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Abstract

This paper proposes a method to estimate the probability density of a variable of interest in
the presence of model ambiguity. In the first step, each candidate parametric model is estimated
minimizing the Kullback-Leibler ‘distance’ (KLD) from a reference nonparametric density esti-
mate. Given that the KLD represents a measure of uncertainty about the true structure, in the
second step, its information content is used to rank and combine the estimated models. The
paper shows that the resulting parameters estimator is root-n consistent and asymptotically
normally distributed. The KLD between the nonparametric and the parametric density esti-
mates is also shown to be asymptotically normally distributed. This result leads to determine
the weights in the model combination, using the distribution function of a Normal centered on
the average performance of all plausible models. As such, this combination technique does not
require that the true structure belongs to the set of competing models and is computationally
simple. I apply the proposed method to estimate the density function of daily stock returns
under different phases of the business cycle. The results indicate that the double Gamma dis-
tribution is more adequate than the Gaussian distribution in modeling stock returns, and that
the models combination outperforms in- and out-of-sample each individual candidate model. I
also explore the model’s implications for the optimal share to invest in the risky asset.
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1 Introduction

“Prediction may be regarded as a special type of decision making under uncertainty : the acts
available to the predictor are the possible predictions, and the possible outcomes are success (for
a correct prediction) and failure (for a wrong one). In a more general model, one may also rank
predictions on a continuous scale, measuring the proximity of the prediction to the eventuality
that actually transpires, allow set-valued predictions, probabilistic predictions, and so forth.”1

Econometric models are implemented in order to deal with uncertainty and guide decisions. Nevertheless,
very often econometric models are developed without any reference to the “uncertainty about the model”
that characterizes the decision context. To this end, because of the complexity of the decision-setting and
the level of approximation embodied in a simple model, I contemplate the presence of model ambiguity. In
other words, instead of specifying a unique statistical structure and treat it as the true model, I consider a
set of competing models.
Empirical models are based on the idea that the occurrence of events (i.e. the data) reveals information.

Typically, although the available database is not sufficient to choose a unique well-defined model, it still
provides relevant knowledge that can be used to differentiate among priors. In this study, a pilot nonpara-
metric density, summarizing all the information contained in the data, is used to estimate and rank candidate
parametric models.
Furthermore, since the model classes can be large due to high uncertainty, it is necessary to develop a

tool to combine the different models in a weighted predictive distribution, where the weights are determined
by the ignorance about the true structure. This model combination provides an explicit representation of
uncertainty across models and allows to extract information from ‘all’ plausible ones.
It is sensible to think that, since we do not know the true model and we approximate it by choosing among

a set of candidate models, at most we can aspire to estimate its best approximation. Because parsimony and
computational simplicity are desirable characteristics of an econometric model, typically the set of competing
models consists of simple parametric alternatives, even when a better infinite-dimensional approximation is
available. This implies that most likely, the true model does not even belong to the set of candidates and
that more than one model can perform fairly well, such that it can be hard to discard one of them. In these
cases, the models combination could provide a better hedge against the lack of knowledge of the correct
structure and outperform each competing model including the best one.
This modelling approach will permit to study and exploit model misspecification which is defined as the

discrepancy between the candidate and the actual model. Since probabilistic models are often used as the
belief of an “expected utility maximizer”, ignoring this misspecification will cause a higher risk of the optimal
decision. For this reason, this study focuses on the formation of an econometric model as a general-purpose
tool: to quantify the plausibility of different probabilistic models, to combine them in a unique distribution
and to explore the impact of the latter on the derivation of optimal choice under uncertainty.
The selection of parametric candidate models in combination with the simple device developed to deter-

mine their probability of being correct, provides a closed form solution of the optimal choice even when the
predictive density is the models combination. This simplicity has little cost in terms of information, since
through the models’ weights we are still able to account for model misspecification and to extract information
from a nonparametric estimate.

1Gilboa I. and D. Schmeidler ; “A theory of Case-Based Decisions”, 2001, pp 59-60.
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I develop a method of prediction that ranks different probabilistic models and determines the optimal
value of their parameters, maximizing the sum of their similarities to relevant past cases. The similarity
is measured by the opposite of the distance, that is the Kullback-Leibler Information (KI), between the
probabilistic model and the estimated nonparametric density. The final weights used to combine models are
function of these distances which embody the ignorance about the true structure. The cognitive plausibility
of my methodology is founded on case-based decision theory (CBDT). In particular the behavioral axioms of
Inductive Inference2 developed by Gilboa and Schmeilder (2001) provide support for my prediction method.
This estimation approach, being based only on an objective measure of the proximity between multiple

candidate models and actual data, aims to overcome the necessity to have a specific prior over the set of
models and about parameters belonging to each of the models under consideration. It refers only to the
analogy between past samples (actually encountered cases) and models at hand3. This requires a limited
amount of hypothetical reasoning since it relies directly on data that are available to any observer without
ambiguity.
I apply the proposed method to determine the predictive density of daily stock returns under different

phases of the business cycle and I use the latter to investigate the implications of the model on portfolio
choice under uncertainty. This empirical application is motivated both by the difficulty in estimating the
probability law of asset returns which usually are modelled with misspecified density function, and by the
large availability of data for financial series which facilitates the use of nonparametric techniques.
This way of implementing probabilistic prediction is essential to improve econometric modeling and to

decision making. In fact, my method like others in the literature, can be considered as a preliminary step
to account explicitly for model ambiguity in econometrics. One of the first studies that uses information
criteria to identify the most adequate regression model among a set of alternatives is due to Sawa (1978).
Later contributions by White (1980,‘82) examine the detection and consequences of model misspecification in
Nonlinear Regression Model and MLE. A Subsequent work by Sin and White (1996) uses information criteria
for selecting misspecified parametric models. More recently, a paper by Skouras (2001), investigates the
determination of a predictive density by exploiting the discrepancy between expected utilities under the true
and the misspecified model. Nevertheless, none of these studies makes use of a preliminary nonparametric
estimation to estimate and distinguish among alternative models4 . On the other hand, a study by Cristobal,
Roca and Manteiga (1987) which describes linear regression parameter estimators based on preliminary
nonparametric estimation does not incorporate the assumption of model uncertainty. To my knowledge,
this is the first work which develops an estimation technique via a pilot nonparametric estimate under the
assumption of model ambiguity. Furthermore and more importantly, none of these papers focuses on model
combination.
There are three additional strands of literature related to this work. The first includes Bayesian Model

Averaging (BMA) and its application to stock returns predictability and to the investment opportunity
set, see for example Avramov (2002) and Cremers (2002). Differently from the Bayesian approach, in
this study it is not necessary to assume that the true structure belongs to the set of candidate models.
Further, the implementation of the model combination is computationally extremely easy because it does
not require numerical integration to obtain for each model the ‘probability’ of being correct. The second vein,
though characterized by a completely different approach, represents the studies about forecast evaluation

2As shown in Gilboa-Schmeidler (2001) this is also the same principle at the base of Maximum Likelihood Estimation.
3However also these models are suggested by past experience or by economic theory.
4The literature on nonparametric testing provides me the technical machinery to derive the asymptotic distribution of the

KLI. See for example Hall(1984, 1987), Robinson(1991), Fan(1994), Zheng (1996, 2000), and Hong and White(2000).
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and combination: Diebold and Lopez (1996), Hendry and Clements (2001) and Giacomini (2003) among
others. Finally, the third strand consists of the vast literature on dynamic portfolio choice under model
misspecification where investors try to learn from historical data, see for example Uppal and Wang (2002)
and Knox(2003).
The paper is organized as follows: Section II describes the estimation and selection method; section III

illustrates the models combination technique; Section IV analyzes the asymptotic properties of the parameters
estimator and the asymptotic distribution of the uncertainty measure; Section V discusses the finite sample
performance of the parameters estimator; Section VI contains the empirical application to stock returns;
Section VII investigates the model’s implications for the optimal asset allocation; and Section VIII concludes.
Analytical proofs and technical issues are discussed in the Appendix.

2 Description of the estimation and selection method

I consider a prediction problem for which a finite set of candidate models M ≡ {Mj , j = 1, ..., J} is given.
In particular, these models Mj are defined as probability density functions fj(x; θ) {f : R → [0,∞]} of
a random variable of interest X {X : Ω → R} defined on the probability space (Ω,A,P) taking values in
(R,B(R), Px). The goal of the predictor is to estimate and rank these models according to their similarity
to past observations, and finally to combine them in a similarity-weighted probability distribution. Given
the set M, we define the set of elements that have to be ranked as Θ =

©
θMj

: fj(x; θ) ≡Mj ∈M
ª
, and

Θ ⊂ Rk.
Since in the empirical analysis, I want to allow the random variable of interest to follow a different

distribution over different regimes, I define an additional finite set S which is the set of the states of nature.
Define the state s {s : S → Z+, Z+ is the set of positive integers} a random variable defined on the
probability space (S, σ(S), p), taking on only discrete values. Further, in order to focus the attention only
on the uncertainty about the model, let me assume that s can be observed. Thus, the model’s definition is
equal to fj(x/s; θ) and Θ equals

©
θMjs

: fj(x/s; θ) ≡Mjs ∈M
ª
.

The information set Ω is a finite set of Q samples of Nq independent realizations of the random variable
X. Given the set Ω, its information content is processed estimating a nonparametric density cfn (x/s) for each
sample q = 1, ...Q. Subsequently, from the set Ω, I derive the set of past cases C =

ncfnq(x/s) : x ∈ Ω and s ∈ S
o
,

which is the final information that the predictor posses to judge the different models. I assume that, given
a regime, all the subsamples derive from the same fixed distribution. The problem is then to describe how
to process and recall this information to assess the similarity of past observations to the set of candidate
models.
Lets define the weight a map w : Θ×C → R, it assigns a numerical value wqj to each pair of past casecfnq(x/s) and parameter θMjs , representing the support that this case lends to the model fj(x/s; θ) inM.

The sum of weights wqj represents the tool through which the predictor judges the similarity of a particular
model to the estimated distributions which his knowledge is equipped with. More precisely these weights
represent the degree of support that past distributions lend to the specific model at hand. However, they
also embody the misspecification contained in each model, that being just an approximation of the reality
still preserves a distance from the actual data. It seems reasonable that the model with the lowest distance
from the nonparametric densities, is also the model with the highest similarity to past observations. As such,
it has to be the model characterized by the highest sum of weights.
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For these reasons, it seems natural to determine wqj by the opposite of the distance between the non-
parametric density cfnq(x/s) and the model fj(x/s; θ) :

wqj = −KI(cfnq(x), fj(x/s; θ)), (1)

where KI(cfnq(x), fj(x/s, θ)) is the Kullback-Leibler distance5, whose empirical version in this study is
defined as follows: cKIqj =

NqX
i=1

cfnq(xi) log{ cfnq(xi)
fj(xi, θ)

}. (2)

where i is the index for all observations contained in a sample q. For simplicity I dropped the index relative
to the regime s.
If the values of the optimal parameters were known, the prediction rule - ranking the plausibility of each

model through the sum of their weights (over the past cases) - will lead us to choose as predictive density
f1 rather than f2 if and only if: X

q∈Cs
wq1 >

X
q∈Cs

wq2, (3)

(where Cs is a partition of C and represents the set of past cases relative to regime s) or equivalently:X
q∈Cs

KI(cfnq(x), f1(x/s; θ)) < X
q∈Cs

KI(cfnq(x), f2(x/s; θ)). (4)

The sum of the weights relative to model f1 can be interpreted as in Gilboa and Schmeilder (2001) as
the “aggregate similarity or plausibility” of model f1. However, as the values of the optimal parameters are
unknown, it is necessary to estimate them. Since the model with the largest aggregate similarity to past cases
is the most appropriate to achieve a good prediction, the candidate model’s parameters θMjs

are obtained
in the following way:

max
θMjs

X
q∈Cs

wqj = min
θMjs

X
q∈Cs

KI(cfnq(x), fj(x/s; θ)). (5)

The minimization of the sum of these pseudo-distances allows us to obtain the optimal minimum contrast
(MC) estimates6 of the parameters that characterize the a priori distributions. This method gives us the
opportunity to extract the information contained in a nonparametric estimate, while preserving the simplicity
of a parametric model. This goal can be achieved by density-matching: the optimal model is derived to be
consistent with the observed distribution of the data7.
It follows then that the rank of the competing models is obtained as follows:

f1 Â f2 IFF min
θM1∈Θ

X
q∈Cs

KI(cfnq(x), f1(x/s; θ)) < min
θM2∈Θ

X
q∈Cs

KI(cfnq(x), f2(x/s; θ)), (6)

which in turn implies that the best model can be represented by the following prediction rule:

inf
{ j:1,...,J}

 min
θMj
∈Θ

X
q∈Cs

KI(cfnq(x), fj(x/s; θ))
 . (7)

5We can choose many other distances, on this purpose see Ullah A.(1996).
6 See Dhrymes P. J. (1994) p. 282 .
7 See Aït Sahalia Y. (1996).
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It is easy to note that if we have a unique sample for each regime (q = 1), or alternatively under the
assumptions that all samples derive from the same fixed distribution, parameter estimation is reduced to
the minimization of a unique KI where the true model is approximated by only one nonparametric density,
that is the nonparametric equivalent of quasi maximum likelihood estimation (NPQMLE). In this case the
similarity weight is defined as follows:

wij = log fj(xi/s; θ)cfn(xi), (8)

and hence the maximization problem is given by:

max
θMj

NX
i=1

wij = max
θMj

NX
i=1

log fj(xi/s; θ)cfn(xi), (9)

since this is the only part of KI that depends on the parameters8 .
It is easily observable that in this approach as in QMLE the criterion functional to be maximized isZ

log fj(x/s; θ)dFn(x).

But, while in QMLE the weighting function Fn(x) is chosen to be equal to

Fn(x) =
1

N

NX
i=1

1(−∞,x](xi),

such that the empirical criterion becomes:

1

N

NX
i=1

log fj(xi/s; θ);

in NPQMLE, Fn(x) is chosen to have the following form

Fn(x) =

Z x

−∞
cfn(x)dx = 1

nh

n≤NX
i=1

Z x

−∞
Kh(xi − x)dx,

such that the empirical criterion becomes equation (2). This implies that not all observations will obtain a
mass equal to 1

n . In contrast each observation will be rescaled by a smoother weight that depends on the
bandwidth parameter h and the kernel function K. It is this different weighting scheme that allows in finite
samples a ‘better’ performance than QMLE estimation. In particular, as it is documented through a limited
set of Monte Carlo experiments, the parameter estimates obtained using NPQMLE deliver a KI between the
true model and the parametric candidate which is smaller than that obtained using QMLE.
Finally, in this context the best model attains solving the following problem:

inf
{j:1,...,J}

(
min

θMj
∈Θ

NX
i=1

³
logcfn(xi)− log fj(xi/s; θ)´cfn(xi)) . (10)

8Minimizing the functional
R ³

logcfn(xi)− log fj(xi/s; θ)´ dFn(x) or maximizing R log fj(xi/s; θ)dFn(x) w.r.t θ provides the
same results.
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3 Description of the combination method

Selecting a single model as described in the previous section, even if implicitly recognizes the presence of
misspecification, does not account explicitly for model ambiguity. More importantly, it does not consider
that the true structure may not belong to the initial set of candidate models, as such to use only the best
minimizer is not necessarily the ultimate solution. This implies that in order to incorporate the information
contained in the KI, the combination of all plausible models in a similarity-weighted predictive distribution

is needed, where the weights are function of cKIj

³cfn(x), fj(x/s;bθ)´.
The intuition is the following : KIj , can be interpreted as a measure of uncertainty or ignorance about

the true structure. When computed at the optimal value of the parameter bθMj
, it can be considered as a

measure of the goodness of the model, since it represents the margin of error of this model in a particular
sample. If it is different from zero for each candidate distribution and/or there are many models that exhibit
a similar loss, then the econometrician fearing misspecification will explicitly account for it combining the
models in the predictive distribution M(bθMj ) =

P
j pj(

cKI)fj(x/s,bθ). The similarity-weight pj(cKI) can be
loosely interpreted as the probability of modelMj to be correct. In contrast, if the predictor selected a single
distribution Mj , he would overestimate the precision of this model, since he would implicitly assign to the
model probability (pj(cKI)) of being correct equal one.
In order to better appreciate the importance of the information contained in the model’s misspecification

and subsequently in M(bθMj ), it is necessary to give a brief description of the spaces in which we operate
when the statistical structural assumptions are not necessarily true. Define G the space of functions to
which the true unknown model g(x/s) belongs: by assumption g(x/s) minimizes the KI over G. FΘMj

⊆ G

represents the finite dimensional space to which the parametric candidate models belong, we can call it the
approximation space and it is also the space where the estimation is carried out. The best approximation
fj(x/s, θ

∗) in FΘMj
to the function g(x/s) is the p.d.f. that minimizes the KI over FΘMj

, while f(x/s,bθ) ∈
FΘMj

minimizes the sample version of the KI. The distance between f(x/s,bθ) and f(x/s, θ∗) represents the
estimation error which vanishes as n→∞. Instead, the approximation error9 given by the distance between
f(x/s, θ∗) and g(x/s), can be reduced only if the dimension of FΘMj

grows with the sample size10. Model
combination can therefore be considered as a method to increase the dimension of the parameter space
accounting for the approximation error.
Only if FΘMj

≡ G, then g(x) = f(θ0, x) = f(θ∗, x) and bθ is a consistent estimator of the true parameter
θ0. Typically, because of the advantages11 offered by parsimonious models, FΘMj

is a small subset of G and
hence model misspecification can be a serious problem also affecting the asymptotic results. Furthermore,
in finite sample the cKIj embodies information about both the estimation and approximation errors relative
to Mj , and as such it can not be ignored.
Once it is decided to use the combinations of p.d.f. M(bθMj ) as predictive density, the main task consists

in determining the probability pj(cKI). For this purpose I show that (see section IV and the Appendix for
more details) cKIj minus a correction term (mn), mainly due to the approximation error, is asymptotically
distributed Normal N(0, 2σ2), where a consistent estimate of σ2 is determined only by the nonparametric
density. Then, the probability of being the correct model can be determined by the probability of obtaining

9See Chen X. and J.Z. Huang (2002).
10For example a countable mixture of Normals (Ferguson (1983)) or the kernel density estimator (Silverman (1986)) can

approximate arbitrarly close any well-behaving density function. We can view these models as infinite-dimensional parameter
alternatives.
11Closed form solution, ease of manipulation and low computational costs.
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a misspecification cKIj worse than the one actually obtained. That is:

pj(cKI) = 1− P (cKIj ≤ ki). (11)

Since it is well known that KI(g, fj(θ)) ≥ 0, where the equality attains if and only if g = fj , then pj(cKI) = 1

if and only if ki = 0. This follows trivially from the fact that P (cKIj ≤ 0) = 0. Consequently, pj(cKI) will
be less than one for any positive realization of cKIj . Accordingly, if the ki is very small, then the probability
(P (cKIj ≤ ki)) of obtaining a realization of the misspecification even smaller than a such low value will be
very little; it then follows that the probability pj(cKI) of having a good model will be very high.
It is clear that to determine the weight it is just sufficient to compute the c.d.f of a Normal with mean

mn and variance 2σ2 for the realized value ki. Nevertheless, in the implementation of this methodology,
it is necessary to pay attention to the mean mn that, being affected by the approximation error, varies
with the candidate model. In the next section and in the appendix, the device to fix this problem and the
measurement of mn are described in more details.

4 Asymptotic results

Before proceeding with the theorems let me state first all the assumptions12 :

A1:{Xi} are i.i.d with compact support S, their marginal density g exists, is bounded away from zero, and
is twice differentiable. Its first order derivative is also bounded and moreover |g00(x1)− g00(x2)| ≤ C |x1 − x2|
for any x1, x2 ∈ S and for some C ∈ (0,∞).
A2: The kernelK is a bounded symmetric probability density function around zero, s.t :(i)

R
K(u)du = 1;

(ii)
R
u2K(u)du <∞; (iii) h = hn → 0 as n→∞; (iv) nhn →∞ as n→∞.

A3: Depending on the application, it is possible to select a kernel K that satisfies A2 and such that the
tail-effect terms involved in the use of the KI are negligible.
A4: Θ is a compact and convex subset of Rk, the family of distributions F (θMj ) has density fj(θ, x)

which are measurable in x for every θMj
∈ Θ and continuous in θMj

for every x ∈ Ω; Eg[log g(x)−log fj(θ, x)]
exists and has a unique minimum at an interior point θ∗Mj

of Θ; log fj(θ, x) is bounded by a function b(x) for
all θMj ∈ Θ, where b(x) is integrable w.r.t. the true distribution G.

A5: the first and second derivative of log fj(θ, x) w.r.t. θMj and
¯̄̄
∂ log fj(θ,x)

∂θ × ∂ log fj(θ,x)
∂θ

¯̄̄
are also

dominated by b(x); B(θ∗Mj
) is non singular and A(θ∗Mj

) has a constant rank in some open neighborhood of

θ∗Mj
; where B(θ∗Mj

) = E
h³

∂ log fj(θ
∗,x)

∂θ × ∂ log fj(θ
∗,x)

∂θ

´
g2(x)

i
and A(θ∗Mj

) = E
h
∂2 log fj(θ

∗,x)
∂θi∂θj

g(x)
i
.

Assumption A1 requires that Xi are continuously distributed and imposes regularity conditions on the
unknown density g. A2 represents the standard assumptions on the kernel function and the smoothing
parameter used in the nonparametric literature. Assumption A3 is a practical assumption that we need in
order to simplify the proofs and ignore the tail-effects due to the use of the Kullback-Leibler distance. As
indicated by Hall(1987) it is important that K is chosen such that its tails are sufficiently thick with respect
to the tails of the underlying function fj(θ, x). Since we know the candidate parametric models it is always
possible to choose an adequate Kernel. Furthermore, Hall suggested a practical alternative which is given
by the Kernel K(u) = 0.1438 ∗ exp[−12 {log(1 + |u|)}2] whose tails decrease more slowly than the tails of
12 It is important to note that from now on, for simplicity, I drop the index indicating the regime s.
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the Gaussian Kernel and that allows in most cases to neglect the tails-effect terms. Finally, the last two
assumptions A4 and A5 are standard to ensure the consistency and asymptotic normality of QMLE (White
(1982)).

4.1 Consistency and Asymptotic Normality of the NPQMLE estimator

For the NPQMLE parameter estimator bθMj
we have the following results:

THEOREM 1 (Consistency): Given Assumptions A1-A4, as n −→∞, cθnMj
−→ θ∗Mj

with probability 1 .
Proof: See the Appendix

The main idea is that if KInj is a contrast13 relative to the contrast function KI(g, fj(θ, x)), that is it
converges at least in probability to KI(g, fj(θ, x)), and θ∗Mj

is the unique minimizer in Θ of KI(g, fj(θ, x)),

then the sequence cθnMj
in Θ that minimizes cKInj will converge to θ

∗
Mj
.

This implies the following: given that each candidate parametric model is potentially misspecified, since
we do not know the true model and we do not even know if it belongs to the set of candidate models,
the NPQMLE estimation procedure, as QMLE, will provide an estimator that converges to the best ap-
proximation θ∗Mj

. In other words, it converges to the best we can attain given that we are minimizing the

Kullback-Leibler information over a space FΘMj
⊆ G rather than G. From now on, for simplicity cθnMj

=cθn
and θ∗Mj

= θ∗.
Next I establish that NPQMLE has a limiting normal distribution with mean zero and variance-covariance

matrix C(θ∗), and that it is root-n consistent, that is it has the same rate of convergence of parametric
method as QMLE. In particular, similarly to Powell-Stock and Stoker(1989) this estimator converges faster
than the nonparametric densitycfn exploited in the estimation technique, therefore avoiding the necessity for
extremely large dataset. It is much easier to understand the rationale for this convergence rate by observing
the U-statistic representation of the first order condition to derive the optimal value of the parameters:µ

n

2

¶−1 n−1X
i=1

nX
j=i+1

1

h
K(

xj − xi
h

) [s(θ, xi)− s(θ, xj)] , where s(θ, x) =
∂ log f(θ, x)

∂θ
.

As in Powell-Stock and Stoker(1989), it follows by the averaging of the nonparametric density estimate bfn,
which appears in the previous formula in the particular form:

bfn(xi) = 1

n− 1
nX
j=1

1

h
K(

xj − xi
h

).

Thus, I have the next result

THEOREM 2: (Asymptotic Normality): Given Assumptions A1-A5, and given that E
h
kHn(xi, xj)k2

i
=

o(n), where

Hn(xi, xj) =
1

h
K(

xj − xi
h

) [s(θ∗, xi)− s(θ∗, xj)]

then √
n(bθn − θ∗) ∼A N(0, C(θ∗))

13 See Definition 3 and 4 Dhrymes (1998).
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Furthermore,

Cn(bθn) −→a.c C(θ∗)

(Proof: See the Appendix)

where
C(θ∗) = A(θ∗))−1B(θ∗)A(θ∗))−1 (12)

An(θ) =

Ã
1

n

X
i

∂2 log f(θ, xi)

∂θ
bfn(xi)! (13)

Bn(θ) =

Ã
1

n

X
i

∂ log f(θ, xi)

∂θi
· ∂ log f(θ, xi)

∂θj
bf2n(xi)

!
(14)

and

A(θ) = E

·
∂2 log f(θ, xi)

∂θi∂θj
g(xi)

¸
(15)

B(θ) = E

·
∂ log f(θ, xi)

∂θi
· ∂ log f(θ, xi)

∂θj
g2(xi)

¸
(16)

It is important to point out that also in this framework, similar to White(1982) in the context of QMLE,
in the presence of misspecification the covariance matrix C(θ∗) no longer equals the inverse of Fisher’s
Information (FI).

4.2 Asymptotic distribution of KI: heuristic approach

In order to obtain the weights in the models combination, as indicated by the formula (11), we need to
derive the asymptotic distribution of [KIj , the random variable that measures the ignorance about the true
structure.
The purpose of this section is to provide a sketch of the proof (developed in the Appendix), in order to

give the main intuition and to convey two main pieces of information. First, the effect of estimating the true
model g by fj(bθ, x) on the limiting distribution of cKIj . Second, how and which of the different components
of the KI affect the mean and variance of the asymptotic distribution.
To simplify the notation I drop the index j and we rewrite fj(bθ, x) = fbθ, cfn(x) =cfn and g(x) = g, thencKI is given by the following formula:

cKI = KI(cfn, fbθ) = Z
x

(lncfn − ln fbθ)cfn dx =

=

Z
x

(lncfn − ln g)d bFn − Z
x

(ln fbθ − ln g)d bFn = cKI1 − cKI2, (17)

where the definition of cKI1 and cKI2 is clear from the previous expression.
1) cKI1 can be approximated in the following way14:

14This can be easily seen by rewriting
bfn
g
in the following way:

bfn−g+g
g

= 1 +
bfn−g
g

= 1 + γ, then ln(1 + γ) ' γ − 1
2
γ2.
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cKI1 '
Z
x

Ãcfn − g

g

!
d bFn − 1

2

Z
x

Ãcfn − g

g

!2
d bFn = cKI11 − 1

2
cKI12, (18)

where cKI11 is a stochastic element that will affect the asymptotic distribution of cKI, while cKI12 is roughly15

the sum of squared bias and variance of cfn. It is O((nh)−1 + h4) and it will contribute to the asymptotic
mean of cKI.
2) cKI2 has a different nature: it represents the part of the KI that is affected by the parameters estimation.cKI2 can be rewritten in the following way:

cKI2 =

Z
x

(ln fbθ − ln fθ∗)d bFn + Z
x

(ln fθ∗ − ln g(x))d bFn = cKI21 + cKI22. (19)

Although in this case, the first term cKI21 is stochastic, it will not affect the asymptotic distribution ofcKI. In fact, since it is Op

¡
1
n

¢
when rescaled by the appropriate convergence rate dn = nh1/2 it converges to

zero:

dncKI21 −→p 0. (20)

The second term cKI22 has the following behavior:

cKI22 −→p Eg [ln fθ∗ − ln g(x)] = (−KI(g, fθ∗)) ≤ 0, (21)

as such its presence is due to the approximation error. It is important to note that cKI22 varies with the
underlying candidate model and it can not be observed. This implies that a term of the cKI’s asymptotic
mean will depend on the specific model Mj , then in order to determine and estimate a limiting distribution
that is the same for all candidate models the following assumption is needed:

A6: cKI22 ' αh1/2cKI12. (22)

A6 requires that the mean of the approximation error is proportional to a quantity
³cKI12

´
whose estimation

depends only on cfn, consequently it will not be influenced by any specific model fj(bθ, x). Further, when
h ∝ n−β with β > 1

5 ,
cKI12 ∼ C(nh)−1, then we obtain that:

dncKI22 ' dnαh
1/2cKI12 −→p αC = Eg [ln fθ∗ − ln g(x)] , (23)

where C is a known positive constant. Thus collecting all terms together:

cKI ' cKI11 − 1
2
cKI12 −

³cKI21 + cKI22

´
, (24)

we have the next theorem:

THEOREM 3: Given assumptions A1-A6, and given that nh5 −→ 0 as n −→∞, then

nh1/2
µcKI +

1

2
cKI12 + cKI22

¶
−→d N(0, σ2)

15 In order to see this, it is just sufficient to rewrite cKI12 as
R ³ cfn−Ecfn+Ecfn−g

g

´2
d bFn.

10



where σ2 = 2
nR

K2(u)du− R £R K(u)K(u+ v)du
¤2
dv
o

Proof: See the Appendix.

To better understand the implication of A6 for the determination of the combination weights pj(cKI), it
is helpful to rewrite the previous result as follows:

nh1/2(cKI +
1

2
[KI12) ∼A N(m,σ2) (25)

where m = KI(g, fθ∗) = αC, from (21) and (23). This implies that to estimate the mean of the distribution
it is necessary to pin down the α, whose estimation is based on the ‘plausibility’ of the candidate models.
Assumption A6 elicits the following definition of plausible model:
Def : Mj = fj(θ, x) is plausible, thus will be included in the set M, if the expected value of its approxi-

mation error is equal to αC

In other words, according to A6, all the competing models are on average expected to have the same
distance from the true model g. Subsequently, as suggested by the definition of m, α could be estimated by
a suitably normalized average of all models’ misspecification:

bα = 1

J

X
j

cKIj/C = cKI(g, fθ∗)/C (26)

Therefore, to obtain pj(cKI) we have to employ the c.d.f. of a Normal with mean E(cKIj) and variance
σ2. This entails that, if a model performs better than the average performance of all plausible models, that
is 0 < kij < bmn, then it receives an high weight in the models combination. On the other hand, if the model
performs poorly relative to all other models, that is kij > bmn, then its probability of being correct ( pj(cKI))
will be low.

5 Finite sample performance of the NPQMLE estimator

In order to analyze the behavior of the parameter estimator in finite sample, we provide the results of a set
of Montecarlo experiments, where we use the Kullback-Leibler distance between the true and the estimated
model (KI(g, fj(bθ))) to judge the goodness of the estimation methodology, and to compare it to QMLE.
We use 1000 iterations for each experiment. At each iteration, I first generate the data according to some

distribution g that represents the true model; second, estimate the nonparametric density bfn using a second
order Gaussian kernel; third, determine the optimal value of the parameters minimizing the KI between bfn
and each candidate model fj(θ, x); fourth, evaluate KI between g and fj(bθ, x) at bθNPQMLE and bθQMLE

respectively. Finally, to evaluate the performance of NPQMLE and to compare it to QMLE we compute
the average of KI(g, fj(bθNPQMLE)) and of KI(g, fj(bθQMLE)) out of 1000 stored values. The smoothing
parameter h is chosen according to h = 1.06bσxn−β where 0 < β < 1. Further, in accordance with Theorem
3, β must satisfy 1

5 < β < 1.

The basic design is as follows:

Xi ∼ G(9, 3)

that is, the true model is a family of univariate Gamma distributions G(ς, λ) with parameters ς = 9 and
λ = 3. We choose a set of three candidate models in which we also include the true ones. In particular, the
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first model isM1 = G(ς, λ), the second modelM2 = N(µ, σ2) is a Normal and the third modelM3 =W (α, β)

is a Weibull distribution.
We report the results for sample size n = 400, 800 and 1200, when β = 1

4.5 ,
1
4 , in order to show the

sensitivity of the parameter estimates to the choice of the smoothing parameter.
Table 1 indicates that the estimates of Gamma parameters using NPQMLE perform worse than QMLE,

obviously because under the correct structure QMLE is MLE. In fact, in the case of NPQMLEKI(g, fj(bθ)) =
0.0084 for MLE KI(g, fj(bθ)) = 0.0047. This is due to estimation error introduced by the use of the nonpara-
metric density as reference estimate. But, when the assumed model is not the correct ones, as in the case
of Normal and Weibull, the NPQMLE method delivers an estimate of the parametric density that is closer
to the true structure than those estimated by QMLE. As shown in the table, in the case of the Normal,
using NPQMLE KI(g, fj(bθ)) is equal to 0.0233, while for QMLE it equals 0.044. A very similar result is
obtained for the Weibull distribution. Table 2 displays analogous results but, since the bandwidth h is
smaller, NPQMLE provides parameters’ estimates that are characterized by a lower bias and slightly higher
variance. This overall causes a reduction of the distance between misspecified and true model, as it can be
noticed by the lower values of KI(g, fj(bθ)).
As the sample size increases, from Table 3 we can notice that NPQMLE delivers an estimate of the

misspecified model that gets closer to the true one. This was expected, since as n increases the nonparametric
density gets closer to the true model and this helps improving the estimation results. Further, in NPQMLE
the distance between g and fj(bθ) reduces approximately at the same rate as QMLE. This can be clearly seen
observing for example, the reduction of the KI(g, fj(bθ)) for both estimation methods in the case of Gamma.
Nevertheless, under the misspecified models, NPQMLE still outperforms QMLE, in the sense that it still
delivers a KI which is half of that obtained by QMLE.

6 Application to stock returns

6.1 A Set of simple models

I now apply the described prediction method to determine stock returns predictive density, that will subse-
quently be used by an investor to choose the optimal share to invest in the risky asset. Typically, due to the
hypothesis of asset market efficiency, stock prices are assumed to follow a random walk, that is:

pt = µ+ pt−1 + �t, �tIID, where pt = log(Pt).

Further, since the most widespread assumption for the innovations �t is normality, stock returns are
normally distributed with mean µ and variance σ2. While contrasting evidence exists on the predictability
of stock returns, there is substantial support against the normality assumption.
First, as reported by Campbell-Lo-Mackinay (1997)16 , the skewness for daily US stock returns tend to

be negative for stock index and positive for individual stocks. Second, the excess Kurtosis for daily US
stock returns is large and positive for both index and individual stocks. Both characteristics are further
documented in Ullah-Pagan17 (1999) using non-parametric estimation of monthly stock returns’ density
from 1834 to 1925. In their analysis is clearly shown that the density departs significantly from a normal,

16The Econometrics of Financial Markets, 1997, pag. 16 and 17.
17Nonparametric Econometrics, 1999, pag 71-74.
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because of its asymmetry, the fat tails and the sharp peak around zero. Third, Diebold-Gunther and Tay
(1998) in their application to density forecasting of daily S&P 500 returns indicate that the Normal forecasts
are severely deficient. Finally, Knight-Satchell and Tran (1995) show that scale Gamma distributions are a
very good model for UK FT100 index.
Given these facts, let assume that the set of candidate models for the risky asset’s returns consists of three

distributions: a Normal (N(µ, σ2)), a Fisher-Tippet18 (F (α, β)) and a mixture of general Gamma (G(ς, λ)).
The first model, as described above, derives from the ‘convenient’ version of random walk hypothesis. The
second model is suggested by the empirical evidence reported in the first two points which advocates the use
of extreme value distribution with more probability mass in the tail areas, and the third model is a direct
consequence of the study by Finally, Knight-Satchell and Tran (1995).
Let Xt be the log of asset return for day t, it will be modelled using the following densities:

1) f(Xt;µ, σ) ≡ 1

σ
√
2π
exp−(Xt − µ)2

2σ2
,

2) f(Xt;α, β) ≡ 1

β
exp(

Xt − α

β
) exp(− exp(Xt − α

β
)).

The third model requires some more details since Gamma distribution is defined only for 0 ≤ Xt ≤ ∞
, as such the distribution for Xt will be a mixture of two Gammas. Following the authors, lets define the
variable:

Zt =
1 with probability p
0 with probability 1-p

where p is the proportion of returns that are less than a specified benchmark γ. It then follows that Xt is
defined

Xt = γ +X1t(1− Zt)−X2tZt

where Xjt are independent random variables with density fj(·). Hence if Zt = 1, Xt ≤ γ and we sample
from the X2 distribution; if Zt = 0,Xt > γ and we sample from the X1 distribution. f1(·) and f2(·) are
defined as follow:

f1(X1t; ς, λ) ≡ λς

Γ(ς)
(X1t − γ)ς−1 exp(−λ(X1t − γ))

f2(X2t; ς, λ) ≡ λς

Γ(ς)
(γ −X2t)

ς−1 exp(−λ(γ −X2t))

6.2 The Data

To implement the empirical application I use daily closing price observations on the US S&P500 index over
the period from December 1, 1969 to October 31, 2001, for a total of 7242 observations. The source of the
data is DRI. Stock return Xt is computed as log(1 +Rt) where Rt =

Pt−Pt−1
Pt−1

. Descriptive statistics for the
entire sample are provided in the following table.

18 It is also known as double exponential distribution and a particular case of it is the Gumbel distribution.
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S&P500 index

Min. value -0.08642
Max. value 0.087089
Mean 0.000319
Std. deviation 0.01005
Kurtosis 4.9333
Skewness -0.10974

Table I

Furthermore, Ang and Bekaert (2001,2002) and Guidolin and Timmermann (2002) have stressed the
importance of distinguishing between ‘bear’ and ‘bull’ regimes in modeling stock returns and indicate that
these persistent regimes have important economic implications for investors’ portfolio decisions. Based on
these observations, I have chosen to divide the data in two groups. The first contains all samples relative
to contraction (C) and the second includes all samples relative to expansion (E). These two phases of the
business cycle typically coincide with ‘bear’ and ‘bull’ regimes of the stock market. This implies that the
optimal model for asset returns is conditional on the specific regime, which for simplicity I assume to be
known at the time of the empirical analysis. The next table indicates the periods of contraction and expansion
included in the dataset.19

dates 1 2 3 4

C 12/69-11/70 11/73-3/75 7/81-11/82 3/01-10/01
E 4/75-1/80 7/80-7/81 12/82-6/90 4/91-2/01

Table II

Under the assumption that in each regime all subsamples are drawn from a fixed distribution, it is possible
to create for each state a unique sample that include all contractions and all expansions respectively. Merging
together all the recessions we obtain a sample of 1321 observations, while combining all expansions we obtain a
sample of 5921 observations. The descriptive statistics for these two subsamples are reported in the following
tables.

Expansion S&P500 index

Min. value -0.08642
Max. value 0.087089
Mean 0.00044
Std. deviation 0.009165
Kurtosis 7.1555
Skewness -0.30326

Contraction S&P500 index

Min. value -0.05047
Max. value 0.05574
Mean -0.00039
Std. deviation 0.0132
Kurtosis 1.05685
Skewness 0.26712

Table III

It is evident from Table I and III, that these data are not consistent with the common assumption that
the true model for Xt is the Gaussian distribution. These values confirm previous studies where daily stock
returns have been found to exhibit high excess Kurtosis and negative Skewness for index returns. Further,

19The contractions and expansions are those provided by NBER’s Business Cycle Dating Committee for the US Economy,
available at the website www.nber.org/cycles. I have excluded the recession of 1990-91 because of the limited number of
observations that does not allow to estimte the nonparametric density with precision in that subsample.
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it is very striking how these values differ across regimes. First, as found in other studies, contractions and
in general bear regimes are characterized by high volatility and negative mean for stock return, which turns
out to be a problem in determining the optimal share to invest in the risky asset. Second, while during
expansions stock returns show a positive excess kurtosis (even bigger than that displayed in Table I for all
data) and a negative Skewness (three times bigger than that for the entire sample), during contractions
the excess Kurtosis is negative (lower than three) and the Skewness is positive. According to these simple
descriptive statistics, it is reasonable to expect different optimal models for stock returns across these two
regimes.

6.3 Empirical Results.

For each of these samples I estimate the univariate density of stock returns by Nadaraya-Watson kernel
density estimators. For the Kernel function I employ the second-order Gaussian Kernel and the bandwidths
are selected via least-squares cross-validation (Silverman, 1986, p48). Graphs of the nonparametric densities
are reported in the appendix in Figures 1, 2 and 3.
I then use the Kullback-Leibler entropy to measure the distance between the estimated nonparametric

density and each of the models belonging to the set M. Minimizing this distance I obtain the parameter
estimates for each candidate distribution and a value for cKIj , which allows me to achieve a ranking of all
competing models and the subsequent weight for each of them in the final model combination. The estimated
parameters for each distribution are reported below.

N(µ, σ2) Entire sample Expansion Contractionbµ 0.0004* 0.0005* -0.0008*bσ 0.0082* 0.0075* 0.0123*
KLI 0.1897 0.1587 0.0513

*All estimates are significant at 1% level

F (α, β) Entire sample Expansion Contractionbα -0.00179* -0.0014* -0.00403*bβ 0.008509* 0.00773* 0.01213*
KLI 0.9836 0.9209 0.3362

*All estimates are significant at 1% level

G(ς, λ) Entire sample Expansion Contractionbς 1.1104* 1.1212* 1.1237*bλ 146.3839* 160.6803* 97.4237*bγ 0.00031 0.00044 -0.00039bp 0.47878 0.465631 0.53637
1− bp 0.52122 0.5343 0.46363
KLI 0.0468 0.0666 0.0776

*All estimates are significant at 1% level
Table IV

Examining the tables we see that all the estimates are intuitively reasonable and significantly different
from zero. Comparing all the three models over the entire sample, we can notice that the model characterized
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by the double Gamma outperforms the other two models. Its cKI assumes the lowest value (0.0468) which
is four times smaller than that for the Normal and twenty time smaller than that of Fisher-Tippet. Also in
the case of expansion, the double Gamma is clearly better than the other two models; its cKI equals 0.0666
which is half the value for the Normal. In contrast, for the sample including all contractions the Gaussian
distribution performs slightly better than the double Gamma. The value of its cKI is equal to 0.0513 which is
smaller than the respective value for the double Gamma (0.0776). Finally, both values are ten times smaller
than the cKI for the Fisher-Tippet distribution. These results contradict the common assumption that the
best unique model for the stock returns is the Gaussian distribution, and confirm that the optimal model
changes across regimes. Further, since more than one model performs fairly well, and because each of them
has properties that capture particular characteristics of return distribution, it seems reasonable to combine
them.
It is important to stress some characteristics of the double Gamma, since it is overall the model that

provides the best performance in terms of aggregate similarity to the data. First of all, it is worth mentioning
that in all three samples the values of bp suggest that the sample proportions for negative returns are not
very different from that of positive returns. Second, ς’s estimates in all three samples are greater than unity,
which entails that returns are well described by a bimodal density. All these features of the estimated model
confirm the results that Knight-Satchell and Tran (1995) found in the case of UK stock returns.
The final step to compute the similarity-weighted predictive distribution M(bθMj ) consists in evaluating

for each of the models under consideration the ‘probability’ pj(cKI) of being correct. It can be helpful to
first provide the realizations of dKIj for all models in each of the sample.

All data Expansion Contraction

G 0.0468 0.0666 0.0776
N 0.1897 0.1587 0.0513
F 0.9836 0.9209 0.3362

Table V

The following table exhibits the value of p(cKIj) for the three models under consideration.

All data Expansion Contraction

G 0.8121 0.7811 0.5689
N 0.7033 0.7086 0.604
F 0.0779 0.0924 0.331

Table VI

As it can be noticed these values represent ‘probabilities’ before normalization since they do not sum up to
unity. Results contained in table VI seem to confirm that this methodology in determining the “probability
of being the correct model” works in the right direction. In fact, in each of the samples the p.d.f. with
the lowest realization of the KI receives the highest pj(cKI), and hence it will receive the largest weight in
the model combination. Further, the very poor performance of the Fisher-Tippet distribution with respect
to the other two candidate models, suggests that it would be sensible to discard this model. Thus, in the
next section I present the results obtained combining the Normal and the double Gamma according to the
weights reported in the first two rows of Table VI.

16



6.4 In and Out-of-sample performance of model combination

Lets first consider the in-sample performance of model combination using the entire dataset from December
1, 1969 to October 31, 2001. In this case, after normalizing the p(dKIj), the double Gamma G(1.1104, 146.38)
receives a weight of 0.5359 and the Normal N(0.0004, (0.0082)2) receives a weight of 0.4641. The Kullback-
Leibler distance between the nonparametric density estimate and the model combination equals 0.0256,
attaining a loss almost half of the best minimizer. If I consider the sample including all expansions, to the
Gamma G(1.1212, 160.68) it is assigned a weight equal to 0.5243 and to the Normal N(0.0005, (0.0075)2) a
weight of 0.4757. This model combination delivers a distance from the nonparametric density equal to 0.0179
which is a third of that achieved by the best model. Finally, considering only contraction data, the Gamma
G(1.1237, 97.42) receives a weight of 0.4937, while the Normal N(−0.0008, (0.0123)2) attains a weight equal
to 0.5063. In this case as well, the model combination outperforms the best model by achieving a KI equal
to 0.0137, which is one fourth of the distance achieved by the best model.
Now, to verify the performance of NPQMLE and of the model combination out of sample, we analyze

the previous results in the context of a different dataset, using the series of stock returns observed from
November 1, 2001 to September 30, 2003, for a total number of observations of 479. This sample represents
the most recent case of expansion, or more precisely recovery, according to the latest determination of the
Business Cycle Committee of the NBER. The summary statistics are displayed below.

S&P500 index

Min. value -0.01842
Max. value 0.024204
Mean -0.0000556
Std. deviation 0.00619
Kurtosis 0.932
Skewness 0.2804

Using this data, but the parameter estimates and the weights obtained from the expansion sample for
the period December 1, 1969 to October 31, 2001, we evaluate the KI distance between the nonparametric
density estimated in the new sample and the parametric model estimated in the previous sample. I obtain
the following results: the KI between the model combination and bfn is equal to 0.7649, between the Gamma
distribution and bfn is equal to 0.7749 and between the Normal and bfn is 0.9235. That is, the model
combination slightly outperforms both models, including the Gamma that in the case of expansion was the
best minimizer. This result can be further corroborated using a larger out-of sample dataset and bootstrap
methodology.

7 Investors’ optimal asset allocation

7.1 The Optimization Problem

In this section, I first briefly describe the framework to derive the optimal portfolio choice under ‘uncertainty’,
when an investor uses the similarity-weighted predictive distribution as the model on the basis of which to
act. Second, I consider how the estimated model combination affects investor’s optimal asset allocation.
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Lets consider an individual making portfolio choice at time T , this choice involves two kind of assets: a
risky asset which consists of a broad portfolio of stocks (S&P500 index), whose gross return at time t per
unit invested at time t− 1 is 1 +Rt, and a riskless asset whose gross return is 1 +Rf

t . The decision maker
has access to the return histories over T periods, he knows in advance the future return of the riskless asset
that in accordance with standard practice is assumed to be constant.
Lets define rt = log(1 +Rt) and rft = log(1 +Rf

t ),then we can describe the investor’s information set in
the following way:

It ≡
h
{rt}Tt=0 , {rft }Tt=0and {rf}Ht=T+1

i
.

He invests one unit of saving, divided between an amount 1− a in the safe asset and a in the risky asset,
and then he holds on to the portfolio until date H.

Let W (rt, a) denote the value of the portfolio and suppose also that we are considering a self financing
portfolio. Thus, the value of the portfolio at time t = H is given by:

W (rt, a) = (1− a)
HY

t=T+1

(1 +Rf
t ) + a

HY
t=T+1

(1 +Rt) = (1− a)Hrft + a
HX

t=T+1

rt.

Lets also assume that utility depends only on the final value of the portfolio: U(W (rt, a)).Then, the
problem is to choose the best decision rule d that maps the observations contained in It into actions a, in
other words: the optimal share to invest in the risky asset. This decision rule is obtained by maximizing the
following expected utility:

Egr|s [U(W (rt, a))]

s.t Wt+H = (1− a)Hrft + a
HX

t=T+1

rt and a ∈ [0, 1].

In order to simplify the analysis lets assume that H=1, such that the wealth form reduces to

W (ert, a) = (1− a)rft + art = rft + a(rt − rft ) = C + aert,
where C is a constant and ert is the excess return.
Example 1: (CARA investor) Assume that U(W (ert, a)) is the utility function of an investor with negative

exponential utility:
U(W (ert, a)) = − exp(−δW (ert, a))

Egr|s [U(W (ert, a))] = −KEgr|s [exp(−δaert)],
where δ is the risk aversion parameter, K is the expected utility relative to the riskless asset and gr|s is the
distribution of the return rt given the regime s, which is unknown. Typically, the return distribution gr|s is
assumed to be Normal, consequently the expected utility results to be:

Egr|s
[U(W (ert, a))] = − exp(−aδµ+ 1

2
δ2a2σ2),

where µ = E(ert) and σ2 = V ar(ert) are the mean and the variance of the Normal distribution. In this case
the optimal share to invest in the risky asset is given by:

a(gr|s) = argmax
a

Egr|s [U(W (ert, a))]
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and it is equal to:
a∗ =

µ

δσ2
.

The economic agents use the personal model gr|s as if it represented the actual model. The problem
is that assuming gr|s to be the density function of a Normal random variable, is likely that the model is
misspecified.
What is described next is a characterization of expected utility maximization under ‘risk’ very similar

to Gilboa-Schmilder(2001), that is the decision process is one in which the “decision maker first forms
probabilistic beliefs and then uses them to reduce a decision problem under uncertainty to a decision problem
under risk”. In other words, the use of models selection and combination described in previous sections
helps reducing the degree of model ambiguity, because it shrinks the set of candidate models into a unique
distribution that characterizes the risk of the decision problem.

Example 2: CARA investors with probabilistic belief M(bθMj ). In the context of example 1, lets suppose
that the investor instead of assuming that the returns are Normally distributed, builds his probabilistic belief
gr/s as described in section II and III. Moreover, lets assume that the current regime is known. Therefore,
his model for the asset return is equal to M(bθMj ).

Egr|s [U(W (ert, a))] = −KEM(bθMj
)[exp(−δaert)]

−EM(bθMj
)[exp(−δar)] = −

Z
exp(−δar) · (

X
j

pj(cKI)fj(r,bθ))dr
= −

X
j

pj(cKI)

Z
exp(−δar)fj(r,bθ))dr =X

j

pj(cKI)(−Efj (exp(−δar).

If we define t = δa we can rewrite the expected utility function as −E[exp(−tr)], which is the Moment
Generating Function20 (MGF) after we account for the change in signs. This implies that the expected
utility function, when the expectation is taken under the model M(bθMj

) is equal to

= −
X
j

pj(cKI)MGFfj (−t),

which is nothing more than the weighted average of the Moment Generating Function of each model included
in M(bθMj ).

It is important to notice that the existence of a closed form solution for the optimal share a is still
guaranteed. However, in this framework the optimal choice not only depends on the risk aversion and on
the moments of the probability law of stock returns, but it also depends on the weights contained in the
model combination. As such, it is affected by the measure of uncertainty about the true structure. Explicit
formulas for each MGF and for the expected utility are provided in the Appendix.

20The Moment Generating Function MGFr(t) = Er(exp tr).

19



7.2 Implications of model ambiguity for the optimal stock holdings

In this section, I compare the optimal shares selected using the model combination, with the same quantities
obtained employing the best candidate models. Investors choose different shares to invest in the risky asset
according to their level of risk aversion and investment horizon. I start reporting the results relative to each
single model for three different level of risk aversion and for an investment horizon equal to one period.
However, since returns are i.i.d, this particular choice of the time horizon does not have any impact.
Under the assumption that the Gamma distribution is the optimal model for stock returns, for all three

samples under consideration I obtain the following results:

N=7242 a∗

R.A=2 1

R.A=6 0.41

R.A=10 0.27

E, N=5921 a∗

R.A=2 1

R.A=6 0.77

R.A=10 0.45

C, N=1321 a∗

R.A=2 0

R.A=6 0

R.A=10 0
Table VIII

In contrast, under the assumption that the Gaussian distribution is the optimal model, we have:

N=7242 a∗

R.A=2 1

R.A=6 0.99

R.A=10 0.594

E, N=5921 a∗

R.A=2 1

R.A=6 1

R.A=10 0.88

C, N=1321 a∗

R.A=2 0

R.A=6 0

R.A=10 0
Table VIV

In the case of the double Gamma distribution, the results relative to the entire sample, are very similar
to those reported by Avramov (2000) for the i.i.d model (Figure 5, p63). The comparison is made even
easier from the fact that I used his same values for the coefficient of the risk aversion. The values reported
in table VIII seem very reasonable also when compared to the most recent evidence from the 2001 Survey
of Consumer Finances21 . Among the families holding stocks, corresponding to 21.3% of the interviewed
population, on average the median value of wealth invested in stock is around 32.9% (which is in between
0.41 and 0.27). In contrast, the values obtained for the Gaussian distribution tend to overestimate the actual
share, most likely because this model is not able to account for the fat tails of the distribution which can
strongly affect the results.
In analyzing the results for the case of expansion (E), it can be noticed that for the double Gamma I

obtain values very close to those of Guidolin and Timmermann under: no predictability, bull state probability
equal to one, investment horizon equal one and by the same values for the risk aversion (Figure 5, Guidolin-
Timmermann (2002)). On the contrary, these values are very different from those obtained using the Normal
distribution.
Unfortunately the case of contraction does not provide very interesting results, due to the fact that with

any model the estimated average of stock return is negative, causing the optimal share to be zero for any
value of the risk aversion. Similar results are also reported by Guidolin and Timmermann in the case of

21All the values reported are obtained from Table B, pg 13 of “Recent changes in U.S. Family Finances: Evidence from the
1998 and 2001 Survey of Consumer Finances”. Federal Reserve Bulletin.
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bear regime, where values very close to zero are obtained for almost all considered values of the risk aversion
ranging from 1 to 20.
Now let me show the values of the optimal share obtained using the combination of double Gamma and

Gaussian distributions described in section 6.4. Since the expected utility is given by a linear combination
of the MGF of each single distribution, then the optimal share is given by a linear combination of the shares
found using each candidate models included in M(bθMj

).

N=7282 a∗

R.A=2 1

R.A=6 0.6792

R.A=10 0.4204

E, N=5921 a∗

R.A=2 1

R.A=6 0.8794

R.A=10 0.6546

C, N=1361 a∗

R.A=2 0

R.A=6 0

R.A=10 0
Table X

This implies that the investor, who fears misspecification and accounts explicitly for it through the model
combination, invests more in the risky asset than what he would have invested using the double Gamma
distribution as the unique probabilistic belief . This is due to the fact that now using a similarity-weighted
distribution, the investor no longer assigns a probability of one to the mixture of Gamma, and hence does
not overestimate the precision of the forecast provided by this model.

8 Conclusions

This paper proposes a method to estimate the probability density of a random variable of interest in the
presence of model ambiguity. The first step consists in estimating and ranking the candidate parametric
models minimizing the Kullback-Leibler ‘distance’ (KLD) between the nonparametric fit and the parametric
fit. In the second step, the information content of the KLD is used to determine the weights in the model
combination, even when the true structure does not necessarily belong to the set of candidate models.
This approach has the following features. First, it provides an explicit representation of model uncertainty

exploiting models’ misspecification. Second, it overcomes the necessity to have a specific prior over the
set of models and about parameters belonging to each of the models under consideration. Finally, it is
computationally extremely easy.
The NPQMLE estimator obtained in the first step is root-n consistent and asymptotically normally

distributed. Thus, it preserves the same asymptotic properties of a full parametric estimator. Furthermore,
when the misspecified model is used, it delivers ‘better’ finite sample performances than QMLE. However,
it is important to bear in mind that such result is completely determined by the smoothing parameter.
To implement the model combination, using the technical machinery provided by previous studies on

nonparametric entropy-based testing, I derive the asymptotic distribution of the Kullback-Leibler information
between the nonparametric density and the candidate parametric model. Since the approximation error
affects the asymptotic mean of the KLD’s distribution, the latter varies with the underlying parametric model.
Then, to determine the same distribution for all candidate models, employing an assumption technically
equivalent to a Pitman alternative, I center the resulting Normal on the average performance of all plausible
models. Consequently, the weights in the model combination are determined by the probability of obtaining a
performance worse than that actually achieved, relatively to that attained on average by the other competing
models.
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The empirical application to daily stock returns indicates that, during the phases of expansion, the best
model is the double Gamma distribution, while during the phases of recession is the Gaussian distribution.
Moreover, the combination of the Normal and the double Gamma, according to the weights obtained with
the described methodology, outperforms in- and out-of-sample all candidate models including the best one.
Most likely, this result is due to the fact that none of the candidate models is the true structure, as such
the models combination being a higher dimensional parametric alternative is able to approximate the data
more closely.
This suggests that in decision contexts characterized by high uncertainty, such that it can be hard: to

form specific priors, to conceive an exhaustive set of all possible models and/or to use the true complex
structure, the proposed approach can provide a better hedge against the lack of knowledge of the correct
model. Additionally, this methodology can also be used to form priors in training sample, before applying
more sophisticated Bayesian averaging techniques.
This approach can be further extended to conditional distributions to address more challenging and

complex prediction problems. I leave this problem to future research.

9 Appendix

9.1 Proof Theorem 1

The first step consists in showing that KIjn(θ) converges at least in probability to the contrast function

KIj(θ).

KIjn(θ)−KIj(θ) =
nX
i=1

(lncfn(xi)− ln f(θ, xi)cfn(xi)− Z
x

(ln g(x)− ln f(θ, x)g(x)dx = (27)

=
nX
i=1

³
lncfn(xi)´cfn(xi)− Z

x

(ln g(x))g(x)dx−
nX
i=1

ln f(θ, xi)cfn(xi) + Z ln f(θ, x)g(x)dx = D1−D2 (28)

D1 =
nX
i=1

³
lncfn(xi)´cfn(xi)− Z

x

(ln g(x))g(x)dx (29)

D2 =
nX
i=1

ln f(θ, xi)cfn(xi)− Z ln f(θ, x)g(x)dx (30)

D1 −→p 0 as n −→∞, since
nX
i=1

³
lncfn(xi)´cfn(xi) −→p

Z
x

(ln g(x))g(x)dx (31)

see Theorem 2, Dmitriev-Tarasenko (1972),

D2 =
nX
i=1

ln f(θ, xi)
³cfn(xi)− g(xi)

´
+

Ã
nX
i=1

ln f(θ, xi)g(xi)−
Z
ln f(θ, x)g(x)dx

!
= D21 +D22 (32)
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as n −→∞, cfn − g −→p 0, then D21 −→ 0 (33)

and since
P∞

i=1 ln f(θ, xi)g(xi) =
R
ln f(θ, x)g(x)dx, then D22 −→ 0.

We can conclude that KIjn(θ) −→p KIj(θ), hence it is a contrast relative to the contrast function KIj(θ)

according to the Definitions 3 and 4 in Dhrymes (1998).
Further since KIjn(θ) can be rewritten as Hn(θ)−Hn(cfn), where

Hn(cfn) = − nX
i=1

³
lncfn(xi)´cfn(xi) and Hn(θ) = −

nX
i=1

ln f(θ, xi)cfn(xi) (34)

then
Hn(θ1)−Hn(θ2) = [Hn(θ1)−Hn(cfn)]− [Hn(θ2)−Hn(cfn)]. (35)

It follows that

Hn(θ1)−Hn(θ2)→p KIj(θ1)−KIj(θ2). (36)

By the continuity of Kullback-Leibler Information and by A3, assumption (iii) of Theorem 1 in Dhrymes
(1998) is justified. Then the consistency of the MC estimator bθMj follows immediately by this same theorem.

9.2 Proof Theorem 2:

By the mean value theorem around the parameter θ∗

0 = ∇KI( bfn, fbθ) ' ∇KI( bfn, fbθ) |θ∗ +∇2KI( bfn, fbθ) |θ (bθn − θ∗n) (37)

(bθn − θ∗) ' −(∇2KI( bfn, fθ) |θ)−1 ·∇KI( bfn, fθ) |θ∗ (38)

(bθn − θ∗) ' −
ÃX

i

∂2 log f(θ, xi)

∂θi∂θj
bfn(xi)!−1 ·ÃX

i

∂ log f(θ∗, xi)
∂θ

bfn(xi)!

√
n(bθn − θ∗) ' −

Ã
1

n

X
i

∂2 log f(θ, xi)

∂θi∂θj
bfn(xi)!−1 ·Ã 1√

n

X
i

∂ log f(θ∗, xi)
∂θ

bfn(xi)! . (39)

Let us define s(θ, x) = ∂ log f(θ,xi)
∂θ = ∂f(θ,x)/∂θ

f(θ,x)

√
n(bθn − θ∗) ' −

Ã
1

n

X
i

∂s(θ, xi)

∂θ
bfn(xi)!−1 ·Ã 1√

n

X
i

s(θ∗, xi) bfn(xi)! = −(An(θ))
−1Wn(θ

∗). (40)

Rewriting Wn(θ
∗) as a second order U-statistic of the form

Un =
1

n(n− 1)
nX
i=1

nX
j=1
j 6=i

1

h
K(

xj − xi
h

)s(θ∗, xi) =
µ
n

2

¶−1 n−1X
i=1

nX
j=i+1

1

h
K(

xj − xi
h

) [s(θ∗, xi)− s(θ∗, xj)] (41)
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where the last equality holds since k(u) = −k(−u)), we can notice that Wn(θ
∗) =

√
nUn.

Applying first Lemma 3.1 and then Theorem 3.1 in Powell, Stock, and Stoker (1989), or similarly Lemma
3.3b. in Zheng (1996) we can show that Wn(θ

∗) is asymptotically normally distributed and that it is
Op

³
1√
n

´
. Let define Hn in the following way:

Hn(xi, xj) =
1

h
K(

xj − xi
h

) [s(θ∗, xi)− s(θ∗, xj)] . (42)

First, we need to verify that E
h
kHn(xi, xj)k2

i
= o(n). Let define v2(θ∗, x) = E(s2(θ∗, x)/x) and v(θ∗, x) =

E(s(θ∗, x)/x),

E
h
kHn(xi, xj)k2

i
= E

h
E
³
kHn(xi, xj)k2 /xi, xj

´i
= (43)

=
1

h2

Z °°°°K(xj − xi
h

)

°°°°2 £v2(θ∗, xi) + v2(θ∗, xj)− 2v(θ∗, xi)v(θ∗, xj)
¤
g(xi)g(xj)dxidxj =

now using the change of variable from (xi, xj) to (xi, u =
xj−xi
h ) we obtain

=
1

h2

Z
kK(u)k2 £v2(θ∗, xi) + v2(θ∗, xi + hu)− 2v(θ∗, xi)v(θ∗, xi + hu)

¤
g(xi)g(xi + hu)dxihdu =

= O(
1

h
) = O(n(nh)−1) = o(n) since nh→∞. (44)

This implies that
√
n(Un − bUn) = op(1). Thus, we need just to study the behavior of bUn which is given by

bUn = E(rn(xi)) +
2

n

X
i

rn(xi)−E(rn(xi)). (45)

Let compute rn(xi) which is defined in the following way:

rn(xi) = E(Hn(xi, xj)/xi) =

Z
1

h
K(

xj − xi
h

) [s(θ∗, xi)− v(θ∗, xj)] g(xj)dxj = (46)

=
1

h

Z
K(u) [s(θ∗, xi)− v(θ∗, xi + hu)] g(xi + hu)hdu = r(xi) + tn(xi) (47)

where

r(xi) = [s(θ
∗, xi)− v(θ∗, xi)] g(xi) (48)

and

tn(xi) = h2v0(xi, θ∗)g0(xi, θ∗)
Z

u2K(u)du = o(h2). (49)

This last expression has been obtained applying the mean value theorem to v(θ∗, xi+hu) and g(xi+hu),

which yields v(θ∗, xi) + huv0(xi, θ∗) and g(θ∗, xi) + hug0(xi, θ∗) where xi lies in [xi, xi + hu] .

Further, we need to compute E(rn(xi)) = E(Hn(xi, xj))
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E(Hn(xi, xj)) =
1

h

Z
K(u) [v(θ∗, xi)− v(θ∗, xi + hu)] g(xi)g(xi + hu)dxihdu =

=

Z
K(u)du

Z
[v(θ∗, xi)− v(θ∗, xi)] g2(xi)dxi = 0. (50)

So what we have to study is the asymptotic behavior of

√
nbUn = √nE(rn(xi)) + 2√

n

X
i

rn(xi)−E(rn(xi)) =
2√
n

X
i

r(xi)−E(r(xi)) +
2√
n

X
i

tn(xi)−E(tn(xi))

(51)
where r(xi) = [s(θ

∗, xi)− v(θ∗, xi)] g(xi) and E(r(zi)) = E(E [((s(θ∗, xi)− v(θ∗, xi))g(xi)) /xi]) = 0 and the
last term of the above expression converges to zero in probability. Hence, the limiting distribution of

√
nbUn

is the same of 2√
n

P
i r(xi) =

2√
n

P
i [s(θ

∗, xi)− v(θ∗, xi)] g(xi).
By Lindeberg-Levy central limit theorem, we have that

Wn(θ
∗) =

√
nbUn →d N(0, B(θ∗)) as n→∞ (52)

B(θ∗) = 4E([s(θ∗, xi)− v(θ∗, xi)]
2
g(xi)

2) = 4

Z ³
s2(θ∗, xi) + (v(θ∗, xi))

2 − 2s(θ∗, xi)v(θ∗, xi)
´
g(xi)

3dx =

=

Z ³
v2(θ∗, xi)− (v(θ∗, xi))2

´
g(xi)

3dxi =

Z
var(s(θ∗, xi))g(xi)3dxi = E(var(s(θ∗, xi))g(xi)2). (53)

This implies that Wn(θ
∗) = Op

³
1√
n

´
. It follows that

√
n(bθn − θ∗n) = −(An(θ))

−1Wn(θ
∗)→ N(0, A(θ∗))−1B(θ∗)A(θ∗))−1). (54)

9.3 Proof Theorem 3:

KI can be rewritten in the following way:

KI =

Z
x

(lncfn(x)−ln fbθ(x))d bFn(x) = Z
x

(lncfn(x)−ln g(x))d bFn(x)−Z (ln fbθ(x)−ln g(x))d bFn(x) = KI1−KI2.

(55)
Similarly to Fan(1994), this representation is very helpful to examine the effect of estimating fθ∗ by fbθ on
the limiting distribution of cKI. From now on the index j for th model will be omitted.

I start examining the limiting distribution of cKI1 =
1
n

P
i ln
³cfn(xi)

g(xi)

´
that by the Law of Large Numbers

(LLN) can be considered a good approximation of n−1E((lncfn(x) − ln g(x)) = n−1KI1. This first part of
the proof draws heavily upon Hall(1984) and Hong and White(2000).

Using this inequality
¯̄
ln(1 + u)− u+ 1

2u
2
¯̄ ≤ |u|3 for |u| < 1 and defining u =

cfn−g(x)
g(x) =

cfn
g(x) − 1 we

obtain the following result:
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1

n

X
i

ln

Ãcfn(xi)
g(xi)

!
− 1

n

X
i

Ãcfn(xi)− g(xi)

g(xi)

!
+
1

2n

X
i

Ãcfn(xi)− g(xi)

g(xi)

!2
≤ u3. (56)

Let define bV1n = 1

n

X
i

Ãcfn(xi)− g(xi)

g(xi)

!
and bV2n = 1

n

X
i

Ãcfn(xi)− g(xi)

g(xi)

!2
.

By Lemma 3.1 Hong-White (2000), under assumption A1 and A2, nh4/ lnn→∞, h→ 0. Then:

cKI1 = bV1n − 1
2
bV2n +Op(n

− 3
2h−3 lnn+ h6). (57)

Now we have to analyze the terms bV1n and bV2n. Let define f(x) = R h−1K(xi−xh )g(x)dx and

an(xi, xj) =
h−1Kh(xi − xj)−

R
h−1Kh(xi − x)g(x)dx

g(xi)

bn(xi) =

R
h−1Kh(xi − x)f(x)dx− g(xi)

g(xi)
.

Then

bV1n = 1

n

X
i

"cfn(xi)− f(xi)

g(xi)
+

f(xi)− g(xi)

g(xi)

#
=

1

n(n− 1)h
X
i

X
j,i6=j

an(xi, xj) +
1

n

X
i

bn(xi) = (58)

= bV11n + bBn,

where bV11n is a second order U-statistic and it will affect the asymptotic distribution of cKI1. Similarly to
Hall(1984) let rewrite bV11n in the following way:

bV11n = 1

n(n− 1)
X
i

X
j,i6=j

H1n(xi, xj)

H1n(xi, xj) =
1

2h

µ
Kh(xj − xi)−

R
Kh(x− xi)g(x)dx

g(xi)
+

Kh(xi − xj)−
R
Kh(xi − x)g(x)dx

g(xi)

¶
= Jn(xi, xj)+Jn(xj , xi)

(59)
E(H1n(xi, xj)/xi) = 0, then using Theorem 1 in Hall(1984) we can show that

bV11n =
 1

n(n− 1)
X
i

X
j,i6=j

H11n(xi, xj)

Á
(
2E
£
H2
1n(xi, xj)

¤
n2

)
→d N(0, 1). (60)

E
£
J2n(xi, xj)

¤
=

1

4h2

Z Z ¡
Kh(xj − xi)−

R
Kh(xi − x)g(x)dx

¢2
g2(xi)

g(xi)g(xj)dxidxj =
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applying a change of variable from (xi, xj) = (xi, u) where u =
xj−xi
h we get the following expression

=
1

4h

Z Z
K2(u) +

£
h
R
K(u)g(xi + hu)du

¤2 − 2K(u) £h R K(u)g(xi + hu)du
¤

g2(xi)
g(xi)g(xi + hu)du '

' 1

4h

Z
K2(u)du+ o(

1

h
) = O(

1

h
). (61)

Similarly we can show that

E [Jn(xi, xj)Jn(xj , xi)] ' 1

4h

Z
K2(u)du+ o(

1

h
) = O(

1

h
). (62)

Then it follows that

E
£
H2
1n(xi, xj)

¤
= E

£
2J2n(xi, xj) + Jn(xi, xj)Jn(xj , xi)

¤
=
1

h

Z
K2(u)du+ o(

1

h
) = O(

1

h
), (63)

and

σ21n =
2

n2h

Z
K2(u)du+ o(

1

h
). (64)

The second term in () is the expected value of a Bias term, that is

bBn =
1

n

X
i

bn(xi) ' h2

2
µ2

Z
g(2)(x)dx+ o(h2), (65)

where g(2)(x) is the second derivative of the p.d.f. Hence bBn = Op

¡
n−1/2h2

¢
. Thus, what we obtain is

bV1n = bV11n + bBn ∼ σ1nN(0, 1) +
h2

2
µ2

Z
g(2)(x)dx+ o(h2). (66)

bV2n = 1

n

X
i

"cfn(xi)− f(xi)

g(xi)
+

f(xi)− g(xi)

g(xi)

#2
=

=
1

n

X
i

"cfn(xi)− f(xi)

g(xi)

#2
+
1

n

X
i

·
f(xi)− g(xi)

g(xi)

¸2
+
2

n

X
i

Ãcfn(xi)− f(xi)

g(xi)

!µ
f(xi)− g(xi)

g(xi)

¶
= (67)

= bV21n + bV22n + bV23n. (68)

bV21n = 1

n

X
i

 1

n− 1
X
j,i6=j

an(xi, xj)

2

=

=
1

n(n− 1)2
X
i

X
j,i6=j

a2n(xi, xj) +
2

n(n− 1)
X
i

X
j 6=i

X
z 6=j

an(xi, xj)an(xi, xz). (69)

The first part is a variance term and it will affect the mean of the asymptotic distribution. The second
term equals a twice centered degenerate U-statistic bU2n, which is of the same order of magnitude of bV11n
and it also affects the asymptotic distribution of KI.
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As n→∞,by Lemma 2 Hall(1984) the first term of bV21n is given by
1

n(n− 1)2
X
i

X
j,i6=j

a2n(xi, xj) = σ2n +Op(n
−3/2h−1), (70)

where σ2n =
1
2nσ

2
1n.

2bU2n = 2

n(n− 1)
X
i

X
i6=j

Z
an(xj , x)an(xi, x)g(x)dx =

2

n(n− 1)
X
i

X
i6=j

H2n(xi, xj), (71)

H2n(xi, xj) =

Z
1

h2

·
Kh(xi − xj)−

R
Kh(xi − xj)g(xj)dxj
g(xi)

¸ ·
Kh(xi − xz)−

R
Kh(xi − xz)g(xz)dxz
g(xi)

¸
g(xi)dxi.

E
£
H2
2n(xi, xj)

¤
=
1

h4
E

·Z µ
Kh(xi − xj)−

R
Kh(xi − xj)g(xj)dxj
g(xi)

¶µ
Kh(xi − xz)−

R
Kh(xi − xz)g(xz)dxz
g(xi)

¶
g(xi)dxi

¸2
=

1

h4

Z Z ·Z µ
Kh(xi − xj)−

R
Kh(xi − xj)g(xj)dxj
g(xi)

¶µ
Kh(xi − xz)−

R
Kh(xi − xz)g(xz)dxz
g(xi)

¶
g(xi)dxi

¸2
g(xj)g(xz)dxjdxz

=
1

h4

Z ·Z
Kh(xi − xj)Kh(xi − xz)

g2(xi)
g(xi)dxi

¸2
g(xj)g(xz)dxjdxz + o(

1

h
) =

=
1

h4

Z ·
h

Z
K(u)K(u+ v)

g(xj + hu)
du

¸2
g(xj)g(xj+hu−hz)dxjhdv+o( 1

h
) =

1

h

Z
1

g2(xj)

·Z
K(u)K(u+ v)du

¸2
g2(xj)dxjdv =

' h−1
Z ·Z

K(u)K(u+ v)du

¸2
dv + o(

1

h
). (72)

By Lemma 3 in Hall(84), then bU2n is asymptotically Normally distributed N(0, σ22n), where

σ22n ' 2n−2h−1
Z ·Z

K(u)K(u+ v)du

¸2
dv. (73)

Hence finally we have that

bV21n ∼ σ2n +Op(n
−3/2h−1) + 2σ2nN(0, 1). (74)

bV22n = 1
n

P
i

h
f(xi)−g(xi)

g(xi)

i2
= 1

n

P
i b
2
n(xi), which is a purely deterministic Bias-squared term, and it will

affect the mean of the asymptotic distribution. That is,

1

n

X
i

b2n =
h4

4
µ22

Z ¡
g(2)(x)

¢
g(x)

2

dx+ o(h4). (75)

Finally we can analyze bV23n:
2bV23n = 2

n

X
i

Ãcfn(xi)− f(xi)

g(xi)

!µ
f(xi)− g(xi)

g(xi)

¶
=

2

n(n− 1)
X
i

bH3ni, (76)

similarly to Hall(1984) define
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H3ni =
X
j

an(xi, xj)bn(xi) =
1

h

Z ·
Kh(xi − x)− R Kh(xi − xj)g(xj)dxj

g(xi)

¸µ
f(xi)− g(xi)

g(xi)

¶
dx (77)

Under assumptions A1 and A2 and given that EH23ni = 0, by Lemma1 in Hall(1984) we have that 2bV23n
is asymptotically normally distributed with zero mean and variance given by:

σ23n ' 2n−1h4µ22
"Z ¡

g(2)(xi)
¢2

g(xi)
dxi −

µZ ³
g(2)(xi)

´
dxi

¶2#
, (78)

which can be easily seen if we consider that f(xi)−g(xi)
g(xi)

= h2µ2g
(2)(xi)

g(xi)
and that

EH2
3ni = h4µ22

"Z ¡
g(2)(xi)

¢2
g(xi)

dxi −
µZ ³

g(2)(xi)
´
dxi

¶2#
.

Also this term will affect the asymptotic distribution of cKI1.
To summarize all previous steps, we can rewrite the expansion of cKI1 in the following way:

cKI1 = bV11n + bBn − 1
2

³bV21n + bV22n + 2bV23n´ ∼ (79)

N(0, σ21n)+
h2

2
µ2

Z
g(2)(x)dx+o(h2)−1

2

Ã
σ2n +Op(n

−3/2h−1) + 2N(0, σ22n) +
h4

4
µ22

Z ¡
g(2)(x)

¢
g(x)

2

dx+ o(h4) + 2N(0, σ23n)

!
.

Once more, following Hall(1984), from the definition of bV21n and the fact that nh→∞, we have that the
difference between 1

n(n−1)
P

i

P
j 6=i a

2
n(xi, xj) and σ

2
n is negligible w.r.t. 2bU2n, hence the previous expression

can be rewritten as follows:

cKI1 ∼ (nh1/2)−1
√
2σ1N1 − (nh1/2)−1

√
2σ2N2 − n−1/2h2

√
2σ3N3 + bBn − 1

2
cn, (80)

where N1, N2 and N3 are asymptotically normal N(0,1); and

σ1 =

Z
K2(u)du, σ2 =

Z ·Z
K(u)K(u+ v)du

¸2
dv and σ3 = µ22

"Z ¡
g(2)(xi)

¢2
g(xi)

dxi −
µZ ³

g(2)(xi)
´
dxi

¶2#
,

and cn = (nh)
−1
Z

K2(u)du+
h4

4
µ22

Z µ
g(2)(x)

g(x)

¶2
dx+ o(n−1h−1 + h4). (81)

It is important to notice that bBn, which isOp(n
−1/2h2), will asymptotically cancel out with n−1/2h2

√
2σ3N3,

since they are of the same order of magnitude.
Thus, we have the following results: as n→∞, h→ 0, nh→∞ and nh5 → 0

nh1/2(cKI1 +
1

2
cn)→d

√
2σ1N1 −

√
2σ3N2. (82)
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Since aN(0, 1) + bN(0, 1) can be written as partial sum of martingale difference array, and it can be
proved to be asymptotically normal N(0, a2+b2) (see Hall(84) p.10), then we have that

√
2σ1N1−

√
2σ3N2 =

nh1/2(cKI1 +
1
2cn)→

√
2(σ1 − σ3)N(0, 1).

Let now examine the term

KI2 =

Z
(ln fbθ(x)− ln g(x))d bFn(x) = Z (ln fbθ(xi)− log fθ∗(xi) + log fθ∗(xi)− ln g(xi))d bFn(xi).

We start examining the limiting distribution of

cKI2 =
1

n

X
i=1

¡
log fbθ (xi)− log fθ∗(xi)¢ bfn(xi) + 1

n

X
i=1

(log fθ∗(xi)− log g(xi)) bfn(xi) = cKI21 + cKI22, (83)

that similarly of cKI1by the LLN, can be considered a good approximation of n−1E(ln fbθ(x)− ln g(x)). This
part of the proof is based mainly on Zheng (1996).
Employing the same expansion used for cKI1, where now u =

fbθ(xi)−fθ∗ (xi)
fθ∗ (xi)

:

1

n

X
i=1

log

µ
fbθ (xi)
fθ∗(xi)

¶
' 1

n

X
i=1

fbθ (xi)− fθ∗(xi)

fθ∗(xi)
− 1

2n

X
i=1

µ
fbθ (xi)− fθ∗(xi)

fθ∗(xi)

¶2
,

we can rewrite cKI21 in the following way:

cKI21(fbθ, fθ∗) ' 1

n

X
i=1

µ
fbθ (xi)− fθ∗(xi)

fθ∗(xi)

¶ bfn(xi)− 1

2n

X
i=1

µ
fbθ (xi)− fθ∗(xi)

fθ∗(xi)

¶2 bfn(xi) = In1 − 1
2
In2. (84)

Applying the mean value theorem to fbθ (xi) we obtain:
fbθ (xi)− fθ∗ (xi) ∼= ∂fθ∗ (xi)

∂θ
(bθ − θ∗) +

1

2
(bθ − θ∗)

0 ∂2fθ (xi)

∂θ∂θ0
(bθ − θ∗);

thus,

In1 =
1

n

X
i=1

bfn(xi)
fθ∗(xi)

³ bfθ (xi)− fθ∗ (xi)
´
' (85)

' 1

n

X
i

bfn(xi)
fθ∗(xi)

∂fθ∗ (xi)

∂θ
(bθ − θ∗) +

1

2n

X
i

(bθ − θ∗)
0 bfn(xi)
fθ∗(xi)

∂2fθ∗ (xi)

∂θ∂θ0
(bθ − θ∗) =

=
1

n(n− 1)
X
i

X
j

1

h
K

µ
xj − xi

h

¶
∂fθ∗ (xi) /∂θ

fθ∗(xi)
(bθ − θ∗) +

+(bθ − θ∗)
0 1

2n(n− 1)
X
i

X
j

1

h
K

µ
xj − xi

h

¶
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)
(bθ − θ∗) =

= S1n(bθ − θ∗) + (bθ − θ∗)0S2n(bθ − θ∗). (86)

It can be noticed that the U-statistic form of S1n is the same as that of Un defined in theorem 2. It follows
that S1n = Op(

1√
n
).
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E (S2n) =
1

2n(n− 1)
X
i

X
j

E

·
1

h
K

µ
xj − xi

h

¶
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)

¸
, (87)

E

·
1

h
K

µ
xj − xi

h

¶
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)

¸
=
1

h

Z Z
K

µ
xj − xi

h

¶
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)
g(xi)g(xj)dxidxj =

=

Z Z
K (u)

∂2fθ (xi) /∂θ∂θ
0

fθ∗(xi)
g(xi)g(xi + hu)dxidu. (88)

Similarly to Dimitriev-Tarasenko(1973), applying the Cauchy-Schwartz inequality we obtain that

lim sup
n→∞

E (S2n) ≤
Z

∂2fθ (xi) /∂θ∂θ
0

fθ∗(xi)
g2(x)dx = E

µ
∂s(θ, x)

∂θ
g(x)

¶
; (89)

further, since E bfn(x) = g(x), applying Fatou-Lebesgue theorem we have that

lim
n→∞E (S2n) = E

µ
∂s(θ, x)

∂θ
g(x)

¶
. (90)

Thus, we have that S2n = Op(1). Taking into account that
√
n(bθ − θ∗) = Op(1), which in turn implies that

(bθ − θ∗) = Op(
1√
n
), it follows that In1 = S1n(bθ − θ∗) + (bθ − θ∗)0S2n(bθ − θ∗) is equal to

In1 = Op(
1√
n
) ∗Op(

1√
n
) +Op(

1√
n
) ∗Op(1) ∗Op(

1√
n
) = Op(

1

n
). (91)

Now we have to consider In2:

In2 =
1

n

X
i=1

Ã bfθ (xi)− fθ∗(xi)

fθ∗(xi)

!2 bfn(xi) ' (bθ−θ∗)0 1

n(n− 1)
X
i

X
j

1

h
K

µ
xj − xi

h

¶
∂ ln fθ (xi)

∂θ

∂ ln fθ (xj)

∂θ0
(bθ−θ∗) '

(92)

' (bθ − θ∗)0

 1

n(n− 1)h
X
i

X
j

K

µ
xj − xi

h

¶
s(θ, xi)s(θ, xj)

0

 (bθ − θ∗) = (bθ − θ∗)0S3n(bθ − θ∗)0. (93)

Similarly to S2n, it can be shown that S3n is Op (1) . It follows that In2

In2 = Op

µ
1√
n

¶
∗Op (1) ∗Op

µ
1√
n

¶
= Op

µ
1

n

¶
. (94)

Finally, we get that:

cKI21(fbθ, fθ∗) ' In1 − 1
2
In2 = Op(

1

n
)− 1

2
Op

µ
1

n

¶
= Op

µ
1

n

¶
,

then it follows that

(nh1/2)cKI21(fbθ, fθ∗) = (nh1/2)Op

µ
1

n

¶
= Op(h

1/2)→p 0. (95)
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Now, the same expansion used for cKI21 can be applied to cKI22(fθ∗ , g):

cKI22(fθ∗ , g) ∼= 1

n

nX
i=1

µ
fθ∗(xi)− g(xi)

g(xi)

¶ bfn(xi)− 1

2n

nX
i=1

µ
fθ∗(xi)− g(xi)

g(xi)

¶2 bfn(xi) = Jn1 − 1
2
Jn2, (96)

E (J1n(fθ∗ , g)) = E

µZ µ
fθ∗(xi)− g(xi)

g(xi)

¶ bfn(xi)g(xi)dxi¶ = Z Z
K(u) (fθ∗(x)− g(x)) g(x+ hu)dxdu.

(97)
Applying the same steps used for S2n we can show that

lim sup
n→∞

E (J1n(fθ∗ , g)) ≤
Z
(fθ∗(x)− g(x)) g(x)dx = E (fθ∗(x)− g(x))

lim
n→∞E (J1n(fθ∗ , g)) = E (fθ∗(x)− g(x)) . (98)

It follows that J1n(fθ∗ , g) = Op(1). Repeating the same steps once more for J2n(fθ∗ , g) we obtain:

E

Ã
1

n

nX
i=1

µ
fθ∗(xi)− g(xi)

g(xi)

¶2 bfn(xi)! = E

ÃZ µ
fθ∗(xi)− g(xi)

g(xi)

¶2 bfn(xi)g(xi)dxi! =
= E

ÃZ
(fθ∗(xi)− g(xi))

2

g(xi)
bfn(xi)dxi! = Z Z

K(u)
(fθ∗(x)− g(x))

2

g(x)
g(x+ hu)dxdu, (99)

lim sup
n→∞

E (J2n(fθ∗ , g)) ≤
Z
(fθ∗(x)− g(x))2 dx (100)

lim
n→∞E (J2n(fθ∗ , g)) =

Z
(fθ∗(x)− g(x))2 dx > 0. (101)

Then also J2n(fθ∗ , g) = Op(1). This implies that cKI22(fθ∗ , g) = Jn1 − 1
2Jn2 = Op(1).

Then it is clear that given assumptions A1-A4, if h→ 0, nh→∞ then

cKI22(fθ∗ , g)→p E (fθ∗(x)− g(x))− 1
2

Z
(fθ∗(x)− g(x))

2
dx ∼= E [ln fθ∗ − ln g] , (102)

this implies that nh1/2cKI22 →p ∞, hence we need to rescale it by dn = n−1h−1/2 where dn → 0 as n→∞.

This is embodied in assumption A6:

cKI22 ' αh1/2cn (103)

Finally we can put all terms together:

KI =

Z
x

(lncfn(x)− ln fbθ(x))cfn(x)dx ∼= cKI1 − cKI2 ∼

∼
·
(nh1/2)−1

√
2σ1N1 − (nh1/2)−1

√
2σ2N2 − 1

2
cn

¸
−
hcKI21(fbθ, fθ∗) + cKI22(fθ∗ , g)

i
, (104)

since we showed that
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(nh1/2)cKI21(fbθ, fθ∗)→p 0 (105)

the entire expression for (nh1/2)KI can be approximated in the following way

(nh1/2)

·
(nh1/2)−1

√
2σ1N1 − (nh1/2)−1

√
2σ2N2 − 1

2
cn −

µ
Jn1 − 1

2
Jn2

¶¸
. (106)

Thus, if h ∝ n−β with β > 1
5 , cn ' C(nh)−1

(nh1/2)

µ
KI +

1

2
cn

¶
∼
√
2σ1N1 −

√
2σ2N2 + αC (107)

then,

(nh1/2)

µ
KI +

1

2
cn

¶
→d N

¡
αC, 2

¡
σ21 − σ22

¢¢
(108)

9.4 Formula of MGF and expected utility

It can be shown that the moment generating function for the double Gamma distribution is:

MR(t) = exp(tγ)[pMGF (t) + (1− p)MGF (−t)] =
exp(tγ)[p(1− φ1t)

−ζ1 + (1− p)(1 + φ2t)
−ζ2

hence E(U(R)) where t = aδ and φi = 1/λi is given by the following expression:

Egr|s [U(W (ert, a))] = −MR(−t) = − exp(−aδγ)[p(1− φ1aδ)
−ζ1 + (1− p)(1 + φ2aδ)

−ζ2 ]

For the Gumbel distribution we have the following expression:

MR(t) = exp(αt)Γ(1− βt)

Egr|s [U(W (ert, a))] = −MR(−aδ) = − exp(−αaδ)Γ(1 + βaδ)

For the Normal we have the well known result:

MR(t) = exp(tµ− 1
2
t2σ2)

Egr|s [U(W (ert, a))] = −MR(−aδ) = exp(−aδµ+ 1
2
a2δ2σ2).
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10 Tables

True:G(9,3) h ∝ n−1/4.5 N=400 t=1000

Gamma Normal Weibull
par(1) par(2) par(1) par(2) par(1) par(2)

NPQMLE estim.θ 8.22 3.33 25.55 9.31 0.000031 3.11
st.dev. 0.701 0.298 0.545 0.425 0.000015 0.136
KI(g, f(bθ)) 0.0084 0.023 0.025

QMLE estim.θ 9.034 3.03 27.002 9.001 0.000022 3.173
st.dev. 0.629 0.213 0.449 0.367 0.000013 0.131
KI(g, f(bθ)) 0.0037 0.044 0.0445

Table 1

True:G(9,3) h ∝ n−1/4 N=400 t=1000

Gamma Normal Weibull
par(1) par(2) par(1) par(2) par(1) par(2)

NPQMLE estim.θ 8.586 3.194 25.536 9.103 0.000026 3.17
st.dev. 0.756 0.291 0.543 0.425 0.000014 0.143
KI(g, f(bθ)) 0.0062 0.0211 0.0236

Table 2

True:G(9,3) h ∝ n−1/4.5 N=800 t=1000

Gamma Normal Weibull
par(1) par(2) par(1) par(2) par(1) par(2)

NPQMLE estim.θ 8.36 3.27 25.53 9.21 0.000027 3.143
st.dev. 0.521 0.214 0.379 0.315 0.000009 0.101
KI(g, f(bθ)) 0.0049 0.019 0.0222

QMLE estim.θ 9.007 3.009 27.011 9.012 0.000021 3.166
st.dev. 0.469 0.161 0.322 0.276 0.000073 0.098
KI(g, f(bθ)) 0.002 0.042 0.0432

Table 3

True:G(9,3) h ∝ n−1/4 N=800 t=1000

Gamma Normal Weibull.
par(1) par(2) par(1) par(2) par(1) par(2)

NPQMLE estim.θ 8.65 3.15 25.511 9.05 0.000024 3.183
st.dev. 0.555 0.212 0.384 0.317 0.000008 0.105
KI(g, f(bθ)) 0.0035 0.0186 0.0211

Table 4
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True:G(9,3) h ∝ n−1/4.5 N=1200 t=1000

Gamma Normal Weibull
par(1) par(2) par(1) par(2) par(1) par(2)

NPQMLE estim.θ 8.47 3.22 25.49 9.14 0.000025 3.157
st.dev. 0.419 0.166 0.319 0.241 0.000007 0.081
KI(g, f(bθ)) 0.0032 0.018 0.0207

QMLE estim.θ 9.01 2.999 26.992 8.998 0.000021 3.166
st.dev. 0.353 0.121 0.262 0.208 0.000056 0.076
KI(g, f(bθ)) 0.0012 0.041 0.042

Table 5

True:G(9,3) h ∝ n−1/4 N=1200 t=1000

Gamma Normal Weibull
par(1) par(2) par(1) par(2) par(1) par(2)

NPQMLE estim.θ 8.75 3.108 25.49 8.993 0.000023 3.196
st.dev. 0.455 0.171 0.327 0.255 0.000006 0.085
KI(g, f(bθ)) 0.0023 0.0174 0.0200

Table 6
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Figure 1 and 2 show the estimation result using the mixture of Gamma and the Normal 
Distributions, for the entire sample. The solid line represents the nonparametric density, 
the dotted line the parametric model. 
 



-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1
0

10

20

30

40

50

60

stkret

f(s
tk

re
t)

Mixture of Gamma: Expansion 

 

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1
0

10

20

30

40

50

60

stkret

f(s
tk

re
t)

Normal: Expansion 

 
Figure 3 and 4 show the estimation result using the mixture of Gamma and the Normal 
Distributions, for expansion sample. The solid line represents the nonparametric density, 
the dotted line the parametric model. 
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Figure 5 and 6 show the estimation result using the mixture of Gamma and the Normal 
Distributions, for contraction sample. The solid line represents the nonparametric density, 
the dotted line the parametric model. 
 


