, the moments of order r, r = 1, 2,...,
are:
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where L,(-) indicates the polylogarithmic function whose primary definition is
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Skew Power Exponential. A random variable X has a skew exponential power
distribution (SEP) with parameters £ > 0 and 8 > 0 is its density is
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. Likewise, when 8 = 1 we obtain a normal distribution.

'See at the web page http://functions.wolfram.com/10.08.02.0001.01



The cdf of X is given by
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the regularized gamma function. G is the cdf of the symmetric exponential power
distribution with zero mean and unit variance obtained when x = 1.
The momemts of order r, r = 1,2,..., of the SEP distribution are:

If 8 € IR is a position parameter and ¢ > 0 is a scale parameter, then it is possible
to bring back the three distributions to be characterized by four parameters using the
transformation ¥ = 6 + ¢ X. Moreover, the skewness and kurtosis indices can be easily
obtained relating moments from the origin and central moments.

3.2 The experiment

Here we show the results of the Monte Carlo experiment run to interpret the association
parameters of the (5) when the marginals are the three distributions seen above. Ac-
cording to the instruction given in Koehler and Symanowski (1995) samples are taken
from a three-dimensional KS distribution for different values of a2, @13, g3 and setting
a11 = agy = asz = 0. For each sample the correlation coefficient as a measure for the
linear relation and the Kendall’s coefficient for the monotone relation are calculated for
all pairs of variables. Table 1 shows the results for samples of size n = 50000, where
the marginals have zero mean, unit variance and, respectively, skewness equal to -0.5,
0, 0.5 and kurtosis equal to 5, 6, 8.

To comment the results, note that changing the values of the association parameters
we obtain very different dependence measures, but no particular links among them can
be pointed out. Moreover, it seems that marginal have not a big effect on the dependence
structure of the KS distribution, because the values of the correlation coefficients and
Kendall’s taus do not vary a lot in the three cases we have studied.

4 Fitting the KS distributions to data

4.1 Data

The raw data used in this paper are weekly prices of four market indices: the S&P
500 Composite index (S&PCOMP), NASDAQ Composite index (NASCOMP), NIKKEI
500 index (JAPA500) and MSCI AC World index (MSACWTFL). The observations have
been obtained by Datastream for the period 1/1/1988 to 12/31/2003. Then, we have
computed the returns as first differences of the natural logarithm of each series, r; =



Skew Student-t Distribution

Association Kendall’s Correlation

parameters coefficients coefficients
0.01 0.01 0.01 0.3293 0.3250 0.3299 0.3979 0.3887 0.4104
0.10 0.10 0.01 0.3933 0.3977 0.0451 0.4948 0.5028 0.0608
0.50 0.01 0.01 0.4805 0.0170 0.0164 0.6698 0.0412 0.0358
0.10 0.02 0.01 0.6430 0.1495 0.0760 0.7403 0.2261 0.1165
0.50 0.50 0.50 0.1473 0.1431 0.1471 0.2140 0.2009 0.1992
1.00 0.10 0.10 0.2785 0.0628 0.0617 0.4319 0.0939 0.0895
1.50 0.50 0.50 0.1455 0.0778 0.0761 0.2301 0.1127 0.1048
5.00 0.10 0.01 0.0893 0.0158 0.0054 0.1570 0.0298 0.0078
5.00 5.00 5.00 0.0235 0.0285 0.0252 0.0418 0.0447 0.0416

Skew Generalized Secant Hyperbolic Distribution

Association Kendall’s coefficients Correlation coefficients

parameters
0.01 0.01 0.01 0.3231 0.3256 0.3248 0.3827 0.3824 0.3953
0.10 0.10 0.01 0.3965 0.3943 0.0447 0.4847 0.4737 0.0520
0.50 0.01 0.01 0.4806 0.0177 0.0159 0.6637 0.0422 0.0416
0.10 0.02 0.01 0.6416 0.1487 0.0755 0.7294 0.2234 0.1161
0.50 0.50 0.50 0.1429 0.1427 0.1443 0.2045 0.1944 0.1884
1.00 0.10 0.10 0.2791 0.0640 0.0611 0.4277 0.0921 0.0906
1.50 0.50 0.50 0.1431 0.0799 0.0786 0.2324 0.1142 0.1068
5.00 0.10 0.01 0.0925 0.0201 0.0048 0.1628 0.0354 0.0072
5.00 5.00 5.00 0.0219 0.0217 0.0209 0.0360 0.0356 0.0312

Skew Exponential Power Distribution

Association Kendall’s coefficients Correlation coefficients

parameters
0.01 0.01 0.01 0.3231 0.3256 0.3248 0.3819 0.3820 0.3954
0.10 0.10 0.01 0.3965 0.3943 0.0447 0.4812 0.4709 0.0517
0.50 0.01 0.01 0.4806 0.0177 0.0159 0.6621 0.0421 0.0416
0.10 0.02 0.01 0.6416 0.1487 0.0755 0.7265 0.2229 0.1160
0.50 0.50 0.50 0.1429 0.1427 0.1443 0.2034 0.1935 0.1874
1.00 0.10 0.10 0.2791 0.0640 0.0611 0.4271 0.0917 0.0902
1.50 0.50 0.50 0.1431 0.0799 0.078 0.2319 0.1137 0.1063
5.00 0.10 0.01 0.0925 0.0201 0.0048 0.1626 0.0354 0.0071
5.00 5.00 5.00 0.0219 0.0217 0.0209 0.0358 0.0355 0.0312

Table 1: Correlation and Kendall’s coefficients for a;; = a9y = g3 = 0 and marginals with
zero mean, unit variance, skewness equal to -0.5, 0, 0.5 and kurtosis equal to 5, 6, 8.



Inl; — Inl;_q, where I indicates the price at time ¢, obtaining a sample of T' = 854
returns. Table 2 reports preliminary statistics for the four return series, and gives the
mean, median, minimum, maximum, standard deviation and skewness and kurtosis
indices.

The nonparametric densities with normal kernel of the distributions of the returns is
given in fig. 12. From the latter figure, also if the distributions have fat tails, it is difficult
to identify their shape. Moreover, since multivariate skewness and curtosis indices are
equal, respectively, to 2.246 and 61.523, the data are not normally distributed.

Finally, if we express the depedence structure of the four indices with the correlation
index, we obtain the following matrix;

1.0000 0.8196 0.3684 0.8877

B 1.0000 0.3697 0.7694
o 1.0000 0.3697 |’

1.0000

while if we use the Kendall’s tau we obtain:

1.0000 0.6347 0.2499 0.6807
1.0000 0.2421 0.5517

1.0000 0.4578

1.0000

<>
I

Note the high dependence of S&PCOMP with NASCOMP and MSACWFL.

S&PCOMP NASCOMP  JAPA500 MSACWEFL

Mean 0.0017 0.0020 -0.0004 0.0012
Median 0.0035 0.0052 0.0007 0.0028
Min -0.1218 -0.1646 -0.1181 -0.0931
Max 0.1237 0.1272 0.1523 0.0898
StDev 0.0225 0.0341 0.0294 0.0199
Skewness -0.1806 -0.6725 0.0330 -0.4371
Kurtosis 5.9210 6.0317 5.1286 5.6514

Table 2: Summary statistics for weekly returns.

4.2 Parameter estimation and results

We have adapted to the four series of returns the KS distribution with marginals skew
Student ¢, generalized secant hyperbolic and exponential power seen in the previous
section. According to the IFM (inference for margins) method (Joe and Xu, 1996), the
parameters of the marginals have been estimated distinctly from the parameters of the
KS function. In other words, the process of estimation has been divided in the following
steps:

i) estimating the location, scale, skewness and kurtosis parameters of marginal dis-
tributions using the maximum likelihood method:

ii) estimating the KS parameter a, always with the maximum likelihood method,
given the estimations performed in step (i).

2The bandwidth of the nonparametric densities has been obtained with the Sheather and Jones method
(Sheater and Jones, 1991).
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Figure 1: Kernel estimates of the distribution of weekly returns.

Table 3 presents the results of the maximum likelihood estimation of the parameters
of the marginals. In the table we present also the values of the averaged loglikelihood
function at maximum. Then, we have obtained the following maximum likelihood esti-
mates of the parameters « in the three cases considered:

0.0000 0.0702 0.0000 0.1072

. 0.0476  0.0000 0.0357

QsST = 0.0491 0.0342 | °
0.0000

0.0000 0.0730 0.0000 0.1095

Gesasi — 0.0467 0.0000 0.0363
0.0419 0.0338

0.0000

and

0.0000 0.0728 0.0000 0.1086
. 0.0473  0.0000 0.0358
AsEP = 0.0385 0.0332

0.0000

with the values of the averaged loglikelihood function at maximum, respectively, equal
to 12.9449, 12.9496 and 12.94153,

Note that the three marginals have a similar behaviour, also if the shape parameter
of the skew Student-t for the NASCOMP index is lower than 4 and, as a consequence,
it has not kurtosis index. Also the structure of a is very similar in the three cases
considered, confirming what we have writtem in the previous section.

8We have used a quasi-Newton algorithm to obtain the maximum of loglikelihood functions.



Skew Student-t Distribution
S&PCOMP NASCOMP JAPA5S00 MSACWFEFL

Location 0.0062 0.0096 0.0013 0.0055
Scale 0.0222 0.0357 0.0300 0.0196
Skewness 0.8664 0.8506 0.9593 0.8593
Kurtosis 5.4329 3.4153 4.5528 4.8423
LogLik 2.4179 2.0518 2.1460 2.5603

Skew Generalized Secant Hyperbolic Distribution
S&PCOMP  NASCOMP  JAPA500 MSACWEFL

Location 0.0061 0.0010 0.0011 0.0055
Scale 0.0220 0.0334 0.0294 0.0193
Skewness 0.8738 0.8440 0.9645 0.8599
Kurtosis -1.4014 -2.1752 -1.7483 -1.6308
LogLik 2.4160 2.0360 2.1477 2.5497

Skew Exponential Power Distribution

S&PCOMP NASCOMP  JAPA500 MSACWEFL

Location 0.0065 0.0105 0.0020 0.0056
Scale 0.0221 0.0330 0.0292 0.0193
Skewness 0.8673 0.8416 0.9479 0.8571
Kurtosis 0.6278 0.5358 0.6151 0.6166
LogLik 2.4135 2.0332 2.1446 2.5467

5 Conclusions

In this paper we have studied the family of multivariate distributions by Koheler and
Smanowski in order to model financial returns and measure dependent risks. Fitting
the distribution to the returns of four market indices, the S&P 500 Composite index
(S&PCOMP), the NASDAQ Composite index (NASCOMP), the NIKKEI 500 index
(JAPA500) and the MSCT AC World index (MSACWTFL), with skewed Student ¢, gen-
eralized secant hyperbolic and generalized exponential power marginals, we have seen
that this distribution succeeds in properly interpreting the dependence structure of
data, apart from the marginals, introducing therefore some measures which can couple
the usual correlation indices in the interpretation of the strength of the link among
dependent risks. However, other important aspects of the distribution must be stud-
ied, for example the analysis of sensitivity of the parameters in presence of dependence
structures of higher order introduced by Koeheler and Symanovski (1995).
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