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1 Introduction

Early indeterminacy literature relied on one�sector models and unrealistically

high degrees of increasing returns to scale on the social level due to the presence

of externalities, see Benhabib and Farmer (1994). Indeterminacy also meant

that labor demand curve was upward sloping and steeper than the labor supply

curve. These undesirable properties of one�sector models were ameliorated by

introducing variable capital utilization, a standard feature of RBC models, in

Wen (1998), and non�separable in consumption and leisure utility function in

Bennett and Farmer (2000). Both extensions allow indeterminacy of the steady

state with labor demand and supply crossing with standard slopes and the

degree of increasing returns to scale that is relatively low and can be reconciled

with the empirical estimates of Basu and Fernald (1997).

Schmitt-Grohe and Uribe (1997) and Guo (1999), among others, studied

the inßuence of taxation on indeterminacy. Schmitt-Grohe and Uribe (1997)

Þnds that following a balanced budget rule with a Þxed level of government

expenditure can be destabilizing (lead to indeterminacy of the steady state),

while Guo (1999) prove that progressive taxation leads to a higher likelihood of

a saddle�path stable steady state. In these models the public spending collected

through taxes does not enter households� utility function or Þrms� production

function.

Cazzavillan (1996) introduces public spending that enters both households�

utility function and Þrms� production function in a model with a simple ßat

tax. When public spending has increasing returns in households� utility, inde-

terminate steady state becomes possible. However, this model uses Þxed labor

supply and thus cannot be compared directly to the models considered above.

The same consideration applies to Park and Philippopoulos (2002), where a

similar structure is used, but the government now allocates the public good be-

tween households and Þrms optimally. The balanced growth path in the model

is determinate, and the model does not allow transitional dynamics. Zhang
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(2000) has productive public spending that at the same time enters households�

utility function. It is easy to show that his model is mathematically equivalent

to Benhabib and Farmer (1994), as public spending plays the role similar to that

of labor effort. Finally, Bruha (2003) uses productive public spending subject to

congestion in the framework of a two�sector open economy model with inelastic

labor supply. Fiscal policy in the model consists in collecting taxes (ßat rate)

and allocating the tax revenue between productive pubic spending and transfers

to the households. This model is closest to the one we are using in this paper;

however, we concentrate on one�sector model with elastic labor supply which

can be solved explicitly.

The goal of the present papre is to introduce productive public spending

Þnanced by a progressive tax into a standard Benhabib&Farmer�type one�sector

growth model with elastic labor supply and variable capital utilization. We

study the interplay between productive public spending and progressive nature

of the tax in generating indeterminacy of the steady state, keeping the degree

of increasing returns to scale low. The latter objective is achieved by allowing

variable capital utilization. Increased returns to scale are introduced through

externalities of the production function and through public spending. Finally,

we deÞne the model in such a way that it belongs to a broad class of models,

descended from Benhabib and Farmer (1994), which could be reduced to a two�

dimensional system of Lotka�Volterra differential equations. Such reduction

allows a uniform mathematical treatment of the whole model class.

The rest of the paper is organized as follows. Section 2 contains description

of our model. In Section 3 we discuss stability of the steady state and inßuence

of different parameter values on its (in)determinacy. Section 4 contains a look at

the calibrated parameter values and the likelihood of obtaining indeterminacy

steady state, and Section 5 concludes.
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2 The Model

Our model is a deterministic continuous�time model with inÞnitely lived agents.

It extends Benhabib and Farmer (1994), Wen (1998), and Guo (1999). It is

characterized by increasing social returns to scale due to externality in the pro-

duction function and productive public spending. Agents take changes in the

productivity parameter caused by the externality and public good as given.

Government has control over the tax regime. Households choose values of con-

sumption, work effort, and capital utilization rate. There are two steady states:

one with zero capital and zero consumption (the origin), the other with positive

levels of both capital and consumption. For some parameter values, both steady

states are indeterminate, and the whole state space is separated into two regions

of attraction of the steady states. We will concentrate on the positive steady

state and study its (in)determinacy as the model parameters vary.

There is a continuum of [0, 1] of identical households maximizing the utility

∞Z
0

(logCt −AN
1+χ
t

1 + χ
)e−ρtdt, A > 0, (1)

where C and N are household consumption and working hours, χ > 0. If χ = 0

we have utility function with indivisible labor. Households own capital and run

Þrms, and their budget constraint is given by

·
Kt = (1− τ)Yt −Ct − ξuθtKt, K(0) given, (2)

where Yt is the Þrm�s output, τ the tax rate, and Kt the household�s capi-

tal stock. Capital depretiation rate depends on the capital utilization rate ut.

Choosing θ > 1 guarantees interior equilibrium with ut < 1, see Wen (1998).

The tax rate is given by the following expression:

τ = 1−Ψ
µ
Y t
Yt

¶φ
, Ψ ∈ [0, 1], φ ∈ [0, 1), (3)

where Yt is the household income. Parameters φ and Ψ determine the slope and

the level of tax schedule. φ not equal to 0 means �progressive� tax, because

in this case the marginal tax rate is higher than the average one, see Guo
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(1999). In a departure from that paper which uses the steady state value of

income as a benchmark to determine household�s tax rate, in this paper Y t is

the economy�wide average income. The difference means that in a symmetric

equilibrium where every household has the same amount of capital, supplies

the same number of hours, and uses the same capital utilization rate, tax rate

does not depend on the current average output. In Guo (1999), the symmetric

equilibrium average tax rates are decreasing in the average level of output, thus

generating strongly procyclical government spending. The variant used here

corresponds to the case when the whole tax schedule is set by law and changed

only unfrequently, which in our opinion more closely resembles the reality.

The production function of every Þrm is given by

Yt =

µ
Gt

utKt

¶η h¡
utKt

¢α
N
1−αiσ

(utKt)
αN1−α, (4)

where η > 0 and σ > 0. Public spending is productive (η is positive) and is

taken as given by every household. K and N are economy�wide averages of K

and N per Þrm and are also taken as given by the households. Public spending

is subject to congestion, as in Barro and Sala-I-Martin (1992).

The government balances its budget at every point in time. Therefore, there

is no government debt in the model.

The current value Hamiltonian is given by (we drop time subscript for clarity

from now on)

H = logC −AN
1−χ

1− χ + µ
"
Ψ

µ
Y

Y

¶φ
Y −C − ξuθK

#
. (5)

Taking corresponding derivatives, one gets the necessary conditions:

∂H
dC

= 0⇒ 1

C
= µ, (6a)

∂H
dN

= 0⇒ AN−χ = (1− φ)(1− α)µΨ
µ
Y

Y

¶φ
Y

N
, (6b)

∂H
du

= 0⇒ (1− φ)αΨ
µ
Y

Y

¶φ
Y

u
= ξθuθ−1K, (6c)

·
µ = µρ− ∂H

dK
= µρ− µ(1− φ)αΨ

µ
Y

Y

¶φ
Y

K
+ µξuθ, (6d)

lim
t→∞e

−ρtK
C

= 0, (6e)
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together with the capital accumulation equation

·
K = (1− τ)Y −C − ξuθK, K(0) given. (7)

In a symmetric perfect foresight equilibrium every household has the same

amount of capital, supplies the same number of hours, and every Þrm employs

the same quantity of capital and labor, therefore Y = Y, K = K, N = N,

G = (1−Ψ)Y.
From (6a),

·
C
C = −

·
µ
µ = (1 − φ)αΨ Y

K − ρ − ξuθ, plug in (6c) to get
·
C
C =

Ψα(1 − φ)(1 − 1
θ )

Y
K − ρ. Plugging (6c) into the capital accumulation equation

(7), one gets
·
K
K = Ψ(1 − α(1−φ)

θ ) YK − C
K . Expression for Y as a function of C

and K can be found by combining (6b), (6c), (4), and G = (1−Ψ)Y. Switching
to logs, c = log(C), k = log(K), y = log(Y ), and solving for y as a function of

c and k, we obtain the following expression for y as a function of c and k,

y = w − (v − 1)k − uc,

with values of w, u, and v given in the Appendix, equation (17). In the log

variables the two differential equations above are given by

·
c = Ψα(1− φ)(1− 1

θ
) exp(w − vk − uc)− ρ, (8a)

·
k = Ψ(1− α(1− φ)

θ
) exp(w − vk − uc)− exp(c− k). (8b)

Finally, changing the coordinates to

x = exp(w − vk − uc), (9a)

y = exp(c− k), (9b)

we get the system of equations presented below,

·
x = x×

½
[−vΨ(1− α(1− φ)

θ
)− uΨα(1− φ)(1− 1

θ
)]x+ vy + uρ

¾
,(10a)

·
y = y ×

½
[Ψα(1− φ)(1− 1

θ
)−Ψ(1− α(1− φ)

θ
)]x+ y − ρ

¾
. (10b)

By construction, x and y are nonnegative, therefore only the Þrst quadrant

of the (x, y) space should be considered. Note that the previous system has the
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following form,

·
x = x(a1x+ b1y + c1), (11a)

·
y = y(a2x+ b2y + c2), (11b)

which is the Lotka�Volterra system of differential equations. Transformed vari-

able x is proportional to the interest rate r, while y is simply the ratio of con-

sumption to the capital. A number of continuous�time models similar to Ben-

habib and Farmer (1994) could be reduced to this form, in particular Schmitt-

Grohe and Uribe (1997), Wen (1998), Zhang (2000), and others. The system

(11) is very simple and allows constructing of the global phase portrait. In

particular, there are no limit cycles. For some parameter values this system

can have two stable (indeterminate) steady states, one with positive values of

x and y and another the origin, in which case the whole positive quadrant

{x, y|x > 0, y > 0} is separated into the regions of attraction of the positive
steady state (x∗, y∗) and of the origin (0, 0). It is also possible to have (x∗, y∗)

stable and (0, 0) a saddle, in which case the whole positive quadrant becomes

region of attraction of the positive steady state.

This paper concentrates on the stability properties of the positive steady

state (x∗, y∗) = ( ρ
Ψα(1−φ)(1− 1

θ )
,
ρ(1−α(1−φ)

θ )

α(1−φ)(1− 1
θ )
).

3 Stability Conditions

As stated in the Þrst section, we are interested in values of parameters that lead

to indeterminacy under sufficiently low degrees of increasing returns to scale.

Plugging G = (1−Ψ)Y into (4) and switching to logs, one gets

y = const+
α(1 + σ)− η
(1− η) k +

(1− α)(1 + σ)
(1− η) n, (12)

and the aggregate returns to scale are given by α(1+σ)−η
(1−η) + (1−α)(1+σ)

(1−η) = 1+σ−η
1−η =

1 + σ
1−η > 1 for positive σ and η. Assuming η ¿ 1, this expression can be

written approximately as 1 + σ + ση. Therefore, the effect of productive public

spending on the degree of increasing returns to scale is only of the second order.
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This feature of the result is caused by the fact that productive public spending

is subject to congestion. On the other hand, if stability propoerties of the

steady state (x∗, y∗) depend on η in a non�trivial way, it might be possible to

generate indeterminacy through η rather than σ, externality parameter, thus

preserving low aggregate returns to scale. We will consider a pair of (σ, η) as

basic parameters for our stability discussion.

Our model has one predetermined variable (k) and one free (c). Other non�

predetermined variables controlled by the households, u andN, are functions of c

and k in the interior equilibrium which is assumed here. Therefore, steady state

(x∗, y∗) is determinate, indeterminate, and absolutely unstable (explosive) if the

Jacobian of (10) evaluated at the steady state has one, two, and zero eigenvalues

with negative real parts.

Jacobian evaluated at the positive steady state is given by

J∗ =

"
Ψ[−v(1− α(1−φ)

θ )− uα(1− φ)(1− 1
θ )]x

∗ vx∗

Ψ[α(1− φ)(1− 1
θ )− (1− α(1−φ)

θ )]y∗ y∗

#
.

Determinant of J∗ is given by −Ψ(u + v)α(1 − φ)(1 − 1
θ ). Assumptions on

parameters (φ < 1, θ > 1) mean that det(J∗) is positive iff u + v < 0. In

this case the steady state (x∗, y∗) can be indeterminate or absolutely unstable,

depending on the value of Tr(J∗). Using values of u and v given in the Appendix,

expression u+ v can be written as

u+v =
θ(1 + χ)(1− α(1 + σ))

α(θ − 1) + χ(θ − α)− η(1 + χ)(θ − 1)− σ [θ(1− α) + α(1 + χ)] . (13)

Both numerator and denominator of (13) are linear functions of σ and η. There-

fore, the requisite condition u+ v < 0 is given by two regions in the (σ, η) space

bounded by straight lines. The numerator is positive for σ ≤ 1
α − 1. Given

that α is usually calibrated at 0.3÷0.4, this constraint is not binding for rea-
sonable values of σ. The denominator of (13) equals α(θ− 1)+χ(θ−α) > 0 for
σ = η = 0 and is decreasing function of both σ and η because both (1+χ)(θ−1)
and θ(1−α)+α(1+χ) are positive. Therefore, (13) is negative (and det(J∗) is
positive) in the region of (σ, η) space above the downward sloping straight line

A in Figure 1.
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Let us turn our attention to Tr(J∗) given by Ψ[−v(1 − α(1−φ)
θ ) − uα(1 −

φ)(1− 1
θ )]x

∗ + y∗. Calculations (given in the Appendix) demonstrate that

Tr(J∗) =
ρ(θ − 1)

α(1− φ)(1− 1
θ )
×

1

α(θ − 1) + χ(θ − α)− η(1 + χ)(θ − 1)− σ [θ(1− α) + α(1 + χ)] × α
h
(1 + χ)(1− α(1−φ)

θ )− (1− α)(1− φ)
i
− (1 + χ)(1− α(1−φ)

θ )η+

ασ
h
(1 + χ)(1− α(1−φ)

θ )− (1− α)(1− φ)
i  .

The term on the Þrst line is always positive, that on the second line is negative

if (13) is negative, and the third line is, once again, a linear function in σ and

η. When σ = η = 0, the term in Þgure parentheses equals

α

·
(1 + χ)(1− α(1− φ)

θ
)− (1− α)(1− φ)

¸
and is always positive as shown in the Appendix. The term in Þgure parentheses

equals zero along the line B in Figure 1, which crosses vertical axis at (0,−1)
and is upward sloping. It is positive above the line B.

Region of the (η,σ) space generating indeterminate steady state (det(J∗) >

0, Tr(J∗) < 0) is the area that is at the same time below the line σ = 1
α − 1,

above line A, and above line B.1 Line A crosses the η axis to the right of the

line B for any parameter values (see Appendix for the proof). Therefore, there

exists a value of (σmin, η∗) at which indeterminacy is achieved. For smaller

values of σ the steady state is either determinate or explosive. The value of

(σmin, η
∗) corresponds to a minimum degree of increasing returns to scale that

is necessary to generate indeterminate steady state, IRSmin > 1. Stability of

the steady state for smaller IRS values depends on the slope of the line A. If

absolute value of this slope is greater than IRSmin, then the steady state can

be determinate or explosive. For IRS values close to 1, only the possibility of

a determinate steady state remains. If slope of A is smaller than IRSmin, than

the steady state for IRS < IRSmin can be indeterminate or deteminate. Again,

when IRS is close to 1 the only outcome is determinate steady state. As is easy
1 Intersection with the opposite signs � above the line σ = 1

α
− 1, the line A, and below

line B � is an empty set.
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to see (calculation in the Appendix), absolute value of the slope of line A is less

than one for χ = 0 (indivisible labor). For values of IRS slightly larger than

IRSmin, one could observe all three outcomes: indeterminate, determinate, and

explosive steady state.

Notice that for some values of η, it is possible to move from indeterminate

to explosive steady state by lowering σ and decreasing the returns to scale.

For large η, σ = 0 (constant returns to scale on the social level) generates

explosive, rather than determinate, steady state. This behavior is similar to the

one observed in the original Benhabib and Farmer (1994) model, where for β

large enough, relatively small values of α result in explosive steady state.

Given the values of parameters determining the degree of increasing returns

to scale, stability of the steady state depend on three other parameter values: χ,

θ, and φ. Notice that stability does not depend on ρ, which is a usual outcome

if variable capital utilization is modeled as in this paper. Stability also does not

depend on Ψ, one minus the symmetric equilibrium tax rate.

As demonstrated in the Appendix, increase in χ moves the points of inter-

section of line A with both axes upward. Therefore, the region of the (η,σ)

space where the steady state is determinate increases. Line B rotates clockwise

as χ increases, therefore increasing the region of indeterminacy at the expense

of explosive region. It is impossible to say what happens to the value σmin �

the minimum degree of externality necessary for indeterminacy. Schmitt-Grohe

and Uribe (1997) show that higher χ makes indeterminacy of the steady state

less likely to obtain.

The steady state value of the depreciation rate is a decreasing function of the

parameter θ. Usual conclusion in one�sector models is that higher depreciation

rate makes indeterminacy easier to achieve, see, for example, Figure 1 in Wen

(1998). In the current model, the result is not easy to predict: an increase in

θ moves the point of intersection of the line A with σ axis up, but intersection

with η axis decreases. Line B rotates clockwise. The effect on σmin and on the

relative mass of indeterminate, determinate, and explosive regions is impossible
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to derive analytically.

Finally, an increase in φ � higher progressivity of the tax schedule � does

not inßuence line A at all. Line B rotates clockwise around the point (0,−1).
Therefore, the region of (η,σ) space where the steady state is determinate does

not change, but indeterminate region increases at the expense of the explosive

one. This outcome can be contrasted with Guo (1999), where more progressivity

(higher φ) is stabilizing. However, in a two�sector model of Guo and Harrison

(2001) progressive tax schedule can be both stabilizing and destabilizing.

4 Calibration of the tax schedule

For the calibration exersize we use the same baseline parameters values as Wen

(1998): α = 0.3, χ = 0, θ = 1.4.

Calibration of the degree of progressivity of the tax schedule φ can proceed

along two paths. The Þrst way is to use IRS data on individual tax returns.

The data lists average tax as a share of Adjusted Gross Income (AGI) for the

returns that do claim income tax and the share of returns with no tax, see

IRS (Winter 2002). Assuming that all taxpayers are located in the middle of

reported income brackets, we can derive the total amount of income tax paid

by the taxpayers in this income bracket. Equation (3) then gives disposable

income, (1−τ)Y = ΨY φt Y 1−φt or log(DPI) = const+(1− φ) log(Y ). Assuming
that AGI=Y, it is then possible to estimate parameter φ from a simple linear

regression. This estimate is necessarily very imprecise, because income and AGI

can differ signiÞcantly, and calculating the extent of this difference is difficult.

Nevertheless, the results could be taken as a guideline for other calibration

methods. For the 2000 data, this calibration method gives φ from 0.046 (if the

whole range of the data is used) to 0.066 (when data points with AGI below

$3,000 and above $1,500,000 are excluded).

The second method of calibrating φ is as follows. We start from an assump-

tion that distribution of income in the population follows a Gamma distribution

with parameters α and β.Gamma distribution has been used to approximate the
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true distribution of income among households, see Dragulescu and Yakovenko

(2001) and Ferrero (2003). Gamma distribution has a non�zero mode for values

of α greater than one, and can resemble log�normal distribution that is usually

used to approximate the distribution of income.

The Gini coefficient is the area between 45◦ line and the Lorenz curve rep-

resenting the distribution of income. Horizontal coordinate x(r) of this curve

represents the cumulative fraction of population with income below r, and the

vertical one y(r) is the share of this fraction in the total income:

x(r) =

rZ
0

P (s)ds, y(r) =

rR
0

sP (s)ds

∞R
0

sP (s)ds

. (14)

The Gini coefficient is then given as

G = 2

1Z
0

(x− y)dx. (15)

For details, see Dragulescu and Yakovenko (2001). If one assumes that the pre�

tax income distribution P is given by a gamma distribution with parameters α

and β, the Gini coefficient is given by

Gin =
1√
π

Γ(α+ 1
2 )

Γ(α+ 1)
.

Assuming the progressive tax of the form used in this paper, after�tax income

of the agent with pre�tax income Y is given by ΨY
φ
t Y

1−φ
t . To calculate post�

tax Gini index, one then substitutes ΨY
φ
t s
1−φ instead of s into the formula for

y(r) above. The expression under the integral becomes a probability density

function of a gamma distribution with different α but the same β. Calculating

the integral in (15), one can show that post�tax Gini coefficient is given by

Gfin = 2 ·
∞Z
0

f(r,α, 1) · [F (r,α, 1)− F (r,α+ 1− φ, 1)] dr = (16a)

1− 2 ·
∞Z
0

f(r,α, 1) · F (r,α+ 1− φ, 1)dr (16b)

= 2 ·
∞Z
0

f(r,α+ 1− φ, 1) · F (r,α, 1)dr − 1. (16c)
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Here f(r,α, 1) and F (r,α, 1) are p.d.f and c.d.f. of the gamma distribution with

parameters α and 1, respectively.

To calibrate φ, one then needs only two numbers: pre�tax and post�tax

Gini coefficients. Pre�tax coefficient is used to determine α, and parameter

φ is chosen so that formulae (16) produce empirically observed post�tax Gini

coefficient.

The data for this calibration method are taken from the Current Population

Reports on consumer income by the US Census Bureau, see Jones and Weinberg

(2000). US Census Bureau compiles data on consumer income together with sev-

eral experimental measures of income, including pre�tax and post�tax income.

Figure 7 in Jones and Weinberg (2000) contains Gini coefficients for pre�tax

and post�tax household income from 1993 to 1998. The algorithm described

above shows that the pre�tax income distribution can be approximated by the

gamma distribution with α from 1.24 to 1.30, and the degree of progressivity of

the tax, φ, varies from 0.086 to 0.103.

Direct estimation of φ requires access to the raw USCB data for consumer

income, taxes paid, and post�tax income.

For a value of φ on the upper side of our estimated range, 0.10, indeterminacy

can be observed if degrees to scale on the social level are above 1.0304, or 3%

increased returns to scale. This value is extremely low. If we set η equal to

zero, the minimal returns to scale jumps to at least 9% (line A intersects σ axis

slightly above 1.09, therefore indeterminacy is impossible for lower values of σ

and increasing returns to scale). On the other hand, such a low value of returns

to scale is compatible with indeterminacy only if productivity of the ratio of the

ßow of public spending to the ßow of capital services is relatively high, 0.22. As

noted in the previous section, η adds only second�order terms to the returns to

scale, but inßuences stability to the Þrst order.

Figures 2 through 4 present the effect of changes in the basic parameters,

θ, χ, and φ, on the minimun level of increasing returns to scale necessary to

generate indeterminacy. A small increase in χ reduces the area of the (η,σ)
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space in which saddle�path stability is not observed and thus is stabilizing. The

minimal degree of returns to scale increases slightly. This outcome is consistent

with the Þndings of Schmitt-Grohe and Uribe (1997) where higher values of

χ mean that indeterminacy is less likely (one needs much higher tax rates to

generate indeterminacy). Similar outcome is observed in Wen (1998).

An increase in θ (and corresponding decrease in the steady state depretia-

tion rate) has similar effects: the area of the (η,σ) space in which saddle�path

stability is not observed is reduced, and thus the change is stabilizing. However,

there is essentially no inßuence on the minimal degree of returns to scale. Again,

this result is consistent with Wen (1998), where a decrease in depretiation rate

(increase in θ) lead to the decrease in the area of parameter space generating

indeterminacy by requiring higher degrees of returns to scale; for the value of

the depretiation rate 0.10 (this corresponds to θ = 1.4 used both in Wen (1998)

and here), this decrease is very small.

Finally, a reduction of φ from 0.10 to 0.08 leads to a large increase of the

area of the the (η,σ) space in which steady state is explosive. Minimal degree

of returns to scale necessary to generate indeterminacy increases by less than

one percentage point. As explained above, the change of φ does not inßuence

the area of the (η,σ) space in which saddle�path stability is obtained. This

result is in direct contrast with Guo (1999), where more progressivity (higher

φ) is stabilizing. However, note that in a two�sector model of Guo and Harrison

(2001) progressive tax schedule can be both stabilizing and destabilizing. In our

model, an increase in φ could mean both increase and decrease in the minimal

degree of returns to scale necessary to obtain indeterminacy (the result depends

on the relative slopes of the line A and iso�IRS line on Figure 1; for values

of χ that are high enough, line A could become less steep than the iso�IRS

line, and an increase in φ will mean hgher minimal degree of IRS necessary for

indeterminacy).

What can we say about the slope of the labor demand curve when parameter

values imply indeterminacy, say, near the point (σmin, η∗)? Treating capital
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utilization rate u as a Þxed parameter, the slope of the labor demand curve (in

log�log coordinates) is given by

(1− α)(1 + σ)
1− η − 1 = 1− α

1− η + (1− α)
σ

1− η − 1.

Remember that σ
1−η = IRSmin − 1 and is extremely low at (σmin, η∗). 1−α

1−η

could be less than one near η∗ because the line B crosses the η axis to the

left of α and the line A to the right of α, therefore η∗ could be on the either

side of α. For the baseline parametrization used here, η∗ < α, see Figure 1.

Therefore. the labor demand slopes downward � slope equals −0.078 for the
baseline parametrization. For this parametrization, the whole area of the (η,σ)

space shown in Figures 2 through 4 generates a downward sloping labor demand

curve.

5 Goodness�of�Þt measures

To be written.

6 Conclusion

We combined several previously described extentions of a basic one�sector model

with externalities: variable capital utilization, progressive tax schedule, and

productive public spending. Variable capital utilization allows one to keep the

degree of returns to scale, at which saddle�path stability of the steady state

disappears, very low. It also allows one to generate indeterminate steady state

with downward sloping labor demand curve. Progressive taxation was shown

to favor saddle-path stability in one�sector models and to have mixed effects in

two�sector model. Modeling productive government spending with elastic labor

supply has not been attempted before.

Theoretical analysis of the stability conditions shows that the stability, in

addition to the externality parameter σ and public expenditures exponent η,

depends only on 4 parameters: capital share α; inverse of the Frish labor sup-

ply elasticity with respect to wage, χ; capital utilization parameter θ (steady

15



state depretiation rate is a decreasing function of θ); and the the degree of pro-

gressivity of the tax code. We were interested in mapping the (η,σ) space for

values of parameters leading to saddle�path stable, indeterminate, or explosive

steady state. The stability does not depend on the discount rate ρ; this result

seems to be common to one sector continuous�time models if the variable capital

utilization rate is modeled as in Wen (1998).

The most clear results are obtained with respect to φ and χ. Increased pro-

gressivity of the tax schedule does not inßuence the area of the (η,σ) space in

which saddle-path stability obtains; it increases the indeterminate region at the

expense of the explosive one. On the other hand, increased χ (lower elasticity

of the labor supply) makes saddle�path stability easier to obtain and decreases

the explosive region in the (η,σ) space. Effect of θ is impossible to qualify ana-

lytically, but for the baseline parametrization used here higher θ (lower steady

state depretiation rate) has an effect similar to the increase in χ.

The degree of returns to scale necessary to generate indeterminate steady

state is extremely low in the model. For the baseline parametrization, it is given

by 1.03 and is well within the range estimated by Basu and Fernald (1997). It

is possible to obtain indeterminacy with downward sloping labor demand curve.

We discussed two methods of calibrating the degree of progressivity φ of the

tax schedule. We attempted to use IRS data on personal income tax returns

to calibrate this parameter. This approach suffers from the necessity to use

Adjusted Gross Income instead of the true personal income and given values

of φ in the 0.046 ÷ 0.066 interval. An alternative approach is to assume that
pre�tax household income is distributed according to a gamma distribution, and

calibrate parameter α of the gamma distribution and φ so that pre�tax and post�

tax Gini coefficients, derived from the theoretical distribution, corresponded to

the ones reported in the Current Population Reports by the US Census Bureau.

This approach gives a range of 0.086÷0.103 for the parameter φ. This approach
suffers from the necessity to assume original income distribution and using only

one statistics � Gini coefficients � to derive the parameters of interest. A
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better usage of the US Census Bureau data might result in a more reliable

estimate of the parameter φ.
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A Derivations

A.1 Values of w, u, and v

w =
θ(1 + χ)

DEN
×

{ η ln(1−Ψ) + α(1 + σ)− η
θ

ln
Ψα(1− φ)

θξ
+

(1− α) (1 + σ)− η
1 + χ

ln
Ψ (1− α) (1− φ)

A
} , (17a)

v = θ
χ [1− α(1 + σ)]− σ

DEN
, (17b)

u = θ
(1− α) (1 + σ)

DEN
, (17c)

DEN = (1− η)θ(1 + χ)− (α(1 + σ)− η) (1 + χ)− (1− α) (1 + σ)θ.(17d)

A.2 Calculation of Tr(J∗)

Tr(J∗) = Ψ[−v(1− α(1− φ)
θ

)− uα(1− φ)(1− 1
θ
)]x∗ + y∗ =

ρ(1− α(1−φ)
θ )

α(1− φ)(1− 1
θ )
−

−[v(1− α(1− φ)
θ

) + uα(1− φ)(1− 1
θ
)]

ρ

α(1− φ)(1− 1
θ )

=
ρ×

n
1− α(1−φ)

θ − v(1− α(1−φ)
θ )− uα(1− φ)(1− 1

θ )
o

α(1− φ)(1− 1
θ )

=

ρ×
n³
1− α(1−φ)

θ

´
(1− v)− uα(1− φ)(1− 1

θ )
o

α(1− φ)(1− 1
θ )

.

First, let calculate (1− v) :

(1− η)θ(1 + χ)− (α(1 + σ)− η) (1 + χ)− (1− α) (1 + σ)θ − θχ [1− α(1 + σ)] + θσ
DEN

=
−θη(1 + χ) + α(1 + σ)θ(1 + χ)− (1 + χ) (α(1 + σ)− η)

DEN
=

=
(1 + χ)(θ − 1) (α(1 + σ)− η)

DEN
.
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Then, Tr(J∗) becomes

ρ

α(1− φ)(1− 1
θ )DEN

×½µ
1− α(1− φ)

θ

¶
(1 + χ)(θ − 1) (α(1 + σ)− η)− θ (1− α) (1 + σ)α(1− φ)θ − 1

θ

¾
=

ρ(θ − 1)
α(1− φ)(1− 1

θ )DEN
×½µ

1− α(1− φ)
θ

¶
(1 + χ) (α(1 + σ)− η)− (1− α) (1 + σ)α(1− φ)

¾
=

ρ(θ − 1)
α(1− φ)(1− 1

θ )DEN
× α

h
(1 + χ)(1− α(1−φ)

θ )− (1− α)(1− φ)
i
− (1 + χ)(1− α(1−φ)

θ )η+

ασ
h
(1 + χ)(1− α(1−φ)

θ )− (1− α)(1− φ)
i  .

A.3 Nonnegativity of (1 + χ)(1− α(1−φ)
θ
)− (1− α)(1− φ).

Rewrite

(1 + χ)(1− α(1− φ)
θ

)− (1− α)(1− φ) (18)

as 1 + χ− (1− φ) £1+χθ α+ 1− α¤ . For large χ the term in square parentheses

could become negative turning the whole expression negative. However, notice

that for χ = 0, this expression is given by

1− (1− φ)
·
1− α(1− 1

θ
)

¸
= 1− (1− φ) + (1− φ)α(1− 1

θ
)

= φ+ (1− φ)α(1− 1
θ
) > 0.

Moreover, the derivative of the (18) w.r.t. χ is given by 1− (1−φ)α
θ > 0, w.r.t.

φ is
£
1+χ
θ α+ 1− α

¤
> 0, and the second mixed derivative is αθ > 0. Therefore,

for any positive φ and χ (18) is positive.

A.4 Intersections with the η axis.

Line B intersects the η axis at

η = α
(1 + χ)(1− α(1−φ)

θ )− (1− α)(1− φ)
(1 + χ)(1− α(1−φ)

θ )
=

= α

Ã
1− (1− α)(1− φ)

(1 + χ)(1− α(1−φ)
θ )

!
< α.
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Line A intersect the η axis at

η =
α(θ − 1) + χ(θ − α)
(1 + χ)(θ − 1) =

α

1 + χ
+

χ

1 + χ

θ − α
θ − 1

>
α

1 + χ
+

χ

1 + χ
>
α+ χ

1 + χ
> α

(because α < 1).

Therefore, line A always intersect the η axis to the right of the line B.

A.5 Slope of line A

To be written
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Figure 1: Stability regions in the (η,σ) space.
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Figure 2: Stability regions change with χ.
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Figure 3: Stability regions change with φ.
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Figure 4: Stability regions change with θ.
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