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1 Introduction

Since the seminal papers by Vasicek (1977) and Cox, Ingersoll, and Ross (1985), the finance litera-

ture seems to agree that term structure models must exclude arbitrage opportunities and be both

econometrically and numerically tractable. Only in this way such models can be useful, for instance,

in the pricing of fixed income derivatives and in the assessment of the risks implied by fixed income

portfolios. More recently, however, a number of requirements have been added to the modeling

of the term structure dynamics. Satisfactory models should (i) be able to identify the economic

forces behind movements in the yield curve, (ii) take into account the way central banks implement

their monetary policies, and (iii) have a macroeconomic framework consistent with the stochastic

discount factor implied by the model. In this paper, we present a methodology that allows one

to fulfill all the above requirements. We consider, moreover, the effect of a possible asymmetry

between the targets announced by the central bank and those perceived by the agents.

The methodology presented in this paper is the result of three distinct phases in the line of

research making use of affine term structure models. The first phase is characterized by the use

of latent or unobservable factors, as defined in Duffie and Kan (1996) and summarized in Dai and

Singleton (2000).1 Although this framework excludes arbitrage opportunities and is reasonably

tractable, the factors derived from such models do not have a direct economic meaning and are

simply labeled according to their effect on the yield curve (i.e. as a “level”, a “slope”, and a

“curvature” factor).

The second phase involves the inclusion of macroeconomic factors in the standard affine term

structure model. Ang and Piazzesi (2003) show that such inclusion improves the forecasting per-

formance of Vector Autoregression (VAR) models in which no-arbitrage restrictions are imposed.2

Their model, nevertheless, still includes unobservable factors without a clear economic interpreta-

tion. The model is also estimated in two stages based on the assumption that the short-term interest

rate does not affect the macroeconomic dynamics. Kozicki and Tinsley (2001, 2002) indicate the

importance of long-run inflation expectations in modeling the yield curve. This fact is confirmed

by Dewachter and Lyrio (2003), who estimate a affine term structure model in one stage and based

solely on factors with a well-specified macroeconomic interpretation.3 Most of these make use of a

Taylor (1993) type of rule to represent the monetary policy interest rate. The mentioned papers do

not attempt, however, to propose a macroeconomic framework consistent with the pricing kernel

implied by their models.

The third and current phase in this line of research is marked by the use of structural macro

relations together with the standard affine term structure model. The structural macro model

replaces the unrestricted VAR set-up adopted in previous research4, and has commonly been based

1Duffee (2002) and Duarte (2004) propose more flexible specifications for the market prices of risk.
2Other papers following this approach include Diebold, Rudebusch and Aruoba (2004).
3A related approach can be found in Berardi (2004).
4For instance, the models presented in Ang and Piazzesi (2003) and Dewachter and Lyrio (2003).
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on a New-Keynesian framework. Hördahl, Tristani and Vestin (2003) find that the forecasting

performance of such model is comparable to that of standard latent factor models. They are also

able to explain part of the empirical failure of the expectations hypothesis. A similar approach

is adopted by Rudebusch and Wu (2003). Bekaert, Cho and Moreno (2003) go one step further

and estimate a similar model based on deep parameters. They also make sure that the pricing

kernel they formulate is consistent with their proposed macro model. These models have, however,

one common drawback. Although they allow for temporary changes in the inflation target of the

central bank, its long-run inflation target is assumed to be constant over time. Recent empirical

evidence for the US suggests, however, the presence of permanent changes in the inflation target

of the central bank. Kozicki and Tinsley (2001, 2002), for example, provide evidence that long-run

inflation targets (endpoints in their terminology) are time varying.

As pointed out in Dewachter and Lyrio (2003), a necessary condition to model in a consistent

way the central bank’s long-run inflation expectation (inflation target) is to assume that it follows

a martingale process. The presence of such stochastic trend is in line with the models proposed

by Kozicki and Tinsley (2001, 2002). It introduces, however, a nonstationary characteristic in the

dynamics of the model and, more specifically, in the interest rate rule adopted by the central bank.

In this paper, we propose a methodology to estimate a structural macro model jointly with a affine

term structure model containing unobserved stochastic trends. It involves, therefore, the solution of

a rational expectations model in a nonstationary environment. Standard solution methods become

infeasible since they typically assume stationarity of the dynamic system. The proposed solution is

based on a transitory-permanent decomposition of the equilibrium conditions and is performed in

two steps. We first solve the transitory component of the model using standard solution methods

(e.g. Sims 2001). We then substitute this solution back in the nonstationary system. This two-step

approach allows us to obtain the reduced form dynamics consistent with the rational expectations

macroeconomic model including nonstationary variables.

We use standard no-arbitrage conditions to link the macroeconomic dynamics to the term struc-

ture of interest rates. Under suitable conditions on the prices of risk, it is well known that the term

structure is affine in the (macroeconomic) state vector. Given the nonstationarity in the macroeco-

nomic dynamics and the affine property of the term structure, the nonstationarity carries over to

the term structure as well. While nonstationarity of interest rates is still not rejected by standard

unit root tests, there is strong evidence against nonstationarity in yield spreads. In order to impose

the stationarity of yield spreads, we need to impose some cointegrating restrictions on the term

structure model. We provide sufficient conditions on the prices of risk that generate term structure

models satisfying both the no-arbitrage principles and the stationarity of all yield spreads. These

conditions are, however, not sufficient to guarantee consistency between the implied pricing kernel

and the proposed macro model (see Bekaert, Cho and Moreno 2003). As is shown in their paper,

the necessary additional conditions, i.e. constant market prices of risk, are in accordance with the
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mentioned cointegrating restrictions.

The introduction of time-variation in the central bank’s long-run inflation target makes the

assumptions regarding the information set of agents crucial to the solution of the model. This is

the case since it is the private agents’ expectations that define the term structure of interest rates.

We analyze two cases. In a first case, we assume that the inflation target announced by the central

bank is fully credible and enforceable. In this situation, agents have full information with respect

to the actual target being implemented. Since agents observe the time-varying inflation target,

their inferred target coincides with the actual target of the central bank. The econometrician, on

the other hand, does not observe this target and is, therefore, obliged to filter it from the data.

In a second case, we assume the presence of asymmetric information between the inflation target

announced by the central bank and the one perceived by the agents. Since agents do not observe

the actual time-varying target being implemented, they are forced to infer (filter) it from observable

macro variables. In this scenario, the estimated inflation target corresponds to the beliefs of private

agents. Since agents filter from observable macroeconomic factors, the econometrician knows the

target inferred by the agents. In each case, we analyze the estimated long-run inflation expectation

of the agents, their effect on the yield curve, and the final fit of the model.

We estimate a structural macro model with five factors: three observable ones (inflation, output

gap, and the short-term interest rate), and two unobservable ones (the natural real interest rate

and the long-run inflation target of the central bank). The unobservable variables are filtered

with the use of a Kalman filter. We avoid, therefore, the inversion of the yield curve, which

involves the arbitrary choice of yields observed without measurement errors. We use two filtering

approaches corresponding to the two cases described above. The first one uses the term structure as

an information variable for filtering the central bank’s inflation target. The second one only makes

use of macroeconomic information for the identification of long-run inflation expectations.

We apply the mentioned model to the US and German data. Our results show that nonstationary

variables play a crucial role in linking the macroeconomic dynamics to the term structure of interest

rates. The time-varying inflation expectation implied by our model seems to be in line with survey

data available for the US market. The fit of the term structure, specially for the full information

case, is comparable to the one obtained making use of standard latent factor models.

The remainder of the paper is divided in three sections. In Section 2, we present the method

used to solve the macroeconomic dynamics when nonstationary components are included. Next

we relate the term structure to the macroeconomic dynamics and derive conditions for stationarity

of the yield spreads. In Section 3, we estimate the model for the two cases considered: the full

information and the asymmetric information. We conclude in Section 4 by summarizing the main

findings of the paper.
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2 Macro-finance models with stochastic endpoints

This section explores the implications of a nonstationary steady state system for both the macroeco-

nomic and the term structure dynamics. We first propose a decomposition of the Euler equations

separating the transitory from the permanent dynamics. Under suitable assumptions, the macro-

economic dynamics can be solved explicitly. Subsequently, we present a simple framework in which

the possibility of a change in the central bank’s long-run inflation target naturally gives rise to a

nonstationary macro dynamics. Finally, we analyze the implications for the term structure deriving

from the inclusion of nonstationarity in the macroeconomic dynamics. Conditions are provided such

that (i) the yield curve satisfies some cointegrating restrictions, implying stationary yield spreads,

and (ii) the term structure model is consistent with the macroeconomic set-up.

2.1 Solving for absolute macroeconomic dynamics

In this paper we consider a rational expectation (RE) model for a set of macroeconomic variables

collected in the n× 1 vector Xt. We furthermore introduce an n× 1 vector Ft with elements being
the stochastic endpoints for the respective elements of Xt:

lim
s→∞Et [Xt+s]→ Ft. (1)

The vector Ft is determined by a set of stochastic trends Zt and an n × k matrix T , which maps
the stochastic trends into the respective stochastic endpoints for Xt:

Ft = TZt (2)

with the dynamics of Zt a system of independent, possibly degenerate, random walk processes:

Zt = Zt−1 +Hηt. (3)

Equations (1) to (3) define the dynamics of the stochastic endpoints and thus model the properties

of the steady state of the economy. Finally, we assume a set of n restrictions on the equilibrium

dynamics relative to the steady state.5 More specifically, defining the macroeconomic state relative

to steady state by X̃t = Xt − Ft, we assume the existence of n× n matrices A, B, C, and W such

that the n restrictions can be written in matrix form as:

AX̃t = BEt
h
X̃t+1

i
+CX̃t−1 +Wwt, (4)

where wt denotes a set of temporary shocks, i.e. shocks that determine the temporary deviations

from the steady state dynamics. If the relative dynamics of X̃t has a unique stationary solution,

5These restrictions can be obtained from the log-linearization of the equilibrium first order conditions of the
underlying structural models. Log-linearization is typically done relative to the steady state dynamics and, hence,
deliver automatically the required type of restrictions.
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a standard modeling assumption, then the following (uniform) growth conditions are satisfied (see

Sims 2001):

lim
s→∞Et

h
X̃t+sξ

−s
i
→ 0, for ξ ≥ 1. (5)

Consider now a set of n equilibrium conditions, possibly including some nonstationary terms.

These equilibrium conditions could be derived from structural models if the necessary log-linearization

is done relative to a zero steady state. The set of equilibrium conditions differs from the standard

Euler equations in that (stochastic) steady states modeled as nonstationary variables enter in the

equilibrium conditions. That is, instead of solving macroeconomic dynamics relative to the steady

state, we are now interested in solving for the absolute dynamics, i.e. the dynamics including the

steady state dynamics. The set of equilibrium conditions is, instead of (4), equal to:

AXt = BEt [Xt+1] +CXt−1 +DZt + V vt (6)

with vt a set of shocks affecting the macroeconomic variables (not only temporary deviations) and

with the matrixD an n×k matrix containing the relations between the macroeconomic variables and
the stochastic trends Zt. This general representation of the absolute dynamics can be decomposed

into a transitory-permanent decomposition, identifying the stochastic endpoints and the relative

dynamics.

Result 1 [Permanent-temporary decomposition]: Suppose that the absolute dynamics

of a model are given by the system (6). Suppose also that A−B−C is invertible, there exists then
a unique steady state vector Ft = TZt consistent with (6), and a unique identification of temporary

shocks V vt:

T = (A−B −C)−1D, W = [V, −CTH] and wt = [v
0
t, η

0
t]
0.

Moreover, if A, B and C are such that a unique, stationary, equilibrium exists, then the dynamics

of X̃t are given by

AX̃t = BEt

h
X̃t+1

i
+CX̃t−1 +Wwt

and the steady state Ft is attracting:

lim
s→∞Et

h
X̃t+sξ

−s
i
→ 0 =⇒ lim

s→∞Et[Xt+s]→ Et[Ft+s] = Ft.

This result is instrumental in the solution of the absolute dynamics. Solution methods (based

on standard QZ decompositions) for standard rational expectations models are now well established

(e.g. Sims 2001). However, these methods do not readily allow for the presence of nonstationary

driving processes (Klein 2000). Given that standard solutions do not work for this type of problem,

they are only applied to solve for the relative dynamics, which can safely be assumed to be stationary.

The above result allows one to extend the standard RE solution methods to solve for absolute

dynamics by using the transitory-permanent decomposition of the system. More specifically, one
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should first solve for the solution of the transitory part, and then, given the solution for the transitory

part, solve for the absolute dynamics. This procedure is summarized in Result 2.

Result 2 [Solution for absolute dynamics]: Consider the transitory dynamics obtained

from system (6). Using Result 1, the dynamics has the form AX̃t = BEt
h
X̃t+1

i
+CX̃t−1 +Wwt.

Based on the assumption of a unique equilibrium, there exist matrices Θ0 and Θ1, characterizing

the solution to the transitory dynamics X̃t such that X̃t = Θ1X̃t−1 + Θ0wt (see Sims 2001). The
solution for the absolute dynamics is given by·

Xt
Zt

¸
=

·
Θ1 (I −Θ1)T
0 I

¸·
Xt
Zt

¸
+

·
Θ0,v Θ0,η + TH
0 H

¸·
vt
ηt

¸
with Θ0,v the part of Θ0 corresponding to the shocks vt and, Θ0,η the part of Θ0 corresponding to

the shocks ηt.

Denoting the full macroeconomic state vector by X̆t = [X 0
t, Z

0
t]
0, and defining the (n+ k)×(n+ k)

matrices Φ0 and Φ1, the solution for the absolute dynamics can now be concisely written as

X̆t = Φ1X̆t +Φ0wt. (7)

In the next section, we apply the above framework to solve for the absolute dynamics of a standard

new-Keynesian model augmented with a interest policy rule that incorporates time-varying inflation

targets.

2.2 A simple macro-model with time-varying inflation targets

We apply the above methodology to solve a monetary macroeconomic model. The model incorpo-

rates standard AS and AD equations. It is,however, different from standard specifications since we

allow for a time-varying, long-run inflation target of the central bank.

The model starts with a standard inflation equation (Phillips curve) relating current inflation,

πt, to expected future and past inflation and current values of the output gap. This type of equation

has a theoretical underpinning in the Calvo-type of price-setting behavior by firms (Calvo 1983).

The appearance of past inflation expresses the idea that non-optimizing firms index according to

past, observed, inflation (Galí and Gertler 1999). The output gap dependence of inflation models

a cost-push inflation effect, assuming a linear relation between real marginal costs and the output

gap.6 The inflation equation can be summarized as

πt = απEt [πt+1] + (1− απ)πt−1 + αyyt + σπvπ,t. (8)

The output equation is also standard. The IS curve models the output gap, yt, as a function of

future expected and past output gap values, and of the ex ante real interest rate differential relative

6See Galí, Gertler and López-Salido (2001) for a discussion of the approximation of real marginal costs by means
of output gaps
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to the natural real rate of interest (ρt):

yt = βyEt [yt+1] +
¡
1− βy

¢
yt−1 + β

yi (it −Et [πt+1]− ρt) + σyvy,t. (9)

The first term on the RHS represents the standard consumption smoothing component, and the

presence of lagged output gaps can be explained by the presence of a significant number of non-

optimizing agents or in terms of a significant degree of habit persistence (Galí, Gertler and López-

Salido 2001). Furthermore, we only allow for a real interest rate effect if the expected real interest

rate differs from ρt. The latter variable can be interpreted as the inflation or equivalently output

neutral real interest rate. The dynamics of the inflation neutral real interest rate is assumed to be

exogenous and is further simplified to follow an AR(1) process:

ρt = cρ + δρ(ρt−1 − cρ) + σρερ,t. (10)

Finally, we close the model by assuming an interest rate policy rule determining the short-run

interest rate. Although the equation is based on the standard Taylor rule, we introduce time-varying

inflation targets for the central banker. This feature is atypical. Most papers implementing Taylor

rules assume constant inflation targets. This assumption is, however, often rejected in empirical

tests. Kozicki and Tinsley (2001, 2002), for example, show that introducing time variation in the

targets is empirically important. Also, in the same line of research, Dewachter and Lyrio (2003)

show that the time-varying inflation target correlates well with the level factor in the term structure

of interest rates. Here, we incorporate these empirical results by postulating a specific martingale

model for the inflation target at time t, π∗t . More specifically, we assume that the dynamics of π∗t
follows a standard random walk process:

π∗t = π∗t−1 + σπ∗ηt. (11)

The policy rule, conditional on the inflation target, is a hybrid of the standard backward and forward

looking versions of the Taylor rule:

it = ρ∗t + π∗t + γEπ(Et [πt+1]− π∗t ) + γEyEt [yt+1] + γπ(πt − π∗t ) + γyyt

+ γπ−1(πt−1 − π∗t ) + γy−1yt−1 + γi(it−1 − π∗t − ρt) + σivi,t

(12)

This model is an example where the absolute dynamics are identified. More specifically, denoting

the vector of macroeconomic variables by Xt = [πt, yt, it, ρt]
0 and denoting the set of stochastic

trends, possibly degenerated by Zt = [π∗t , 1], the above equilibrium equations can be restated in

terms of the following system:

AXt = BEt [Xt+1] +CXt−1 +DZt + V vt (13)
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with

A =


1 −αy 0 0
0 1 −βi βi
−γπ −γy 1 −(1− γi)
0 0 0 1

 , B =


απ 0 0 0
−βi βy 0 0
γEπ γEy 0 0
0 0 0 0

 ,
(14)

C =


1− απ 0 0 0
0 1− βy 0 0

γπ−1 γy−1 γi 0
0 0 0 δρ

 , D =


0 0
0 0

−γEπ − γπ − γπ−1 + (1− γi) 0
0 cρ(1− δρ)


and

V =


σπ 0 0 0
0 σy 0 0
0 0 σi 0
0 0 0 σρ

 .
Using the above results we have a transitory-permanent decomposition if (A−B−C) is invertible7.
Assuming invertibility we find the permanent part, Ft = TZt, to be:

Ft = TZt,

(15)

T = (A−B −C)−1D

with

Zt = Zt−1 +
·
σπ∗ 0
0 0

¸ ·
η1,t
η2,t

¸
. (16)

yielding

T =


1 0
0 0
1 cρ
0 cρ

 and Ft =


π∗t
0

π∗t + cρ
cρ

 . (17)

Also, the transitory dynamics X̃t = [πt − π∗t , yt, it − π∗t − cρ, ρt − cρ]0 can be expressed relative
7Note that the conditions for invertibility can easily be obtained computing the determinant of (A − B − C). It

can be shown that the determinant equals αyβi(1− δρ)(1 − γπ − γEπ − γπ−1 − γi). From this equation invertibility
conditions can easily be derived as

βiαy 6= 0
δρ 6= 1
γπ + γEπ + γπ−1 + γi 6= 1

Note that obviously existence of a steady state does not imply that it will be stable. Additional conditions will have
to be imposed to guarrantee the stability of the solution.
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to this stochastic endpoints as:
1 −αy 0 0
0 1 −βi βi
−γπ −γy 1 −(1− γi)
0 0 0 1

 X̃t =


απ 0 0 0
−βi βy 0 0
γEπ γEy 0 0
0 0 0 0

Et hX̃t+1i+
(18)

1− απ 0 0 0
0 1− βy 0 0

γπ−1 γy−1 γi 0
0 0 0 δρ

 X̃t−1 +


σπ 0 0 0 − (1− απ)σπ∗

0 σy 0 0 0
0 0 σi 0

¡−γπ−1 − γi
¢
σπ∗

0 0 0 σρ 0




επ,t
εy,t
εi,t
ερ,t
η1,t


Equation (18) specifies the temporary macroeconomic dynamics. A well-defined model will yield

a solution where temporary dynamics eventually converge to 0. As such, it is now reasonable to

assume that the structure of the model, i.e. the matrices A, B and C are such that they allow for a

unique solution such that the growth condition (5) applies. As is well known, under the assumption

of a unique solution, and satisfying the growth condition, there exists a solution for the temporary

dynamics X̃t = Θ1X̃t−1 +Θ0vt which in its turn can then be transformed back into a solution for
the full dynamics specification of the form:

X̆t = Φc +Φ1X̆t−1 +Φ0vt. (19)

Definitions of the above matrices were made explicit in the previous section and can be obtained

from the structural matrices A, B, C and F after applying the standardQZ decomposition described

in Sims (2001).

2.3 Macro-economic models for the term structure

A number of papers have recently linked the macroeconomic dynamics with the term structure.8

Given the linear structure of the reduced form macroeconomic dynamics, the standard model used

in this type of analysis belongs to the class of affine term structure models. The advantage of this

class of models is that it translates the linear state-space dynamics into linear relations between

the yield curve and the state vector. Given the linear structure of the macroeconomic dynamics, it

becomes relatively easy to relate the yield curve to the macroeconomic state.

The class of affine term structure models posits a linear (affine) functional form for the prices

of risk, Λt:

Λt = Λ0 + Λ1X̌t (20)

where Λ0 is an n + k vector and Λ1 an (n+ k) × (n+ k) matrix. Given this specification for the
price of risk, the term structure becomes linear in the state variable X̌t. Let ȳt(τ i) denote the time

8For example, Ang and Piazzesi (2003), Bekaert, Cho and Moreno (2003), Berardi (2004), Dewachter and Lyrio
(2003), Diebold, Rudebusch and Aruoba (2004), Hördahl, Tristani and Vestin (2003), Kozicki and Tinsley (2001,
2002), and Rudebusch and Wu (2003).
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t yield on a bond with maturity τ i, i = 1, ..., ny and denote by Yt the ny vector collecting these

yields. The affine class of term structure models proves the existence of an ny vector ĀY and an

ny × (n+ k) matrix B̄Y such that no-arbitrage conditions allow the following representation:
Yt = ĀY + B̄Y X̌t (21)

No-arbitrage conditions (i.e. the expectations hypothesis holds under the risk neutral measure)

further identifies ĀY and B̄Y by means of a set of ordinary differential equations (ODEs). Specifying

ĀY = [āy(τ1), ..., āy(τny)] and B̄Y = [b̄
0
y(τ1), ..., b̄

0
y(τny)] with āy scalar functions and b̄y a 1×(n+k)

vector, being āy(τ) = −ay(τ)/τ and b̄y(τ1) = −by(τ)/τ we have that:
ay(τ + 1) = ay(τ) + by(τ)(Φc −Φ0Λ0) + 1

2by(τ)Φ0Φ
0
0by(τ)

0 − δ0

by(τ + 1) = by(τ) [Φ1 −Φ0Λ1]− δ1

(22)

where δ0 and δ1 are defined by it = δ0 + δ1X̌t. A proof of this solution is provided by Ang and

Piazzesi (2003). Equation (21) thus defines the term structure relation between macroeconomic

state and the yields, consistent with the absence of arbitrage opportunities. Note that while in

principle the prices of risk are not restricted in the standard affine term structure model, i.e. Λ0
and Λ1 can be full and do not have to satisfy any restriction, some problems still remain. More

specifically, there are potential problems related to the introduction of nonstationary stochastic

endpoints. A second type of problem refers to the joint consistency of the macroeconomic dynamics

and the term structure model.

Introducing a set of nonstationary factors, i.e. stochastic endpoints, entering the interest rate

policy equation, renders the interest rates also nonstationary. Although nonstationarity for interest

rates is not the standard finance approach, one cannot reject the null hypothesis of unit roots in

interest rates. This result tends to hold across the maturity spectrum of interest rates and across

countries. Without further restrictions, however, the model would go against a second robust

empirical finding, i.e. the stationarity of the yield spreads. The general affine model of the term

structure, in conjunction with the presence of nonstationary factors, allows for nonstationarity of

the yield spreads. Condition C1 defines the necessary and sufficient conditions on the prices of risk

to guarantee the stationarity of the yield spreads.

Condition C1 [Stationary yield spreads]: Assume that all of the above macroeconomic

restrictions are satisfied and decompose Λ1

Λ1 =

 ΛNN1,n×n ΛNK1,n×k

ΛKN1,k×n ΛKK1,k×k


then yield spreads will be stationary under the following restrictions:

ΛKN1,k×nT= −ΛKK1,k×k

ΛNN1,n×nT = −ΛNK1,n×k
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A heuristic proof of these conditions, guaranteeing stationarity of the yield spreads is available in

Appendix A.

A second type of problem is related to the joint modeling of the term structure and the macro-

economic dynamics. Although both the sub-model for the macroeconomic dynamics is consistent

with the Euler equations and although the term structure is derived from no-arbitrage conditions,

the two models taken together are not necessarily consistent. More specifically, a pricing kernel im-

plicit in the term structure model is not necessary the pricing kernel implicit in the macroeconomic

model and more in particular in the IS equation. Beckaert et al. (2003) show that consistency

across models can only be obtained in a linear, homoskedastic macroeconomic model if risk premia

are constant. This condition is restated here in terms of condition C2.

Condition C2 [Consistency between macro and term structure model]: Assuming

normally distributed shocks in the macroeconomic dynamics, the term structure representation is

consistent with the macroeconomic dynamics only if Λ1 = 0.

Obviously, condition C2 implies condition C1 so that consistent models will also imply stationary

yield spreads. In this paper, we take the most stringent approach by imposing full consistency across

models. That is, we restrict the risk premia to constants an therefore obtain a reduced set of ODEs

of the form:
ay(τ + 1) = ay(τ) + by(τ)(Φc −Φ0Λ0) + 1

2by(τ)Φ0Φ
0
0by(τ)

0 − δ0

by(τ + 1) = by(τ) [Φ1]− δ1

(23)

3 Empirical results

In this section, we estimate the structural macroeconomic and term structure model for the US and

the German economies. The underlying assumption throughout this section is that inflation, output

gap and interest rates are observed. The other two macroeconomic variables, ρ and π∗ are, however,
not in the information set of the econometrician. The latent character of the natural real interest

rate, ρ, and the long-run inflation target, π∗, necessitates the use of a filtering procedure to recover
their respective time series. To this end, we apply the Kalman procedure. We do differentiate,

however, between two cases. The first case is the full information setting. In this case, both

macroeconomic and term structure information are included in the filtering procedure, i.e. both

types of variables (observable and unobservable) enter in the measurement equation. The advantage

of this approach is that, from an econometric point of view, all relevant information is taken into

consideration. Nevertheless, from an economic point of view, it assumes the agents consider the

exogenous inflation target as fully credible. The second case, the restricted information setting,

limits the information set only to observable macroeconomic variables. The main advantage of

this approach is that only macroeconomic information is used in filtering the two unobservable

macroeconomic variables. The absence of term structure feedback, therefore, prevents potential
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distortions in the filtering procedure. From an economic point of view, this approach corresponds

to some asymmetric information models with learning rules based on macroeconomic surprises (see,

for instance, Kozicki and Tinsley 2003). In what follows, we first discuss the data used in the

empirical analysis and then analyze the results for each of the mentioned cases.

3.1 Data

We estimate the proposed model using monthly data for the USA and Germany. The US data set

covers the period 1970:01 until 2000:12 (372 observations). The German data set covers a shorter

period, ranging from 1987:03 until 1998:12 (142 observations). This is due to the lack of swap

rates data for the German mark before 1987 and in order to exclude the European Economic and

Monetary Union (EMU) period, avoiding then the use of a sample period with different monetary

regimes.

Each data set contains three series of macroeconomic observations obtained from Datastream:

the year-on-year inflation based on the consumer price index (CPI), the output gap (constructed

based on industrial production) and a short-term interest rate (maturity 1 month), representing the

policy rate. The output gaps are constructed using the standard HP filter with lambda equal to

14400. For Germany, we use industrial production excluding construction in order to avoid possible

effects from the German unification. Next to the macroeconomic variables, the data sets include

ten yields with maturities 3, 6, and 9 months and 1, 2, 3, 4, 5, 7 and 10 years. For the US, we use

data provided by Waggoner (1997), using the unsmoothed Fama-Bliss data sets. For Germany, the

yields are constructed based on swap rate data also retrieved from Datastream.

Table 1 presents some descriptive statistics on the data sets described above. These statistics

point to the usual observations: average term structures are increasing both in the USA and in

Germany; the volatility of yields is decreasing in the maturity, an observation found both in the

USA and in Germany; normality is rejected for both data sets (based on JB statistics); and,finally,

all variables present strong inertia, with a first order autocorrelation coefficient typically higher

than 0.95. The exception is the German output gap with an autocorrelation of approximately 0.73.

Insert Table 1

Table 2 presents the correlation structure for the data. We make two relevant observations.

First, the yields are extremely correlated across the maturity spectrum. This points to the well-

known fact that a few factors are able to explain a large part of the comovement of the yields.

This conclusion holds for all maturities and both data sets. Second, there is a strong correlation

between the term structure and the macroeconomic variables. The correlation is strongest between

inflation and the term structure and remains significant even for long-term yields. The correlation

between the yield curve and the output gap is smaller and becomes rather weak at the long end

of the maturity spectrum. These correlation patterns suggest that macroeconomic variables might
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play an important role in dynamics of the term structure of interest rates.

Insert Table 2

Finally, since this paper introduces nonstationarity both in the interest rates and in the inflation

series, we also present a third type of descriptive statistic of the data. In Table 3, we report the

results of two standard unit root tests, the ADF and KPSS tests. The ADF test has the unit

root as the null hypothesis while the KPSS test adopts the null hypothesis of mean (KPSSµ) and

trend (KPSSτ ) stationarity. Results are presented for the macroeconomic variables, and for a

selection of yields and yield spreads. For the US data set, the test statistics unambiguously point

to the rejection of stationarity in inflation and interest rates, while yield spreads are found to be

stationary. This evidence on the yield spreads suggests that yields have identical loadings on the

stochastic trend. Results are more ambiguous for the German data set. Although stationarity of

inflation and interest rates are in general rejected, pointing again to nonstationarity, the evidence on

the stationarity of yield spreads is not strong. The ADF test cannot reject the nonstationarity of the

spreads, while the KPSSµ test could not reject the stationarity hypothesis. The trend stationarity

hypothesis, however, tends to be rejected. For the German yield spreads, no clear conclusions can

be drawn. Given the limited data span and hence the relatively low power of the tests, some caution

is appropriate in interpreting the test results. We do not draw any definitive conclusions concerning

the nonstationarity of inflation and interest rates. The statistics are shown not to contradict the

main modeling assumption, i.e. the nonstationarity in interest and inflation rates.

Insert Table 3

3.2 Full-information models

The framework presented in Section 2 allows the estimation of a variety of models. We restrict the

estimation to the most restrictive version. In other words, we impose the consistency requirement

across the macroeconomic and the term structure model.9 The estimated models incorporate three

features: (i) the macroeconomic dynamics are consistent with the structural macroeconomic model

set out in Section 2.2; (ii) the term structure satisfies the no-arbitrage conditions and, more specifi-

cally, the expectation hypothesis; and (iii) the model is based on a unique pricing kernel consistent

both with the term structure and the macroeconomic dynamics. Note that consistency also imposes

stationary restrictions on the yield spreads.

3.2.1 Econometric issues

In the adopted setting, Kalman filter estimates are efficient. Conditional on a set of parameters

collected in the vector ϑ, including the structural parameters in the matrices A, B, C, T and V, the

9See Bekaert et al. (2003) for a detailed discussion of this issue.

14



transition equation is defined by equation (19), which we repeat here for convenience:

X̆t = Φc +Φ1X̆t−1 +Φ0vt. (24)

The measurement equation includes both the (to the econometrician) observable macroeconomic

variables and the yield vector. Let S be a selection matrix that identifies the observable macro-

economic variables in X̆t, i.e. SX̆t is a vector of observable variables, a measurement equation can

then be constructed on SX̆t and Yt:·
SX̆t
Yt

¸
=

·
0
Āy

¸
+

·
S
B̄y

¸
X̆t +

·
0 0
0 Q

¸
χt (25)

which we restate in matrix notation as

XM,t =Mc +M1X̆t +M0χt (26)

where χ denotes the measurement errors in the yield data.10 Note that this procedure implies that

information in the term structure is used when filtering the unobservable variables ρ and π∗. This
has the advantage that the information in the term structure, i.e. market expectations about future

macroeconomic developments, is used efficiently. Conditional on the parameter vector ϑ, unobserved

factors can be filtered consistently using the standard Kalman filter updating equations. Denoting

by X̆t|t the filtered vector of macroeconomic dynamics, X̆t|t can be obtained recursively:

X̆t|t = X̆t|t−1 + Pt|t−1M 0
1(M1Pt|t−1M 0

1 +M
0
0M0)

−1(XM,t −Mc +M1X̆t|t−1) (27)

with
X̆t|t−1 = Φc +Φ1X̆t−1

Pt|t−1 = Φ1Pt−1|t−1Φ1 +Φ0Φ00

Pt|t = Pt|t−1 − Pt|t−1M 0
1(M1Pt|t−1M 0

1 +M0M
0
0)
−1M1Pt|t−1.

(28)

The above filtering procedure is conditional on a set of structural parameters contained in ϑ. In a

second step, these parameters can be estimated consistently by standard QML methods. Applying

the Kalman filter thus allows for the identification of the model if the above stated assumptions are

made explicit in the optimization procedure. From an operational perspective, a consistent set of

estimates is obtained by solving a constrained maximization process on the loglikelihood l(v;ϑ):

l(ϑ) =
X
t

−1
2

¯̄
M1Pt|t−1M 0

1 +M0M
0
0

¯̄
(29)

−1
2
(XM,t −Mc +M1X̆t|t−1)0

¡
M1Pt|t−1M 0

1 +M0M
0
0

¢−1
(XM,t −Mc +M1X̆t|t−1)

10Note that we impose the perfect updating condition for the observable macroeconomic variables. This updating
condition is equivalent to a zero measurement error restriction on the maroeconomic observable variables.
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under the condition that:

lims→∞Et
h
X̃t+sξ

−s
i
→ 0, ξ ≥ 1, and the solution is unique. (30)

These conditions can be easily imposed using the algorithms provided by Sims (2001).

3.2.2 Results

Table 4 presents the estimation results of the structural model under the full information assumption.

First we discuss parameters related to the structural macroeconomic model. For the US, parameter

estimates are generally in line with estimates presented in the literature. We find strong evidence

in favor of the Calvo-type of price-setting theory. Inflation tends to be affected both by the forward

and backward looking components. Our results suggest that both components are almost equally

important with a slight dominance of the forward looking part. The parameter estimates for the

inflation equation conform well with other studies. For instance Cho and Moreno (2002), using

quarterly data, report an estimate for απ in between 0.52 and 0.6. The Phillips curve parameter

αy is estimated significantly at 0.0042. This is larger than the value obtained by Cho and Moreno

(0.0011) and unlike many studies is statistically significant. Similar parameter estimates have been

reported in various papers, e.g. Galí and Gertler (1999) or Fuhrer and Moore (1995).

Insert Table 4

The output dynamics also follows closely estimates reported in the literature. We find that both

the backward and forward components are of importance, suggesting the presence of significant

habit formation. This finding is in line with the results of Fuhrer and Rudebusch (2003). Our

parameter estimate for βy of 0.52 is again in line with, for instance, Cho and Moreno (2002), who

obtain a value of 0.49. Also for the interest rate elasticity of output (βi), we find a significant

estimate of about −0.01. Other papers typically find values around −0.005. This is the case in Cho
and Moreno, while Fuhrer and Rudebush report estimates between −0.008 and −0.02. In contrast
to various results reported in the literature, this interest rate parameter is statistically significant.

The introduction of a natual real interest rate, ρt, seems to improve the support for significant real

interest rate effects.

Finally, we find a significant effect of inflation and output gap in the policy rule. Moreover, by

construction, the policy rule is stable. Somewhat unlike standard models, we estimate a relatively

low interest rate smoothing coefficient. The estimate of 0.7 on a monthly frequency corresponds

to a quarterly value of 0.34 on a quarterly basis. This estimate is considerably smaller than most

findings in the literature but has some support in Rudebush (2002) who finds that current interest

smoothing parameters suffer from an upward omitted variable bias. Given that we introduce two

additional factors, i.e. the inflation neutral real interest rate and the inflation target, it should

come as no surprise the finding that the interest inertia parameter drops significantly. Overall, the
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main conclusion is that the estimated parameters are reasonable and in line with most existing

studies. The introduction of the term structure in the measurement equation does not distort in

any significant way the estimation of the structural parameters.

The parameter estimates for the German data are in line with the US data. Both the infla-

tion equation and the output equations have significant backward and forward components. Note,

moreover, that also the output elasticity of inflation and the interest rate effect on output are es-

timated to be of the same order as in the US case. For the German data, however, the latter two

coefficients are not significant. Empirical studies for Germany are not abundant. Our estimates

conform,however, with some of the existing studies. The (almost) equal weighting of forward and

backward components is also found in Smets (2000) for a yearly frequency. Smets (2000) also reports

similar backward and forward weights for the output equation. Additional evidence supporting our

coefficients can be found in Chadha et al. (1992). The estimates of Hördahl et al. (2003) differ

significantly from ours. In this study, backward components are larger than our estimates. As far as

the policy rule is concerned, we find the US and the German rule to differ significantly. Similar to

the US case, we find a moderate interest rate inertia (0.88 on a monthly basis, or 0.68 on a quarterly

basis), which could be attributed to the inclusion of ρ and π∗ in the policy rule. However, while
the US policy rule loads primarily on current values of inflation and output, we find more moderate

responses in the German case (0.074 and about 0.01 for inflation and output, respectively).

Next to estimating the macroeconomic part of the model, the model also provides an explanation

for the term structure dynamics. Concerns of consistency between the macro and the term structure

model restrict significantly the flexibility of affine term structure models. Despite the imposed tight

parameterization, we find, surprisingly, that the macro model performs well in fitting the term

structure. Table 5 presents the measurement errors for the US and German yields. In both cases,

we find relatively small measurement errors. For the US, the standard deviation of the measurement

errors is smaller than 25 basis points, being in most cases close to 10 basis points. For comparison,

full latent models (standard three factor models) typically find values of about 5 to 10 basis points.11

Insert Table 5

Figure 1 presents the observable macroeconomic variables and the filtered series for the two

unobservable factors, ρt and π∗t . The model fit of the term structure is depicted in Figure 2 and

shows a very accurate fit for the whole range of maturities. Figure 3 depicts for each maturity the

loadings on the different macroeconomic variables. The three traditional macroeconomic variables

are particularly important for the shorter maturities, while the ρ and π∗ become dominant for the
longer maturities. Note, however, that this interpretation should be taken with some caution as

interest rates and inflation also depend on the variables ρ and π∗. In order to disentangle the effects
of ρ and especially π∗ from the other observable factors, we plot the yield loadings that correspond

11See, for example, de Jong (2000) and Dewachter and Lyrio (2003)
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to the transitory-permanent decomposition of the state vector.12 Figure 4 presents these loadings.

This figure shows three types of effects. First, the inflation target π∗ now exerts an identical

effect across the entire yield curve. The fact that loadings on this factor are identical stems from

the restrictions on the prices of risk and guarantees the stationarity of yield spreads (see Section

2.3). This factor thus models shifts of the entire yield curve and can be related to the level effect,

alluded to in the finance literature. Next, the loadings on (transitory) interest deviations decrease

monotonically in the maturity. This factor models thus primarily the slope factor. Temporary

interest rate disequilibria are therefore associated with the yield spreads. More specifically, all else

equal, restrictive monetary policy is associated with low spreads, while expansionary policy tends to

increase the yield spread. Finally, disequilibrium in either output, inflation or the real interest rate

bring about a curvature effect. This type of disequilibrium will primarily affect the intermediate

maturities.

Insert Figures 1 to 4

The observable variables and the filtered series for the German case are shown in Figure 5. The

fit of the German yield curve can be seen in Figure 6 and is as precise as the one for the US term

structure. In the German case, we find the measurement errors to be of the order of 10 basis points.

Figures 7 and 8 depict the loadings for each of the factors. As in the US case, we find a clear

level effect represented by π∗, a slope factor in terms of temporary interest rate disequilibrium, and
curvature factors in terms of temporary inflation, output and real interest rate deviations. The

conclusion that emerges over the two data sets is that in general the two models give a rather

homogeneous explanation of both the macroeconomic and the term structure dynamics.

Insert Figures 5 to 8

3.3 Restricted information models

In the previous section, the term structure was used as an additional information variable. While

this is an efficient econometric approach, it also has some drawbacks. The main econometric disad-

vantage is that term structure information feeds back into the filtered macroeconomic variables ρ

and π∗. This feedback generates uncertainty about the determinants of the filtered variables. More
specifically, the filtered values could be distorted so as to fit better the term structure dynamics.

In order to avoid this feedback from the term structure into the filtered macroeconomic variables,

we exclude the term structure from the measurement equation. We use this set-up primarily as a

means to investigate how much of the inflation target could be rationalized in terms of observable

macroeconomic variables.
12The transitory-permanent decomposition transforms the state vector X̌t into the state vector X̊t,which contains

the temporary deviations, Xt − Ft, on the first n rows and the stochastic trends on the last k rows. Defining the
matrix performing this operation by L : X̊t = LX̌t, the transformed loadings are defined by: B̄yL−1. The matrix L
is specfied in the appendix.
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3.3.1 Econometric issues

The econometric procedure can easily be adapted to incorporate only observable macroeconomic

variables in the filtering of long-run inflation targets. Using the definition introduced in the previous

section, observable macroeconomic variables are given by SX̆t. By changing the measurement equa-

tion (26) to the identity SX̆t = SX̆t, we effectively eliminate term structure information entering

into the filtering equation. More specifically, conditional on the transition equation (24) and the

redefined measurement equation, the updating equations reduce to:

X̆t|t = X̆t|t−1 + Pt|t−1S0(SPt|t−1S0)−1(SX̆t − SX̆t|t−1) (31)

with
Pt|t−1 = Φ1Pt−1|t−1Φ1 +Φ0Φ00

Pt|t = Pt|t−1 − Pt|t−1S0(SPt|t−1S0)−1SPt|t−1
(32)

The updating equations are only a function of the prediction errors of observable macroeconomic

variables and thus no longer depend on the prediction errors with respect to term structure variables.

Therefore, term structure information is no longer used in the filtering procedure. We do use,

however, the term structure information in the estimation of the parameter of the model. The

likelihood function is modeled in terms of the full set of prediction errors as

l(ϑ) =
X
t

−1
2

¯̄̄
M1P

A
t|t−1M

0
1 +M0M

0
0

¯̄̄
(33)

−1
2
(XM,t −Mc +M1X̆t|t−1)0

¡
M1Pt|t−1M 0

1 +M0M
0
0

¢−1
(XM,t −Mc +M1X̆t|t−1),

which can be maximized with respect to ϑ under the constraints imposed by equation (30).

Equation (31) has an interesting interpretation in terms of asymmetric information models.

Recently, various papers model learning effects in reduced-form VAR systems. One example of this

type of models is Kozicki and Tinsley (2003). The main idea in this line or research is to estimate

transition equations that are adapted to the information set of private agents. Typical in this

literature is the assumption that agents do not observe or believe in the inflation target announced

by the central bank but, instead, filter it from prediction errors. Kozicki and Tinsley (2003), for

instance, assume that agents change the perceived target by a fraction of the interest rate surprise.

The current version of the updating equation can be interpreted in this context. First, the implied

VAR dynamics now correspond to a underlying structural model. Second, it generates a transition

equation (eq. (31)) adapted to the information generated from observable macroeconomic variables

only. The implicit learning rule U in the macroeconomic dynamics maps the prediction errors

S(X̆t − X̆t|t−1) into updated beliefs, X̆t|t = X̆t|t−1 + US(X̆t − X̆t|t−1). Moreover, the learning rule
U is not defined in an ad hoc way. Given that L corresponds to the Kalman filter updating matrix,
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the learning rule is a mean-squared optimal rule. The unconditional version of the learning rule is

given by:

U∞ = P∞|∞S0(SP∞|∞S0)−1 (34)

where P∞|∞ denotes the unconditional version of the prediction error variance-covariance matrix.

This version of the model thus provides as an interesting side-effect a learning rule for agents

conditioning only on macroeconomic information.

3.3.2 Results

The estimated parameters for the restricted information case can be seen in Table 4. Interestingly,

for both the US and German samples, we find that the structural macroeconomic parameters are not

significantly affected by the reduction in the information set. The inclusion of the term structure

does not seem, therefore, to have great influence over the parameter estimates of the structural

model. Nevertheless, the inferences regarding the inflation target do seem to be affected in a

important way. Comparing Figures 1 and 9 (or the top panels in Figure 17) for the USA and Figures

5 and 13 for Germany, one observes a clear drop in the variability of the long-run inflation targets.

In this aspect, the information set used, including term structure information (full information) or

only macroeconomic information (restricted information), seems to affect the results in a strong

way. This fact is not really surprising given that the yield curve is treated and used differently in

these two versions of the model. In the full information version, the term structure is used to filter

both ρ and π∗. This filtering procedure implies that the filter for ρ and π∗ take into consideration
the prediction errors of both the macroeconomics and the term structure. The filtered variables are,

therefore, partially determined by the term structure characteristics. In the alternative model, filters

for ρ and π∗ are only based on macroeconomic information. The filtering procedure thus completely
ignores the term structure variables. Note, however, that as far as ρ is concerned, filtered values do

not differ significantly between the two versions of the model. Both for the US and Germany, we

find the filtered values to be qualitatively similar.

Insert Figures 9 to 16

Inferences for π∗ only based on macroeconomic information turn out to be much better at
replicating agent’s expectations. Figure 17 presents the implied one-year and ten-year average

inflation forecasts based on the respective models and compares it to survey expectations. These

survey expectations were only available for the US and are provided by the Federal Reserve Bank

of Philadelphia (Survey of Professional Forecasters). The left panels present model-based forecasts

and survey forecasts for the full information case. The right panels present the equivalent forecasts

for the model using macroeconomic information only. Both models track with some success the

survey inflation forecasts, although both models tend to be excessively volatile compared to the

survey expectations. Comparing the one-year inflation forecasts, we observe hardly any difference
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between the two models. Differences between the full and the restricted information models become

more evident for longer forecasting horizons. However, the restricted model clearly tracks better the

survey data than the full information model. The latter still displays some excess volatility while

the former tracks survey expectations closely.

Insert Figure 17

Restricting information variables to the set of observable macroeconomic variables has, however,

one major drawback. Where the full information version fits the term structure extremely well, the

restricted model fails significantly in modeling the yield curve adequately. Comparing Figure 2 to

10 for the US and Figure 6 to 14 for Germany, illustrates clearly the misfit of restricted models.

The fitting errors, moreover, tend to increase with the maturity of the yields. Some descriptive

statistics for these fitting errors is presented in Table 6. One observes that for both countries and

all yields, the fitting errors for the restricted case are more volatile and present a higher first order

autocorrelation.

Insert Table 6

As mentioned above, a by-product of the restricted information model is the learning matrix U .

This matrix gives the optimal learning rules for private agents in the versions of asymmetric infor-

mation models introduced by Kozicki and Tinsley (2003). Below, the respective learning matrices

are presented for the USA and Germany:

UUSA =


1 0 0
0 1 0
0 0 1

−0.45 −0.18 0.92
0.31 0.02 0.02

 , UGER =


1 0 0
0 1 0
0 0 1

−0.39 −0.01 1.89
0.19 −0.01 0.04

 .
The optimal learning matrices, consistent with the estimated macroeconomic models, are qualita-

tively similar. This is due to the similarity of the parameter estimates for both countries. More

important is the observation that mainly interest rate and inflation surprises are used as information

variables. More specifically, both for the US and German data, interest rate surprises, corrected

for inflation and output surprises, are primarily seen as accommodating changes in ρ. Changes in

the long-run inflation target are filtered mainly through inflation surprises, both in the US and in

the German case. These results contrast with the findings of Kozicki and Tinsley (2003), who find

that interest rate surprises significantly affect the inferences concerning the inflation target. This

apparent contradiction in results could, however, be due to the fact that in our setting an additional

interest rate variable (ρ) is included.

4 Conclusions

This paper proposes an econometric methodology that allows the solution and estimation of the

macroeconomic dynamics in nonstationary environments. The method uses a two-step procedure.
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First, a transitory-permanent decomposition on the Euler equations is performed. In a second step,

the transitory dynamics are solved using standard QZ-based solution techniques and the permanent

dynamics are substituted back into the solution of the transitory dynamics. This procedure extends

the standard macroeconomic models by solving the macro model with the inclusion of the steady

state dynamics.

Solving for the full dynamics is important in many types of applications. This paper focuses

on models linking the macroeconomic dynamics to the term structure of interest rates. Our model

differs from the standard approach in that we do not assume stationary long-run inflation expec-

tations. Instead, we assume that the central bank’s inflation target is time-varying and that it

follows a martingale process, which renders the macroeconomic dynamics nonstationary. The above

mentioned technique is the applied to solve for the macroeconomic dynamics. The inclusion of the

nonstationary components yields reasonable structural parameters for the macroeconomic dynamics.

The implied time variation in the long-run inflation expectations (target) turns out to be significant

both for the US and German models. Finally, we find that the introduction of time-varying long-run

expectations is crucial for the fitting of the term structure. When both the macro and the yield

curve information is used to filter the unobserved factors in the model, we find that macroeconomic

factors, including long-run inflation expectations, are able to explain the term structure in a very

accurate way. The proposed methodology, therefore, contributes to the further development of fully

consistent, rational, and arbitrage-free models of the term structure of interest rates.
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5 Appendices

5.1 Appendix A

In this appendix, we give a heuristic proof of the conditions set out in condition C1. Consider the

following state space dynamics:

X̆t = Φc +Φ1X̆t−1 +Φ0wt (35)

and define a selection matrix L performing a transitory-permanent decomposition on X̆t. That is,

defining X̊t = LX̆t we construct L in such a way that the first n entries in X̊t are stationary by

construction and the last k elements of X̊t denote the stochastic trends. Within the setting of our

model, we have that the selection matrix L takes the following form:

L =

·
In×n −Tn×k
0k×n Ik×k

¸
(36)

Given the dynamics of X̆t, the dynamics of X̊t are defined by:

X̆t = Φc +Φ1X̆t−1 +Φ0wt

LX̆t = LΦc + LΦ1L
−1LX̆t−1 + LΦ0L−1Lwt

X̊t = Φ̊c + Φ̊1X̊t−1 + Φ̊0ẘt.

(37)

The matrices Φ̊1 and Φ̊0 are defined in terms of the matrices generated by the Sims (2001) procedure,

i.e. Θ0, Θ1 and Θc :

Φ̊1 =

·
Θ1 0n×k
0k×n Ik×k

¸
, Φ̊0 =

·
Φ0,n×n Φ0,n×nT − TΦ0,k×k
0k×n Φ0,k×k

¸
.

Given the above transitory-permanent decomposition, we now adapt the bond loadings to the re-

defined state space. This new loadings correspond to the loadings on the transitory and permanent

(nonstationary) components. In order to have stationary yield spreads, the loadings on the non-

stationary components need to be identical across yields. Imposing this condition yields, as shown

below, a set of necessary conditions in terms of the prices of risk.

Using the affine term structure model, yields satisfy the following relation:

Yt = ĀY + B̄Y X̌t (38)

which can be rewritten in terms of the new state vector X̊t as:

Yt = ĀY + B̄Y L
−1LX̌t = ĀY + B̊Y X̊t (39)

with B̊Y = B̄Y L
−1. Consider a yield with maturity τ . Based on the above relation between the

yields and the state vector, the yield will load on the transitory and permanent variables with load-

ings [−τ−1̊bT (τ)1×n , -τ−1̊bP (τ)1×k], where b̊T (τ)1×n denotes non-scaled loadings on the transitory
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variables and b̊P (τ)1×k a 1×k vector of (non-scaled) loadings on the non-stationary variables. The
loading of yield spreads can hence be defined as the difference of the loadings of the respective

yields. Letting y (τ1) and y (τ2) denote yields with maturities τ1 and τ2, the loadings on the yield

spreads are given by

y (τ1)− y (τ2) = c(τ 1, τ2)

+[−τ−11 b̊T (τ1)1×n − (−τ−12 b̊T (τ2)1×n),−τ−11 b̊P (τ1)1×k − (−τ−12 b̊P (τ2)1×k)]X̊t

Stationarity of yield spreads now implies that the loadings of yield spreads on the nonstationary

factors equal zero. This implies that conditions need to be imposed only on the loadings of the

nonstationary factors:

b̊P (τ1)1×k =
τ1
τ2
b̊P (τ2)1×k for all τ1, τ2 > 0.

Consider the system of ODEs generating the loadings:

ay(τ + 1) = ay(τ) + by(τ)(Φc −Φ0Λ0) + 1
2by(τ)Φ0Φ

0
0by(τ)

0 − δ0

by(τ + 1) = by(τ) [Φ1 −Φ0Λ1]− δ1

The loadings b̊P (τ) and b̊T (τ ) can be obtained by transforming the loadings obtained from the

above system of ODEs. More specifically, the transformed loadings are generated by the system of

ODEs:

by(τ + 1)L−1 = by(τ) [Φ1 −Φ0Λ1]L−1 − δ1L
−1

by(τ + 1)L
−1 = by(τ)L−1L

£
Φ1 −Φ0L−1LΛ1

¤
L−1 − δ1L

−1

b̊y(τ + 1) = b̊y(τ )Φ̊1 − b̊y(τ)Φ̊0Λ̊1 − δ̊1

(40)

with Φ̊0Λ̊1: Φ0,n×nΛ1+(Φ0,n×n−TΦ0,n×k)ΛKN1,k×n Φ0,n×n(ΛNN1,n×nT+ΛNK1,n×k) + (Φ0,n×k−TΦ0,k×k)(ΛKN1,k×nT+ΛKK1,k×k)

Φ0,k×kΛKN1,k×n Φ0,k×k(ΛKN1,k×nT+Λ
KK
1,k×k)


The dynamics of the loadings on the nonstationary components are now separated from the loadings

on the transitory components and the dynamics of the loadings van be written as:

b̊P (τ + 1) = b̊P (τ)− b̊P (τ)(Φ0,k×k(ΛKN1,k×nT+ΛKK1,k×k))

−̊bT (τ)(Φ0,n×n(ΛNN1,n×nT+ΛNK1,n×k) + (Φ0,n×k−TΦ0,k×k)(ΛKN1,k×nT+ΛKK1,k×k))

−̊δ1

(41)
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Sufficient conditions for stationarity of yield spread are given by the following conditions:

(Φ0,n×n(ΛNN1,n×nT+ΛNK1,n×k) + (Φ0,n×k−TΦ0,k×k)(ΛKN1,k×nT+ΛKK1,k×k)) = 0

(Φ0,k×k(ΛKN1,k×nT+Λ
KK
1,k×k)) = 0

b̊P (τ) = 0

(42)

such that b̊P (τ) = −τ δ̊1 which automatically satisfies the conditions for stationarity of the yield
spreads. Without further restrictions on the matrix Φ0, the above restrictions can be satisfied by

restricting the matrix Λ1. More specifically, the condition is satisfied for any matrix Φ0 if:

ΛKN1,k×nT= −ΛKK1,k×k

ΛNN1,n×n T = −ΛNK1,n×k.
(43)
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6 Tables and Figures

Table 1: Summary of data statistics

USA Germany
Mean Std. Auto JB Mean Std. Auto JB

π 4.990 2.897 0.997 86.834∗∗∗ 2.484 1.476 0.994 10.982∗∗∗

y -0.021 2.199 0.948 52.392∗∗∗ -0.010 1.914 0.731 2.142
i 6.445 2.582 0.995 148.919∗∗∗ 5.795 2.311 0.998 15.317∗∗∗
y3m 6.757 2.655 0.996 141.364∗∗∗ 5.816 2.303 0.998 15.226∗∗∗

y6m 6.984 2.662 0.996 120.786∗∗∗ 5.804 2.259 0.998 15.011∗∗∗

y9m 7.106 2.639 0.996 109.349∗∗∗ 5.766 2.188 0.998 14.723∗∗∗

y1y 7.202 2.569 0.996 95.342∗∗∗ 5.750 2.130 0.998 14.536∗∗∗

y2y 7.458 2.443 0.997 88.951∗∗∗ 6.013 1.983 0.998 13.546∗∗∗

y3y 7.631 2.341 0.997 89.662∗∗∗ 6.177 1.771 0.998 12.107∗∗∗

y4y 7.769 2.284 0.998 86.687∗∗∗ 6.341 1.585 0.998 9.942∗∗∗

y5y 7.841 2.248 0.998 78.792∗∗∗ 6.495 1.453 0.998 7.438∗∗

y7y 7.987 2.182 0.998 79.840∗∗∗ 6.748 1.234 0.998 2.223
y10y 8.047 2.135 0.999 76.080∗∗∗ 7.007 1.063 0.998 0.917

Notes: Mean denotes the sample average, expressed as percentage per year, Std standard de-

viation, Auto the first order monthly autocorrelation, JB the Jarque-Bera normality test statistic,

where *** indicates that the null of normality can be rejected at the 1% significance level, and **

at the 5% confidence level.
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Table 2: Summary of data statistics - Correlation matrix

USA
π y i y3m y6m y9m y1y y2y y3y y4y y5y y7y y10y

π 1.000
y 0.101 1.000
i 0.639 0.284 1.000
y3m 0.649 0.274 0.995 1.000
y6m 0.654 0.272 0.987 0.996 1.000
y9m 0.647 0.262 0.980 0.990 0.998 1.000
y1y 0.622 0.253 0.973 0.984 0.994 0.998 1.000
y2y 0.575 0.203 0.944 0.958 0.973 0.982 0.989 1.000
y3y 0.538 0.162 0.916 0.932 0.949 0.961 0.971 0.994 1.000
y4y 0.512 0.148 0.894 0.911 0.928 0.942 0.954 0.985 0.997 1.000
y5y 0.498 0.126 0.877 0.894 0.912 0.927 0.940 0.977 0.993 0.998 1.000
y7y 0.476 0.120 0.851 0.868 0.888 0.904 0.918 0.962 0.982 0.991 0.996 1.000
y10y 0.465 0.111 0.827 0.845 0.865 0.881 0.896 0.944 0.968 0.981 0.988 0.995 1.000

Germany
π y i y3m y6m y9m y1y y2y y3y y4y y5y y7y y10y

π 1.000
y 0.080 1.000
i 0.843 0.159 1.000
y3m 0.823 0.182 0.997 1.000
y6m 0.799 0.209 0.990 0.997 1.000
y9m 0.781 0.235 0.982 0.992 0.998 1.000
y1y 0.766 0.256 0.974 0.986 0.995 0.999 1.000
y2y 0.711 0.311 0.936 0.955 0.972 0.983 0.989 1.000
y3y 0.679 0.330 0.909 0.929 0.949 0.963 0.973 0.995 1.000
y4y 0.653 0.332 0.884 0.905 0.926 0.942 0.953 0.984 0.996 1.000
y5y 0.623 0.333 0.856 0.878 0.900 0.917 0.930 0.968 0.987 0.997 1.000
y7y 0.566 0.313 0.797 0.819 0.842 0.861 0.875 0.924 0.954 0.975 0.989 1.000
y10y 0.508 0.287 0.735 0.756 0.779 0.797 0.812 0.868 0.906 0.936 0.959 0.990 1.000
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Table 3: Summary of data statistics - Unit root tests

USA Germany
ADF KPSSµ KPSSτ ADF KPSSµ KPSSτ

π -1.761 1.270∗ 0.165∗ -1.330 0.278 0.259∗

y -5.654∗ 0.020 0.020 -2.952∗ 0.051 0.051
i -2.303 0.603∗ 0.338∗ -2.198 0.455∗ 0.245∗

y3m -2.134 0.621∗ 0.346∗ -1.945 0.475∗ 0.241∗

y1y -2.103 0.686∗ 0.386∗ -1.490 0.510∗ 0.227∗

y2y -2.044 0.708∗ 0.432∗ -1.227 0.523∗ 0.218∗

y5y -1.895 0.736∗ 0.496∗ -0.918 0.534∗ 0.212∗

y7y -1.829 0.731∗ 0.515∗ -0.796 0.541∗ 0.210∗

y10y -1.822 0.734∗ 0.532∗ -0.610 0.545∗ 0.204∗

y1y − i -5.194∗ 0.182 0.118 -2.585 0.193 0.178∗

y2y − i -4.356∗ 0.123 0.124 -2.412 0.166 0.167∗

y5y − i -3.339∗ 0.161 0.138 -2.228 0.244 0.191∗

y7y − i -3.303∗ 0.184 0.138 -2.193 0.271 0.197∗

y10y − i -3.128∗ 0.203 0.146 -2.156 0.290 0.201∗

Notes: The critical value for the ADF (uniformly estimated with 12 lags is -2.88 at the 5%

significance level. Critical values for the KPSSµ (null hypothesis of stationarity) and KPSSτ (null

hypothesis of trend stationarity) at the 5% confidence level are 0.463 and 0.146, respectively.
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Table 4: Parameter estimates

USA Germany
Full Asymmetric Full Asymmetric

π-eq. απ 0.5061 (0.0055) 0.5085 (0.0025) 0.5007 (0.0085) 0.5072 (0.0049)
αy 0.0043 (0.0011) 0.0035 (0.0008) 0.0056 (0.0019) 0.0051 (0.0019)

y-eq. βy 0.5252 (0.0085) 0.5301 (0.0061) 0.5669 (0.0136) 0.5555 (0.0114)
βyi -0.0116 (0.0055) -0.0136 (0.0031) -0.0016 (0.0015) -0.0005 (0.0009)

i-eq. γπ 0.3092 (0.0204) 0.3310 (0.0074) 0.0743 (0.0630) 0.0825 (0.0248)
γy 0.2703 (0.0346) 0.2858 (0.0276) 0.0089 (0.0148) 0.0090 (0.0132)
γπ−1 -0.0006 (0.0145) -0.0008 (0.0012) 0.0429 (0.0670) 0.0313 (0.0219)
γy−1 -0.1301 (0.0306) -0.1672 (0.0235) -0.0091 (0.0112) -0.0084 (0.0082)
γi 0.6914 (0.0066) 0.6698 (0.0072) 0.8828 (0.0098) 0.8862 (0.0095)

ρ-eq. cρ 7.4e-9 (4.5e-7) 7.4e-9 (6.3e-8) 3.9e-5 (1.2e-4) 8.7e-5 (9.5e-5)
δρ 0.9872 (0.0014) 0.9937 (0.0007) 0.9969 (0.0034) 0.9958 (0.0023)

σπ 0.00165 (0.00005) 0.00169 (0.00005) 0.00173 (0.00010) 0.00172 (0.00008)
σy 0.00408 (0.00011) 0.00408 (0.00011) 0.00785 (0.00048) 0.00728 (0.00038)
σi 0.00563 (0.00012) 0.00554 (0.00009) 0.00280 (0.00012) 0.00269 (0.00011)
σρ 0.00765 (0.00021) 0.00627 (0.00030) 0.00583 (0.00045) 0.00595 (0.00083)
σπ∗ 0.00335 (0.00015) 0.00108 (0.00004) 0.00200 (0.00018) 0.00066 (0.00007)

λπ 2.5688 (0.8706) 1.8144 (0.3217) -0.0104 (0.0486) 0.0001 (0.0009)
λy -2.4383 (0.9940) -2.4194 (0.4080) -0.2469 (0.1073) -0.0304 (0.0550)
λi -0.0507 (0.2354) -0.0125 (0.0918) 0.0132 (0.0611) 0.0184 (0.0473)
λρ -0.0685 (0.0624) -0.0368 (0.0127) -0.1461 (0.0663) -0.0983 (0.0312)
λπ∗ -0.0062 (0.0259) -0.0038 (0.0245) -0.0050 (0.0204) -0.0050 (0.0307)

average lnlik 73.4928 72.3263 78.6562 76.9474

Notes: Maximum likelihood estimates with robust standard errors between brackets. The total

average likelihood excludes a constant.
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Table 5: Parameter estimates - Standard deviation of measurement error

USA Germany
Full Asymmetric Full Asymmetric

R3m 0.00176 0.00171 0.00106 0.00101
R6m 0.00111 0.00101 0.00108 0.00106
R9m 0.00077 0.00064 0.00128 0.00111
R1y 0.00111 0.00116 0.00163 0.00135
R2y 0.00110 0.00116 0.00056 0.00049
R3y 0.00093 0.00091 0.00020 0.00025
R4y 0.00085 0.00080 0.00032 0.00032
R5y 0.00070 0.00069 0.00031 0.00026
R7y 0.00148 0.00163 0.00052 0.00066
R10y 0.00227 0.00244 0.00117 0.00136

Table 6: Summary statistics of fitting errors

USA
Full Asymmetric

Mean Std. Auto Mean Std. Auto
R3m 0.030 0.172 0.286 0.014 0.303 0.432
R6m 0.012 0.101 0.343 -0.002 0.469 0.679
R9m -0.007 0.056 0.546 -0.016 0.569 0.746
R1y -0.006 0.099 0.438 -0.012 0.609 0.778
R2y 0.004 0.104 0.606 -0.006 0.719 0.827
R3y 0.003 0.083 0.454 -0.010 0.750 0.854
R4y 0.012 0.073 0.230 0.001 0.763 0.847
R5y -0.012 0.052 0.584 -0.018 0.767 0.877
R7y 0.013 0.142 0.523 0.014 0.778 0.876
R10y -0.001 0.222 0.720 -0.012 0.795 0.903

Germany
Full Asymmetric

Mean Std. Auto Mean Std. Auto
R3m 0.022 0.099 0.249 0.033 0.330 0.025
R6m 0.003 0.111 0.548 0.016 0.400 0.374
R9m -0.050 0.112 0.721 -0.040 0.470 0.541
R1y -0.091 0.116 0.823 -0.086 0.526 0.629
R2y 0.019 0.048 0.639 0.009 0.688 0.750
R3y 0.001 0.012 0.318 -0.012 0.741 0.807
R4y -0.005 0.029 0.577 -0.018 0.760 0.841
R5y -0.002 0.026 0.655 -0.013 0.775 0.870
R7y 0.005 0.040 0.607 -0.006 0.796 0.910
R10y -0.006 0.107 0.811 -0.028 0.782 0.932

Notes: Mean denotes the sample average, expressed as percentage per year, Std standard devi-

ation, Auto the first order monthly autocorrelation.
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Figure 1: Macroeconomic factors (USA, 1970:01-2000:12) - Full Information.

Figure 2: Model fit of the term structure of interest rates (USA, 1970:01-2000:12) - Full Information.
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Figure 3: Factor loadings (USA, 1970:01-2000:12) - Full Information.

Figure 4: Transformed factor loadings (USA, 1970:01-2000:12) - Full Information.
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Figure 5: Macroeconomic factors (Germany, 1987:03-1998:12) - Full Information.

Figure 6: Model fit of the term structure of interest rates (Germany, 1987:03-1998:12) - Full
Information.
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Figure 7: Factor loadings (Germany, 1987:03-1998:12) - Full Information.

Figure 8: Transformed factor loadings (Germany, 1987:03-1998:12) - Full Information.
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Figure 9: Macroeconomic factors (USA, 1970:01-2000:12) - Asymmetric Information.

Figure 10: Model fit of the term structure of interest rates (USA, 1970:01-2000:12) - Asymmetric
Information.
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Figure 11: Factor loadings (USA, 1970:01-2000:12) - Asymmetric Information.

Figure 12: Transformed factor loadings (USA, 1970:01-2000:12) - Asymmetric Information.
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Figure 13: Macroeconomic factors (Germany, 1987:03-1998:12) - Asymmetric Information.

Figure 14: Model fit of the term structure of interest rates (Germany, 1987:03-1998:12) - Asym-
metric Information.
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Figure 15: Factor loadings (Germany, 1987:03-1998:12) - Asymmetric Information.

Figure 16: Transformed factor loadings (Germany, 1987:03-1998:12) - Asymmetric Information.
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Figure 17: Long-run inflation forecast, 1-year and 10-year inflation forecast (USA, 1970:01-2000:12)
- Full and Asymmetric Information.
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